-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVGG16FE.py
85 lines (74 loc) · 2.72 KB
/
VGG16FE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
from keras import models
from keras import layers
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard
# locations of training data
train_loc = "C:\\Users\\marcu\\learning\\mats\\train"
test_loc = "C:\\Users\\marcu\\learning\\mats\\test"
# Load CNN from VGG16
conv_base = VGG16(weights='imagenet',include_top = False, input_shape = (224,224,3))
conv_base.trainable = True
set_trainable = False
for layer in conv_base.layers:
if layer.name == 'block5_conv2':
set_trainable = True
if set_trainable:
layer.trainable = True
else:
layer.trainable = False
# Add dense DNN on top
model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = 'relu'))
model.add(layers.Dense(128, activation = 'relu'))
model.add(layers.Dense(5,activation = 'softmax'))
# Augment training data
train_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range = 180,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0,
zoom_range = .2,
horizontal_flip = True,
fill_mode = 'nearest'
)
# Normalize test data
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_loc,
target_size = (224,224),
batch_size=20,
class_mode='categorical'
)
valid_generator = test_datagen.flow_from_directory(
test_loc,
target_size = (224,224),
batch_size = 20,
class_mode = 'categorical')
model.compile(loss = 'categorical_crossentropy',
optimizer = 'rmsprop',
metrics = ['accuracy'])
callbacks = [EarlyStopping(monitor='val_loss',
patience=8,
verbose=1,
min_delta=1e-4),
ReduceLROnPlateau(monitor='val_loss',
factor=0.1,
patience=4,
verbose=1,
epsilon=1e-4),
ModelCheckpoint(monitor='val_loss',
filepath='modelWeights/best_weights_VGG16.hdf5',
save_best_only=True,
save_weights_only=True),
TensorBoard(log_dir='logs')]
history = model.fit_generator(
train_generator,
steps_per_epoch = 100,
epochs = 100,
validation_data = valid_generator,
callbacks = callbacks,
validation_steps = 50)