Skip to content

Commit 4934703

Browse files
Circle CICircle CI
Circle CI
authored and
Circle CI
committed
CircleCI update of dev docs (2908).
1 parent fbbc9e1 commit 4934703

File tree

717 files changed

+776376
-752360
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

717 files changed

+776376
-752360
lines changed

_downloads/006964755fe89c4eeb7c8b8016e96890/plot_otda_semi_supervised.py

+35-25
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
============================================
66
77
This example introduces a semi supervised domain adaptation in a 2D setting.
8-
It explicits the problem of semi supervised domain adaptation and introduces
8+
It explicit the problem of semi supervised domain adaptation and introduces
99
some optimal transport approaches to solve it.
1010
1111
Quantities such as optimal couplings, greater coupling coefficients and
@@ -31,8 +31,8 @@
3131
n_samples_source = 150
3232
n_samples_target = 150
3333

34-
Xs, ys = ot.datasets.make_data_classif('3gauss', n_samples_source)
35-
Xt, yt = ot.datasets.make_data_classif('3gauss2', n_samples_target)
34+
Xs, ys = ot.datasets.make_data_classif("3gauss", n_samples_source)
35+
Xt, yt = ot.datasets.make_data_classif("3gauss2", n_samples_target)
3636

3737

3838
##############################################################################
@@ -69,30 +69,30 @@
6969

7070
pl.figure(1, figsize=(10, 10))
7171
pl.subplot(2, 2, 1)
72-
pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
72+
pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples")
7373
pl.xticks([])
7474
pl.yticks([])
7575
pl.legend(loc=0)
76-
pl.title('Source samples')
76+
pl.title("Source samples")
7777

7878
pl.subplot(2, 2, 2)
79-
pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
79+
pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples")
8080
pl.xticks([])
8181
pl.yticks([])
8282
pl.legend(loc=0)
83-
pl.title('Target samples')
83+
pl.title("Target samples")
8484

8585
pl.subplot(2, 2, 3)
86-
pl.imshow(ot_sinkhorn_un.cost_, interpolation='nearest')
86+
pl.imshow(ot_sinkhorn_un.cost_, interpolation="nearest")
8787
pl.xticks([])
8888
pl.yticks([])
89-
pl.title('Cost matrix - unsupervised DA')
89+
pl.title("Cost matrix - unsupervised DA")
9090

9191
pl.subplot(2, 2, 4)
92-
pl.imshow(ot_sinkhorn_semi.cost_, interpolation='nearest')
92+
pl.imshow(ot_sinkhorn_semi.cost_, interpolation="nearest")
9393
pl.xticks([])
9494
pl.yticks([])
95-
pl.title('Cost matrix - semi-supervised DA')
95+
pl.title("Cost matrix - semi-supervised DA")
9696

9797
pl.tight_layout()
9898

@@ -107,16 +107,16 @@
107107
pl.figure(2, figsize=(8, 4))
108108

109109
pl.subplot(1, 2, 1)
110-
pl.imshow(ot_sinkhorn_un.coupling_, interpolation='nearest')
110+
pl.imshow(ot_sinkhorn_un.coupling_, interpolation="nearest")
111111
pl.xticks([])
112112
pl.yticks([])
113-
pl.title('Optimal coupling\nUnsupervised DA')
113+
pl.title("Optimal coupling\nUnsupervised DA")
114114

115115
pl.subplot(1, 2, 2)
116-
pl.imshow(ot_sinkhorn_semi.coupling_, interpolation='nearest')
116+
pl.imshow(ot_sinkhorn_semi.coupling_, interpolation="nearest")
117117
pl.xticks([])
118118
pl.yticks([])
119-
pl.title('Optimal coupling\nSemi-supervised DA')
119+
pl.title("Optimal coupling\nSemi-supervised DA")
120120

121121
pl.tight_layout()
122122

@@ -128,21 +128,31 @@
128128
# display transported samples
129129
pl.figure(4, figsize=(8, 4))
130130
pl.subplot(1, 2, 1)
131-
pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
132-
label='Target samples', alpha=0.5)
133-
pl.scatter(transp_Xs_sinkhorn_un[:, 0], transp_Xs_sinkhorn_un[:, 1], c=ys,
134-
marker='+', label='Transp samples', s=30)
135-
pl.title('Transported samples\nEmdTransport')
131+
pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.5)
132+
pl.scatter(
133+
transp_Xs_sinkhorn_un[:, 0],
134+
transp_Xs_sinkhorn_un[:, 1],
135+
c=ys,
136+
marker="+",
137+
label="Transp samples",
138+
s=30,
139+
)
140+
pl.title("Transported samples\nEmdTransport")
136141
pl.legend(loc=0)
137142
pl.xticks([])
138143
pl.yticks([])
139144

140145
pl.subplot(1, 2, 2)
141-
pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
142-
label='Target samples', alpha=0.5)
143-
pl.scatter(transp_Xs_sinkhorn_semi[:, 0], transp_Xs_sinkhorn_semi[:, 1], c=ys,
144-
marker='+', label='Transp samples', s=30)
145-
pl.title('Transported samples\nSinkhornTransport')
146+
pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.5)
147+
pl.scatter(
148+
transp_Xs_sinkhorn_semi[:, 0],
149+
transp_Xs_sinkhorn_semi[:, 1],
150+
c=ys,
151+
marker="+",
152+
label="Transp samples",
153+
s=30,
154+
)
155+
pl.title("Transported samples\nSinkhornTransport")
146156
pl.xticks([])
147157
pl.yticks([])
148158

0 commit comments

Comments
 (0)