-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
518 lines (442 loc) · 19.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import tensorflow as tf
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
import core.utils as utils
from core.config import cfg
from core.yolov4 import filter_boxes
from tensorflow.python.saved_model import tag_constants
from PIL import Image
import cv2
import numpy as np
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
import time
from flask import Flask, request, Response, jsonify, send_from_directory, abort, render_template
import os
import json
import requests
framework = 'tf'
weights_path = './checkpoints/yolov4-416'
size = 416
tiny = False
model = 'yolov4'
output_path = './static/detections/'
iou = 0.45
score = 0.25
class Flag:
tiny = tiny
model = model
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
FLAGS = Flag
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
input_size = size
# load model
if framework == 'tflite':
interpreter = tf.lite.Interpreter(model_path=weights_path)
else:
saved_model_loaded = tf.saved_model.load(weights_path, tags=[tag_constants.SERVING])
# Initialize Flask application
app = Flask(__name__)
print("loaded")
@app.route('/')
def home():
return render_template('./index.html')
# API that returns JSON with classes found in images
@app.route('/detections/by-image-files', methods=['POST'])
def get_detections_by_image_files():
images = request.files.getlist("images")
image_path_list = []
for image in images:
image_name = image.filename
image_path_list.append("./temp/" + image_name)
image.save(os.path.join(os.getcwd(), "temp/", image_name))
# create list for final response
response = []
# loop through images in list and run Yolov4 model on each
for count, image_path in enumerate(image_path_list):
# create list of responses for current image
responses = []
try:
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
image_data = cv2.resize(original_image, (input_size, input_size))
image_data = image_data / 255.
except cv2.error:
# remove temporary images
for name in image_path_list:
os.remove(name)
abort(404, "it is not an image file or image file is an unsupported format. try jpg or png")
except Exception as e:
# remove temporary images
for name in image_path_list:
os.remove(name)
print(e.__class__)
print(e)
abort(500)
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
if framework == 'tflite':
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
interpreter.set_tensor(input_details[0]['index'], images_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
if model == 'yolov3' and tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
t1 = time.time()
infer = saved_model_loaded.signatures['serving_default']
batch_data = tf.constant(images_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
t2 = time.time()
print('time: {}'.format(t2 - t1))
t1 = time.time()
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=iou,
score_threshold=score
)
t2 = time.time()
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
print('time: {}'.format(t2 - t1))
for i in range(valid_detections[0]):
print('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
responses.append({
"class": class_names[int(classes[0][i])],
"confidence": float("{0:.2f}".format(np.array(scores[0][i]) * 100)),
"box": np.array(boxes[0][i]).tolist()
})
response.append({
"image": image_path_list[count][7:],
"detections": responses
})
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to allow detections for only people)
# allowed_classes = ['person']
image = utils.draw_bbox(original_image, pred_bbox, allowed_classes=allowed_classes)
image = Image.fromarray(image.astype(np.uint8))
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
cv2.imwrite(output_path + 'detection' + str(count) + '.png', image)
# remove temporary images
for name in image_path_list:
os.remove(name)
try:
return Response(response=json.dumps({"response": response}), mimetype="application/json")
except FileNotFoundError:
abort(404)
# API that returns image with detections on it
@app.route('/image/by-image-file', methods=['POST'])
def get_image_by_image_file():
image = request.files["images"]
image_filename = image.filename
image_path = "./temp/" + image.filename
image.save(os.path.join(os.getcwd(), image_path[2:]))
try:
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
image_data = cv2.resize(original_image, (input_size, input_size))
image_data = image_data / 255.
except cv2.error:
# remove temporary image
os.remove(image_path)
abort(404, "it is not an image file or image file is an unsupported format. try jpg or png")
except Exception as e:
# remove temporary image
os.remove(image_path)
print(e.__class__)
print(e)
abort(500)
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
if framework == 'tflite':
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
interpreter.set_tensor(input_details[0]['index'], images_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
if model == 'yolov3' and tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
t1 = time.time()
infer = saved_model_loaded.signatures['serving_default']
batch_data = tf.constant(images_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
t2 = time.time()
print('time: {}'.format(t2 - t1))
t1 = time.time()
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=iou,
score_threshold=score
)
t2 = time.time()
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
print('time: {}'.format(t2 - t1))
for i in range(valid_detections[0]):
print('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to allow detections for only people)
# allowed_classes = ['person']
image = utils.draw_bbox(original_image, pred_bbox, allowed_classes=allowed_classes)
image = Image.fromarray(image.astype(np.uint8))
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
# Download file detected.png and save it to output folder
cv2.imwrite(output_path + image_filename[0:len(image_filename) - 4] + '.png', image)
# cv2.imwrite(output_path + 'detection' + '.png', image)
# prepare image for response
_, img_encoded = cv2.imencode('.png', image)
response = img_encoded.tostring()
# remove temporary image
os.remove(image_path)
# print(f"{image.filename}XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
try:
return Response(response=response, status=200, mimetype='image/png')
except FileNotFoundError:
abort(404)
# API that returns JSON with classes found in images from url list
@app.route('/detections/by-url-list', methods=['POST'])
def get_detections_by_url_list():
image_urls = request.get_json()["images"]
raw_image_list = []
if not isinstance(image_urls, list):
abort(400, "can't find image list")
image_names = []
custom_headers = {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36"
}
for i, image_url in enumerate(image_urls):
image_name = "Image" + str(i + 1)
image_names.append(image_name)
try:
resp = requests.get(image_url, headers=custom_headers)
img_raw = np.asarray(bytearray(resp.content), dtype="uint8")
img_raw = cv2.imdecode(img_raw, cv2.IMREAD_COLOR)
except cv2.error:
abort(404, "it is not image url or that image is an unsupported format. try jpg or png")
except requests.exceptions.MissingSchema:
abort(400, "it is not url form")
except Exception as e:
print(e.__class__)
print(e)
abort(500)
raw_image_list.append(img_raw)
# create list for final response
response = []
# loop through images in list and run Yolov4 model on each
for count, raw_image in enumerate(raw_image_list):
# create list of responses for current image
responses = []
original_image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
image_data = cv2.resize(original_image, (input_size, input_size))
image_data = image_data / 255.
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
if framework == 'tflite':
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
interpreter.set_tensor(input_details[0]['index'], images_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
if model == 'yolov3' and tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
t1 = time.time()
infer = saved_model_loaded.signatures['serving_default']
batch_data = tf.constant(images_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
t2 = time.time()
print('time: {}'.format(t2 - t1))
t1 = time.time()
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=iou,
score_threshold=score
)
t2 = time.time()
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
print('time: {}'.format(t2 - t1))
for i in range(valid_detections[0]):
print('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
responses.append({
"class": class_names[int(classes[0][i])],
"confidence": float("{0:.2f}".format(np.array(scores[0][i]) * 100)),
"box": np.array(boxes[0][i]).tolist()
})
response.append({
"image": image_names[count],
"detections": responses
})
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to allow detections for only people)
# allowed_classes = ['person']
image = utils.draw_bbox(original_image, pred_bbox, allowed_classes=allowed_classes)
image = Image.fromarray(image.astype(np.uint8))
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
cv2.imwrite(output_path + 'detection' + str(count) + '.png', image)
try:
return Response(response=json.dumps({"response": response}), mimetype="application/json")
except FileNotFoundError:
abort(404)
# API that returns image with detections on it from url
@app.route('/image/by-url', methods=['POST'])
def get_image_by_url():
image_urls = request.get_json()["images"]
if not isinstance(image_urls, list):
abort(400, "can't find image list")
image_names = []
custom_headers = {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36"
}
image_name = "Image" + str(1)
image_names.append(image_name)
try:
resp = requests.get(image_urls[0], headers=custom_headers)
img_raw = np.asarray(bytearray(resp.content), dtype="uint8")
img_raw = cv2.imdecode(img_raw, cv2.IMREAD_COLOR)
except cv2.error:
abort(404, "it is not image url or that image is an unsupported format. try jpg or png")
except requests.exceptions.MissingSchema:
abort(400, "it is not url form")
except Exception as e:
print(e.__class__)
print(e)
abort(500)
# loop through images in list and run Yolov4 model on each
original_image = cv2.cvtColor(img_raw, cv2.COLOR_BGR2RGB)
image_data = cv2.resize(original_image, (input_size, input_size))
image_data = image_data / 255.
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
if framework == 'tflite':
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
interpreter.set_tensor(input_details[0]['index'], images_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
if model == 'yolov3' and tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
t1 = time.time()
infer = saved_model_loaded.signatures['serving_default']
batch_data = tf.constant(images_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
t2 = time.time()
print('time: {}'.format(t2 - t1))
t1 = time.time()
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=iou,
score_threshold=score
)
t2 = time.time()
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
print('time: {}'.format(t2 - t1))
for i in range(valid_detections[0]):
print('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to allow detections for only people)
# allowed_classes = ['person']
image = utils.draw_bbox(original_image, pred_bbox, allowed_classes=allowed_classes)
image = Image.fromarray(image.astype(np.uint8))
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
cv2.imwrite(output_path + 'detection' + str(0) + '.png', image)
# prepare image for response
_, img_encoded = cv2.imencode('.png', image)
response = img_encoded.tostring()
try:
return Response(response=response, status=200, mimetype='image/png')
except FileNotFoundError:
abort(404)
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5050)