-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsanity_check.py
236 lines (194 loc) · 9.03 KB
/
sanity_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2018-19: Homework 4
sanity_check.py: sanity checks for assignment 4
Sahil Chopra <[email protected]>
Michael Hahn <>
Usage:
sanity_check.py 1d
sanity_check.py 1e
sanity_check.py 1f
"""
import math
import sys
import pickle
import time
import numpy as np
from docopt import docopt
from typing import List, Tuple, Dict, Set, Union
from tqdm import tqdm
from utils import read_corpus, batch_iter
from vocab import Vocab, VocabEntry
from nmt_model import NMT
import torch
import torch.nn as nn
import torch.nn.utils
#----------
# CONSTANTS
#----------
BATCH_SIZE = 5
EMBED_SIZE = 3
HIDDEN_SIZE = 3
DROPOUT_RATE = 0.0
def reinitialize_layers(model):
""" Reinitialize the Layer Weights for Sanity Checks.
"""
def init_weights(m):
if type(m) == nn.Linear:
m.weight.data.fill_(0.3)
if m.bias is not None:
m.bias.data.fill_(0.1)
elif type(m) == nn.Embedding:
m.weight.data.fill_(0.15)
elif type(m) == nn.Dropout:
nn.Dropout(DROPOUT_RATE)
with torch.no_grad():
model.apply(init_weights)
def generate_outputs(model, source, target, vocab):
""" Generate outputs.
"""
print ("-"*80)
print("Generating Comparison Outputs")
reinitialize_layers(model)
# Compute sentence lengths
source_lengths = [len(s) for s in source]
# Convert list of lists into tensors
source_padded = model.vocab.src.to_input_tensor(source, device=model.device)
target_padded = model.vocab.tgt.to_input_tensor(target, device=model.device)
# Run the model forward
with torch.no_grad():
enc_hiddens, dec_init_state = model.encode(source_padded, source_lengths)
enc_masks = model.generate_sent_masks(enc_hiddens, source_lengths)
combined_outputs = model.decode(enc_hiddens, enc_masks, dec_init_state, target_padded)
# Save Tensors to disk
torch.save(enc_hiddens, './sanity_check_en_es_data/enc_hiddens.pkl')
torch.save(dec_init_state, './sanity_check_en_es_data/dec_init_state.pkl')
torch.save(enc_masks, './sanity_check_en_es_data/enc_masks.pkl')
torch.save(combined_outputs, './sanity_check_en_es_data/combined_outputs.pkl')
def question_1d_sanity_check(model, src_sents, tgt_sents, vocab):
""" Sanity check for question 1d.
Compares student output to that of model with dummy data.
"""
print("Running Sanity Check for Question 1d: Encode")
print ("-"*80)
# Configure for Testing
reinitialize_layers(model)
source_lengths = [len(s) for s in src_sents]
source_padded = model.vocab.src.to_input_tensor(src_sents, device=model.device)
# Load Outputs
enc_hiddens_target = torch.load('./sanity_check_en_es_data/enc_hiddens.pkl')
dec_init_state_target = torch.load('./sanity_check_en_es_data/dec_init_state.pkl')
# Test
with torch.no_grad():
enc_hiddens_pred, dec_init_state_pred = model.encode(source_padded, source_lengths)
assert(np.allclose(enc_hiddens_target.numpy(), enc_hiddens_pred.numpy())), "enc_hiddens is incorrect: it should be:\n {} but is:\n{}".format(enc_hiddens_target, enc_hiddens_pred)
print("enc_hiddens Sanity Checks Passed!")
assert(np.allclose(dec_init_state_target[0].numpy(), dec_init_state_pred[0].numpy())), "dec_init_state[0] is incorrect: it should be:\n {} but is:\n{}".format(dec_init_state_target[0], dec_init_state_pred[0])
print("dec_init_state[0] Sanity Checks Passed!")
assert(np.allclose(dec_init_state_target[1].numpy(), dec_init_state_pred[1].numpy())), "dec_init_state[1] is incorrect: it should be:\n {} but is:\n{}".format(dec_init_state_target[1], dec_init_state_pred[1])
print("dec_init_state[1] Sanity Checks Passed!")
print ("-"*80)
print("All Sanity Checks Passed for Question 1d: Encode!")
print ("-"*80)
def question_1e_sanity_check(model, src_sents, tgt_sents, vocab):
""" Sanity check for question 1e.
Compares student output to that of model with dummy data.
"""
print ("-"*80)
print("Running Sanity Check for Question 1e: Decode")
print ("-"*80)
# Load Inputs
dec_init_state = torch.load('./sanity_check_en_es_data/dec_init_state.pkl')
enc_hiddens = torch.load('./sanity_check_en_es_data/enc_hiddens.pkl')
enc_masks = torch.load('./sanity_check_en_es_data/enc_masks.pkl')
target_padded = torch.load('./sanity_check_en_es_data/target_padded.pkl')
# Load Outputs
combined_outputs_target = torch.load('./sanity_check_en_es_data/combined_outputs.pkl')
# Configure for Testing
reinitialize_layers(model)
COUNTER = [0]
def stepFunction(Ybar_t, dec_state, enc_hiddens, enc_hiddens_proj, enc_masks):
dec_state = torch.load('./sanity_check_en_es_data/step_dec_state_{}.pkl'.format(COUNTER[0]))
o_t = torch.load('./sanity_check_en_es_data/step_o_t_{}.pkl'.format(COUNTER[0]))
COUNTER[0]+=1
return dec_state, o_t, None
model.step = stepFunction
# Run Tests
with torch.no_grad():
combined_outputs_pred = model.decode(enc_hiddens, enc_masks, dec_init_state, target_padded)
assert(np.allclose(combined_outputs_pred.numpy(), combined_outputs_target.numpy())), "combined_outputs is incorrect: it should be:\n {} but is:\n{}".format(combined_outputs_target, combined_outputs_pred)
print("combined_outputs Sanity Checks Passed!")
print ("-"*80)
print("All Sanity Checks Passed for Question 1e: Decode!")
print ("-"*80)
def question_1f_sanity_check(model, src_sents, tgt_sents, vocab):
""" Sanity check for question 1f.
Compares student output to that of model with dummy data.
"""
print ("-"*80)
print("Running Sanity Check for Question 1f: Step")
print ("-"*80)
reinitialize_layers(model)
# Inputs
Ybar_t = torch.load('./sanity_check_en_es_data/Ybar_t.pkl')
dec_init_state = torch.load('./sanity_check_en_es_data/dec_init_state.pkl')
enc_hiddens = torch.load('./sanity_check_en_es_data/enc_hiddens.pkl')
enc_masks = torch.load('./sanity_check_en_es_data/enc_masks.pkl')
enc_hiddens_proj = torch.load('./sanity_check_en_es_data/enc_hiddens_proj.pkl')
# Output
dec_state_target = torch.load('./sanity_check_en_es_data/dec_state.pkl')
o_t_target = torch.load('./sanity_check_en_es_data/o_t.pkl')
e_t_target = torch.load('./sanity_check_en_es_data/e_t.pkl')
# Run Tests
with torch.no_grad():
dec_state_pred, o_t_pred, e_t_pred= model.step(Ybar_t, dec_init_state, enc_hiddens, enc_hiddens_proj, enc_masks)
assert(np.allclose(dec_state_target[0].numpy(), dec_state_pred[0].numpy())), "decoder_state[0] is incorrect: it should be:\n {} but is:\n{}".format(dec_state_target[0], dec_state_pred[0])
print("dec_state[0] Sanity Checks Passed!")
assert(np.allclose(dec_state_target[1].numpy(), dec_state_pred[1].numpy())), "decoder_state[1] is incorrect: it should be:\n {} but is:\n{}".format(dec_state_target[1], dec_state_pred[1])
print("dec_state[1] Sanity Checks Passed!")
assert(np.allclose(o_t_target.numpy(), o_t_pred.numpy())), "combined_output is incorrect: it should be:\n {} but is:\n{}".format(o_t_target, o_t_pred)
print("combined_output Sanity Checks Passed!")
assert(np.allclose(e_t_target.numpy(), e_t_pred.numpy())), "e_t is incorrect: it should be:\n {} but is:\n{}".format(e_t_target, e_t_pred)
print("e_t Sanity Checks Passed!")
print ("-"*80)
print("All Sanity Checks Passed for Question 1f: Step!")
print ("-"*80)
def main():
""" Main func.
"""
args = docopt(__doc__)
# Check Python & PyTorch Versions
assert (sys.version_info >= (3, 5)), "Please update your installation of Python to version >= 3.5"
# assert(torch.__version__ == "1.0.0"), "Please update your installation of PyTorch. You have {} and you should have version 1.0.0".format(torch.__version__)
# Seed the Random Number Generators
seed = 1234
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed * 13 // 7)
# Load training data & vocabulary
train_data_src = read_corpus('./sanity_check_en_es_data/train_sanity_check.es', 'src')
train_data_tgt = read_corpus('./sanity_check_en_es_data/train_sanity_check.en', 'tgt')
train_data = list(zip(train_data_src, train_data_tgt))
for src_sents, tgt_sents in batch_iter(train_data, batch_size=BATCH_SIZE, shuffle=True):
src_sents = src_sents
tgt_sents = tgt_sents
break
vocab = Vocab.load('./sanity_check_en_es_data/vocab_sanity_check.json')
# Create NMT Model
model = NMT(
embed_size=EMBED_SIZE,
hidden_size=HIDDEN_SIZE,
dropout_rate=DROPOUT_RATE,
vocab=vocab)
if args['1d']:
question_1d_sanity_check(model, src_sents, tgt_sents, vocab)
elif args['1e']:
question_1e_sanity_check(model, src_sents, tgt_sents, vocab)
elif args['1f']:
# generate_outputs(model, src_sents, tgt_sents, vocab)
question_1f_sanity_check(model, src_sents, tgt_sents, vocab)
else:
raise RuntimeError('invalid run mode')
if __name__ == '__main__':
main()