forked from SeanChenxy/TSSD-OTA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
488 lines (446 loc) · 22.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
from data import v2, v3, AnnotationTransform, BaseTransform, VOCDetection, MOTDetection, detection_collate, seq_detection_collate, VOCroot, VIDroot, MOT17Detroot, MOT15root, VOC_CLASSES, VID_CLASSES
from utils.augmentations import SSDAugmentation, seqSSDAugmentation
from layers.modules import MultiBoxLoss, seqMultiBoxLoss, AttentionLoss
from ssd import build_ssd
import numpy as np
import time
import logging
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def print_log(args):
if args.resume:
logging.info('resume: '+ args.resume )
logging.info('start_iter: '+ str(args.start_iter))
elif args.resume_from_ssd:
logging.info('resume_from_ssd: '+ args.resume_from_ssd )
else:
logging.info('load pre-trained vgg: '+ args.basenet )
logging.info('freeze: '+ str(args.freeze))
logging.info('lr: '+ str(args.lr))
logging.info('gamam: '+ str(args.gamma))
logging.info('step_list: '+ str(args.step_list))
logging.info('save_interval: '+ str(args.save_interval))
logging.info('dataset_name: '+ args.dataset_name )
logging.info('set_file_name: '+ args.set_file_name )
logging.info('gpu_ids: '+ args.gpu_ids)
logging.info('augm_type: '+ args.augm_type)
logging.info('ssd_dim: '+ str(args.ssd_dim))
logging.info('batch_size: '+ str(args.batch_size))
logging.info('seq_len: '+ str(args.seq_len))
logging.info('skip: '+ str(args.skip))
logging.info('tssd: '+ args.tssd )
logging.info('attention: '+ str(args.attention))
logging.info('association: '+ str(args.association))
if args.association:
logging.info('asso_top_k: '+ str(args.asso_top_k))
logging.info('asso_conf: '+ str(args.asso_conf))
logging.info('loss weights: '+ str(args.loss_coe))
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training')
parser.add_argument('--version', default='v2', help='conv11_2(v2) or pool6(v1) as last layer')
parser.add_argument('--basenet', default='vgg16_reducedfc_512.pth', help='pretrained base model')
parser.add_argument('--jaccard_threshold', default=0.5, type=float, help='Min Jaccard index for matching')
parser.add_argument('--batch_size', default=8, type=int, help='Batch size for training')
parser.add_argument('--resume', default=None, type=str, help='Resume from checkpoint') #'./weights/tssd300_VID2017_b8s8_RSkipTBLstm_baseAugmDrop2Clip5_FixVggExtraPreLocConf/ssd300_seqVID2017_20000.pth'
parser.add_argument('--resume_from_ssd', default='ssd', type=str, help='Resume vgg and extras from ssd checkpoint')
parser.add_argument('--freeze', default=0, type=int, help='Freeze, 1. vgg, extras; 2. vgg, extras, conf, loc; 3. vgg, extras, rnn, attention, conf, loc')
parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading')
parser.add_argument('--iterations', default=120000, type=int, help='Number of training iterations')
parser.add_argument('--start_iter', default=0, type=int, help='Begin counting iterations starting from this value (should be used with resume)')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--log_iters', default=True, type=bool, help='Print the loss at each iteration')
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--send_images_to_visdom', type=str2bool, default=False, help='Sample a random image from each 10th batch, send it to visdom after augmentations step')
parser.add_argument('--save_folder', default='./weights/test', help='Location to save checkpoint models')
parser.add_argument('--dataset_name', default='MOT15', help='VOC0712/VIDDET/seqVID2017/MOT17Det/seqMOT17Det')
parser.add_argument('--step_list', nargs='+', type=int, default=[30,50], help='step_list for learning rate')
parser.add_argument('--save_interval', default=5000, type=int, help='frequency of saving checkpoint')
parser.add_argument('--ssd_dim', default=300, type=int, help='ssd_dim 300 or 512')
parser.add_argument('--gpu_ids', default='0,1', type=str, help='gpu number')
parser.add_argument('--augm_type', default='base', type=str, help='how to transform data')
parser.add_argument('--tssd', default='ssd', type=str, help='ssd or tssd')
parser.add_argument('--seq_len', default=8, type=int, help='sequence length for training')
parser.add_argument('--set_file_name', default='train_VID_DET', type=str, help='train_VID_DET/train_video_remove_no_object/train, MOT dataset does not use it')
parser.add_argument('--attention', default=False, type=str2bool, help='add attention module')
parser.add_argument('--association', default=False, type=str2bool, help='dynamic set prior box through time')
parser.add_argument('--asso_top_k', default=1, type=int, help='top_k for association loss')
parser.add_argument('--asso_conf', default=0.1, type=float, help='conf thresh for association loss')
parser.add_argument('--loss_coe', nargs='+', type=float, default=[1.0,1.0, 0.5, 2.0], help='coefficients for loc, conf, att, asso')
parser.add_argument('--skip', default=False, type=str2bool, help='select sequence data in a skip way')
parser.add_argument('--bn', default=False, type=str2bool, help='select sequence data in a skip way')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
current_time = time.strftime("%b_%d_%H:%M:%S_%Y", time.localtime())
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename=os.path.join(args.save_folder, current_time+'.log'),
filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
print_log(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
if args.dataset_name in ['MOT15', 'seqMOT15']:
prior = 'v3'
cfg = v3
else:
prior = 'v2'
cfg = v2
if args.dataset_name=='VOC0712':
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
num_classes = len(VOC_CLASSES) + 1
data_root = VOCroot
elif args.dataset_name=='VIDDET':
train_sets = 'train'
num_classes = len(VID_CLASSES) + 1
data_root = VIDroot
elif args.dataset_name=='VID2017':
train_sets = 'train'
num_classes = len(VID_CLASSES) + 1
data_root = VIDroot
elif args.dataset_name=='MOT17Det':
train_sets = 'train'
num_classes = 2
data_root = MOT17Detroot
elif args.dataset_name=='seqMOT17Det':
train_sets = 'train_video'
num_classes = 2
data_root = MOT17Detroot
elif args.dataset_name=='MOT15':
train_sets = 'train15_17'
num_classes = 2
data_root = MOT15root
elif args.dataset_name == 'seqMOT15':
train_sets = 'train_video'
num_classes = 2
data_root = MOT15root
else:
train_sets = 'train_remove_noobject'
num_classes = len(VID_CLASSES) + 1
data_root = VIDroot
set_filename = args.set_file_name
collate_fn = seq_detection_collate if args.dataset_name[:3]=='seq' else detection_collate
ssd_dim = args.ssd_dim # only support 300 now
means = (104, 117, 123)
mean_np = np.array(means, dtype=np.int32)
batch_size = args.batch_size
weight_decay = args.weight_decay
stepvalues = args.step_list
max_iter = args.step_list[-1]
gamma = 0.1
momentum = args.momentum
if args.visdom:
import visdom
viz = visdom.Visdom()
ssd_net = build_ssd('train', ssd_dim, num_classes, tssd=args.tssd, attention=args.attention, prior=prior, bn=args.bn)
net = ssd_net
if args.cuda:
net = torch.nn.DataParallel(ssd_net)
cudnn.benchmark = True
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
ssd_net.load_weights(args.resume)
elif args.resume_from_ssd != 'ssd':
from collections import OrderedDict
print('training from pretrained vgg and extras, loading {}...'.format(args.resume_from_ssd))
ssd_weights = torch.load(args.resume_from_ssd)
ssd_vgg_weights = OrderedDict()
ssd_extras_weights = OrderedDict()
ssd_loc_weights = OrderedDict()
ssd_conf_weights = OrderedDict()
for key, weight in ssd_weights.items():
key_split = key.split('.')
subnet_name = key_split[0]
if subnet_name == 'vgg':
ssd_vgg_weights[key_split[1] + '.' + key_split[2]] = weight
elif subnet_name == 'extras':
ssd_extras_weights[key_split[1] + '.' + key_split[2]] = weight
elif subnet_name == 'loc':
ssd_loc_weights[key_split[1] + '.' + key_split[2]] = weight
elif subnet_name == 'conf':
ssd_conf_weights[key_split[1] + '.' + key_split[2]] = weight
ssd_net.vgg.load_state_dict(ssd_vgg_weights)
ssd_net.extras.load_state_dict(ssd_extras_weights)
ssd_net.loc.load_state_dict(ssd_loc_weights)
ssd_net.conf.load_state_dict(ssd_conf_weights)
else:
vgg_weights = torch.load(args.save_folder + '/../'+ args.basenet)# + '/../'
print('Loading base network...')
ssd_net.vgg.load_state_dict(vgg_weights)
if args.freeze:
if args.freeze == 1:
print('Freeze vgg, extras')
freeze_nets = [ssd_net.vgg, ssd_net.extras]
elif args.freeze == 2:
print('Freeze vgg, extras, conf, loc')
freeze_nets = [ssd_net.vgg, ssd_net.extras, ssd_net.conf, ssd_net.loc]
else:
freeze_nets = []
for freeze_net in freeze_nets:
for param in freeze_net.parameters():
param.requires_grad = False
if args.cuda:
net = net.cuda()
def xavier(param):
init.xavier_uniform(param)
def orthogonal(param):
init.orthogonal(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
m.bias.data.zero_()
def conv_weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
# m.bias.data.zero_()
def orthogonal_weights_init(m):
if isinstance(m, nn.Conv2d):
orthogonal(m.weight.data)
m.bias.data.fill_(1)
if not args.resume:
if args.resume_from_ssd != 'ssd':
if args.attention:
print('Initializing Attention weights...')
ssd_net.attention.apply(conv_weights_init)
if args.tssd in ['tblstm',]:
print('Initializing RNN weights...')
ssd_net.rnn.apply(orthogonal_weights_init)
else:
print('Initializing extra, loc, conf weights...')
# initialize newly added layers' weights with xavier method
ssd_net.extras.apply(weights_init)
ssd_net.loc.apply(weights_init)
ssd_net.conf.apply(weights_init)
if args.tssd in ['tblstm',]:
print('Initializing RNN weights...')
ssd_net.rnn.apply(orthogonal_weights_init)
if args.attention:
print('Initializing Attention weights...')
ssd_net.attention.apply(conv_weights_init)
if args.augm_type == 'ssd':
data_transform = SSDAugmentation
elif args.augm_type == 'seqssd':
data_transform = seqSSDAugmentation
else:
data_transform = BaseTransform
if args.tssd in ['tblstm',]:
if args.freeze == 0:
if args.attention:
print('train VGG, Extras, Loc, Conf, Attention, RNN')
optimizer = optim.SGD(#net.module.attention.parameters()
[{'params': net.module.loc.parameters()},
{'params': net.module.conf.parameters()},
{'params': net.module.attention.parameters()},
{'params': net.module.vgg.parameters()},
{'params': net.module.extras.parameters()}]
,lr=args.lr,momentum=args.momentum, weight_decay=args.weight_decay)
else:
print('train VGG, Extras, Loc, Conf, RNN')
optimizer = optim.SGD(#net.module.attention.parameters()
[{'params': net.module.loc.parameters()},
{'params': net.module.conf.parameters()},
{'params': net.module.vgg.parameters()},
{'params': net.module.extras.parameters()}]
,lr=args.lr,momentum=args.momentum, weight_decay=args.weight_decay)
elif args.freeze == 1:
if args.attention:
print('train Loc, Conf, Attention, RNN')
optimizer = optim.SGD(#net.module.attention.parameters()
[{'params': net.module.loc.parameters()},
{'params': net.module.conf.parameters()},
{'params': net.module.attention.parameters()}]
,lr=args.lr,momentum=args.momentum, weight_decay=args.weight_decay)
else:
print('train Loc, Conf, RNN')
optimizer = optim.SGD( # net.module.attention.parameters()
[{'params': net.module.loc.parameters()},
{'params': net.module.conf.parameters()}]
, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.freeze == 2:
print('train Attention, RNN')
optimizer = optim.SGD(net.module.attention.parameters()
,lr=args.lr,momentum=args.momentum, weight_decay=args.weight_decay)
optimizer_rnn = optim.RMSprop(net.module.rnn.parameters(), lr=args.lr, weight_decay=args.weight_decay)
criterion = seqMultiBoxLoss(num_classes, 0.5, True, 0, True, 3, 0.5, False, args.cuda,
association=args.association, top_k=args.asso_top_k, conf_thresh=args.asso_conf)
print('loss coefficients:', args.loss_coe)
else:
if args.freeze == 0:
optimizer = optim.SGD( net.parameters()
, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.freeze == 1:
optimizer = optim.SGD(#net.parameters()
[{'params': net.module.attention.parameters(), 'lr':args.lr*10},
{'params': net.module.loc.parameters()},
{'params': net.module.conf.parameters()}]
# {'params': net.module.loc.parameters()}]
, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
criterion = MultiBoxLoss(num_classes, 0.5, True, 0, True, 3, 0.5, False, args.cuda)
if args.attention:
att_criterion = AttentionLoss(args.ssd_dim)
def train():
net.train()
epoch = 0
print('Loading Dataset...')
if args.dataset_name in ['MOT15', 'seqMOT15', 'MOT17Det', 'seqMOT17Det']:
dataset = MOTDetection(data_root, train_sets, data_transform(
ssd_dim, means),dataset_name=args.dataset_name, seq_len=args.seq_len, skip=args.skip)
else:
dataset = VOCDetection(data_root, train_sets, data_transform(ssd_dim, means),
AnnotationTransform(dataset_name=args.dataset_name),
dataset_name=args.dataset_name, set_file_name=set_filename,
seq_len=args.seq_len, skip=args.skip)
epoch_size = len(dataset) // args.batch_size
print('Training TSSD on', dataset.name, ', how many videos:', len(dataset), ', sequence length:', args.seq_len, 'skip?', args.skip) if args.tssd in ['lstm', 'tblstm', 'gru'] else print('Training SSD on', dataset.name, 'dataset size:', len(dataset))
print('lr:',args.lr , 'steps:', stepvalues, 'max_liter:', max_iter)
step_index = 0
if args.visdom:
# initialize visdom loss plot
y_dim = 3
legend = ['Loss', 'Loc Loss', 'Conf Loss',]
if args.attention:
y_dim += 1
legend += ['Att Loss',]
if args.association:
y_dim += 1
legend += ['Asso Loss',]
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, y_dim)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title=args.save_folder.split('/')[-1],
legend=legend,
)
)
batch_iterator = None
data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
shuffle=True, collate_fn=collate_fn, pin_memory=True)
for iteration in range(args.start_iter, max_iter+1):
if (not batch_iterator) or (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data_loader)
if iteration in stepvalues:
step_index += 1
adjust_learning_rate(optimizer_rnn, args.gamma, step_index)
adjust_learning_rate(optimizer, args.gamma, step_index)
epoch += 1
images, targets, masks = next(batch_iterator)
if args.cuda:
images = Variable(images.cuda())
masks = Variable(masks.cuda())
targets = [[Variable(seq_anno.cuda(), volatile=True) for seq_anno in batch_anno] for batch_anno in targets] if args.dataset_name in ['seqMOT15', 'seqVID2017'] \
else [Variable(anno.cuda(), volatile=True) for anno in targets]
else:
images = Variable(images)
masks = Variable(masks)
targets = [[Variable(seq_anno, volatile=True) for seq_anno in batch_anno] for batch_anno in targets] if args.dataset_name in ['seqMOT15', 'seqVID2017'] \
else [Variable(anno, volatile=True) for anno in targets]
# forward
t0 = time.time()
loss = 0
out, att = net(images)
if args.tssd != 'ssd':
optimizer_rnn.zero_grad()
loss_l, loss_c, loss_asso = criterion(out, targets)
else:
loss_l, loss_c = criterion(out, targets)
optimizer.zero_grad()
if args.association:
loss += args.loss_coe[0]*loss_l + args.loss_coe[1]*loss_c + args.loss_coe[3]*loss_asso
else:
loss += args.loss_coe[0]*loss_l + args.loss_coe[1]*loss_c
if args.attention:
loss_att, upsampled_att_map = att_criterion(att,masks)
loss += args.loss_coe[2]*loss_att
loss.backward()
if args.tssd != 'ssd':
nn.utils.clip_grad_norm(net.module.rnn.parameters(), 5)
optimizer_rnn.step()
optimizer.step()
t1 = time.time()
if iteration % 10 == 0:
logging.info('iter ' + repr(iteration) + '||Loss: %.4f, lr: %.5f||Timer: %.4f sec.' % (loss.data[0], optimizer.param_groups[0]['lr'], t1 - t0))
if args.visdom and args.send_images_to_visdom:
random_batch_index = np.random.randint(images.size(0))
if images.dim() == 5:
for time_idx, time_step in enumerate([0,-1]):
img_viz = (images.data[random_batch_index,time_step].cpu().numpy().transpose(1,2,0) + mean_np).transpose(2,0,1)
viz.image(img_viz, win=20+time_idx, opts=dict(title='seq1_frame_%s' % time_step))
for scale, att_map_viz in enumerate(upsampled_att_map[time_step]):
viz.heatmap(att_map_viz[random_batch_index, 0, :, :].data.cpu().numpy()[::-1],
win=30*(time_idx+1) + scale,
opts=dict(title='seq1_attmap_time%s_scale%s' % (time_step,scale), colormap='Jet'))
viz.heatmap(masks[random_batch_index, time_step, 0, :, :].data.cpu().numpy()[::-1],
win=80 + time_idx,
opts=dict(title='seq1_attmap_gt_%s' % time_step, colormap='Jet'))
else:
img_viz = (images.data[random_batch_index].cpu().numpy().transpose(1,2,0) + mean_np).transpose(2,0,1)
viz.image(img_viz, win=1, opts=dict(title='ssd_frame_gt', colormap='Jet'))
for scale, att_map_viz in enumerate(upsampled_att_map):
viz.heatmap(att_map_viz[random_batch_index, 0, :, :].data.cpu().numpy()[::-1], win=2+scale,
opts=dict(title='ssd_attmap_%s' % scale, colormap='Jet'))
viz.heatmap(masks[random_batch_index, 0, :, :].data.cpu().numpy()[::-1], win=2 + len(upsampled_att_map),
opts=dict(title='ssd_attmap_gt', colormap='Jet'))
if args.visdom:
if iteration == 1000:
# initialize visdom loss plot
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, y_dim)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title=args.save_folder.split('/')[-1],
legend=legend,
)
)
y_dis = [loss.data[0], args.loss_coe[0]*loss_l.data[0], args.loss_coe[1]*loss_c.data[0]]
if args.attention:
y_dis += [args.loss_coe[2]*loss_att.data[0],]
if args.association:
y_dis += [args.loss_coe[3]*loss_asso.data[0], ]
viz.line(
X=torch.ones((1, y_dim)).cpu() * iteration,
Y=torch.Tensor(y_dis).unsqueeze(0).cpu(),
win=lot,
update='append'
)
if iteration>0 and iteration % 5000 == 0:
print('Saving state, iter:', iteration)
torch.save(ssd_net.state_dict(), os.path.join(args.save_folder, 'ssd'+ str(ssd_dim) + '_' + args.dataset_name + '_' +
repr(iteration) + '.pth'))
torch.save(ssd_net.state_dict(),
os.path.join(args.save_folder, 'ssd' + str(ssd_dim) + '_' + args.dataset_name + '_' +
repr(iteration) + '.pth'))
def adjust_learning_rate(optimizer, gamma, step):
"""Sets the learning rate to the initial LR decayed by 10 at every specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
# lr = args.lr * (gamma ** (step))
for param_group in optimizer.param_groups:
param_group['lr'] *= gamma
if __name__ == '__main__':
train()