|
| 1 | +import cv2 |
| 2 | +import re |
| 3 | +import numpy as np |
| 4 | +import pytesseract |
| 5 | + |
| 6 | +plateCascade = cv2.CascadeClassifier(r"C:\Users\ASUS\Documents\anpr work\ANPR\haarcascade_plate_number.xml") |
| 7 | + |
| 8 | +def textExtract( img ) : |
| 9 | + |
| 10 | + gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| 11 | + ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) |
| 12 | + |
| 13 | + kernel = np.ones((3,3), np.uint8) |
| 14 | + opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) |
| 15 | + sure_bg = cv2.dilate(opening, kernel, iterations=3) |
| 16 | + |
| 17 | + contours, hierarchy = cv2.findContours(sure_bg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
| 18 | + |
| 19 | + for cnt in contours: |
| 20 | + x,y,w,h = cv2.boundingRect(cnt) |
| 21 | + cv2.rectangle(img, (x,y), (x+w, y+h), (0, 255, 0), 2) |
| 22 | + roi = sure_bg[y:y+h, x:x+w] |
| 23 | + text = pytesseract.image_to_string(roi) |
| 24 | + |
| 25 | + return text |
| 26 | + |
| 27 | +def checkPlate( imgRoi, img ) : |
| 28 | + |
| 29 | + global count |
| 30 | + while True : |
| 31 | + |
| 32 | + # if cv2.waitKey(1) & 0xFF ==ord('s'): |
| 33 | + |
| 34 | + cv2.imwrite(r"C:\Users\ASUS\Documents\anpr work\ANPR\result\out"+str(count)+".jpg",imgRoi) |
| 35 | + |
| 36 | + # image = cv2.imread(r"C:\Users\ASUS\Documents\anpr work\out"+str(count)+".jpg") |
| 37 | + |
| 38 | + text1 = pytesseract.image_to_string(imgRoi) |
| 39 | + text2 = textExtract( imgRoi ) |
| 40 | + print(text1) |
| 41 | + print(text2) |
| 42 | + ntext1 = "" |
| 43 | + ntext2 = "" |
| 44 | + |
| 45 | + for i in range( 0, len(text1) ) : |
| 46 | + if ( text1[i].isalpha() ) : |
| 47 | + ntext1 = text1[i:i+10] |
| 48 | + break |
| 49 | + print(ntext1) |
| 50 | + |
| 51 | + for i in range( 0, len(text2) ) : |
| 52 | + if ( text2[i].isalpha() ) : |
| 53 | + ntext2 = text2[i:i+10] |
| 54 | + break |
| 55 | + print(ntext2) |
| 56 | + |
| 57 | + plate_format1 = re.compile("^([A-Z]{2})(\d{2})[A-Z]{2}(\d{4})$") |
| 58 | + plate_format2 = re.compile("^([A-Z]{2})(\d{1})[A-Z]{3}(\d{4})$") |
| 59 | + |
| 60 | + if ( plate_format1.match(ntext1) or plate_format2.match(ntext1) ) : |
| 61 | + print( "Valid" ) |
| 62 | + |
| 63 | + else : |
| 64 | + print("Invalid") |
| 65 | + |
| 66 | + if ( plate_format1.match(ntext2) or plate_format2.match(ntext2) ) : |
| 67 | + print( "Valid" ) |
| 68 | + |
| 69 | + else : |
| 70 | + print("Invalid") |
| 71 | + |
| 72 | + # digits , character = 0, 0 |
| 73 | + |
| 74 | + # for i in ntext : |
| 75 | + # if( i.isalpha() ) : |
| 76 | + # character = character + 1 |
| 77 | + # elif ( i.isdigit() ) : |
| 78 | + # digits = digits + 1 |
| 79 | + |
| 80 | + # if ( character == 4 and digits == 6): |
| 81 | + # print('valid') |
| 82 | + |
| 83 | + # else: |
| 84 | + # print('not valid') |
| 85 | + |
| 86 | + cv2.rectangle(img,(0,200),(640,300),(0,255,0),cv2.FILLED) |
| 87 | + cv2.putText(img,"Saved",(15,265),cv2.FONT_HERSHEY_COMPLEX,2,(0,0,255),2) |
| 88 | + cv2.imshow("Result",img) |
| 89 | + cv2.waitKey(50) |
| 90 | + count+=1 |
| 91 | + return |
| 92 | + |
| 93 | + |
| 94 | +def findPlate( img ) : |
| 95 | + |
| 96 | + minArea = 500 |
| 97 | + imgRoi = 0 |
| 98 | + # img = cv2.imread( file ) |
| 99 | + imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| 100 | + numberPlates = plateCascade .detectMultiScale(imgGray, 1.1, 4) |
| 101 | + |
| 102 | + for (x, y, w, h) in numberPlates: |
| 103 | + area = w*h |
| 104 | + if area > minArea: |
| 105 | + cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) |
| 106 | + cv2.putText(img,"NumberPlate",(x,y-5), cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2) |
| 107 | + imgRoi = img[y:y+h,x:x+w] |
| 108 | + cv2.imshow("ROI",imgRoi) |
| 109 | + cv2.waitKey( 100 ) |
| 110 | + |
| 111 | + cv2.imshow("Result",img) |
| 112 | + cv2.waitKey( 100 ) |
| 113 | + |
| 114 | + if ( type(imgRoi) == type(np.array([1])) ) : |
| 115 | + checkPlate(imgRoi, img) |
| 116 | + |
| 117 | + else : |
| 118 | + print("Not Found") |
| 119 | + |
| 120 | +def frameOut( vid ) : |
| 121 | + |
| 122 | + cap = cv2.VideoCapture( vid ) |
| 123 | + skip = 20 |
| 124 | + while cap.isOpened(): |
| 125 | + |
| 126 | + ret, frame = cap.read() |
| 127 | + if not ret: |
| 128 | + break |
| 129 | + |
| 130 | + if cap.get(cv2.CAP_PROP_POS_FRAMES) % skip != 0: |
| 131 | + continue |
| 132 | + |
| 133 | + findPlate( frame ) |
| 134 | + |
| 135 | + cap.release() |
| 136 | + |
| 137 | + |
| 138 | +if __name__ == "__main__" : |
| 139 | + |
| 140 | + global count |
| 141 | + count = 0 |
| 142 | + file = r'C:\Users\ASUS\Documents\anpr work\ANPR\Images\car.jpg' |
| 143 | + img = cv2.imread( file ) |
| 144 | + vid1 = r'C:\Users\ASUS\Documents\anpr work\ANPR\sample_video.mp4' |
| 145 | + vid2 = r'C:\Users\ASUS\Documents\anpr work\sample_video_Trim.mp4' |
| 146 | + frameOut( vid1 ) |
| 147 | + # findPlate( img ) |
0 commit comments