-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsg_execution_times.html
460 lines (422 loc) · 36.4 KB
/
sg_execution_times.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Computation times — POT Python Optimal Transport 0.9.5 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=80d5e7a1" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=61b282d3"></script>
<script src="_static/doctools.js?v=9bcbadda"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
POT Python Optimal Transport
<img src="_static/logo_dark.svg" class="logo" alt="Logo"/>
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul>
<li class="toctree-l1"><a class="reference internal" href="index.html">POT: Python Optimal Transport</a></li>
<li class="toctree-l1"><a class="reference internal" href="quickstart.html">Quick start guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="all.html">API and modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="auto_examples/index.html">Examples gallery</a></li>
<li class="toctree-l1"><a class="reference internal" href="releases.html">Releases</a></li>
<li class="toctree-l1"><a class="reference internal" href="contributors.html">Contributors</a></li>
<li class="toctree-l1"><a class="reference internal" href="contributing.html">Contributing to POT</a></li>
<li class="toctree-l1"><a class="reference internal" href="code_of_conduct.html">Code of conduct</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">POT Python Optimal Transport</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Computation times</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/sg_execution_times.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="computation-times">
<span id="sphx-glr-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Link to this heading"></a></h1>
<p><strong>12:18.415</strong> total execution time for 68 files <strong>from all galleries</strong>:</p>
<div class="docutils container">
<style scoped>
<link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet" />
<link href="https://cdn.datatables.net/1.13.6/css/dataTables.bootstrap5.min.css" rel="stylesheet" />
</style>
<script src="https://code.jquery.com/jquery-3.7.0.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/jquery.dataTables.min.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/dataTables.bootstrap5.min.js"></script>
<script type="text/javascript" class="init">
$(document).ready( function () {
$('table.sg-datatable').DataTable({order: [[1, 'desc']]});
} );
</script><table class="table table-striped sg-datatable docutils align-default">
<thead>
<tr class="row-odd"><th class="head"><p>Example</p></th>
<th class="head"><p>Time</p></th>
<th class="head"><p>Mem (MB)</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/gromov/plot_gnn_TFGW.html#sphx-glr-auto-examples-gromov-plot-gnn-tfgw-py"><span class="std std-ref">Graph classification with Template Based Fused Gromov Wasserstein</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_gnn_TFGW.py</span></code>)</p></td>
<td><p>02:06.305</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/backends/plot_ssw_unif_torch.html#sphx-glr-auto-examples-backends-plot-ssw-unif-torch-py"><span class="std std-ref">Spherical Sliced-Wasserstein Embedding on Sphere</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_ssw_unif_torch.py</span></code>)</p></td>
<td><p>01:01.655</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/backends/plot_wass2_gan_torch.html#sphx-glr-auto-examples-backends-plot-wass2-gan-torch-py"><span class="std std-ref">Wasserstein 2 Minibatch GAN with PyTorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_wass2_gan_torch.py</span></code>)</p></td>
<td><p>01:00.979</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/backends/plot_stoch_continuous_ot_pytorch.html#sphx-glr-auto-examples-backends-plot-stoch-continuous-ot-pytorch-py"><span class="std std-ref">Continuous OT plan estimation with Pytorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_stoch_continuous_ot_pytorch.py</span></code>)</p></td>
<td><p>00:49.919</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py"><span class="std std-ref">Smooth and Strongly Convex Nearest Brenier Potentials</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_SSNB.py</span></code>)</p></td>
<td><p>00:47.016</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/backends/plot_sliced_wass_grad_flow_pytorch.html#sphx-glr-auto-examples-backends-plot-sliced-wass-grad-flow-pytorch-py"><span class="std std-ref">Sliced Wasserstein barycenter and gradient flow with PyTorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_sliced_wass_grad_flow_pytorch.py</span></code>)</p></td>
<td><p>00:38.246</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_generalized_free_support_barycenter.html#sphx-glr-auto-examples-barycenters-plot-generalized-free-support-barycenter-py"><span class="std std-ref">Generalized Wasserstein Barycenter Demo</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_generalized_free_support_barycenter.py</span></code>)</p></td>
<td><p>00:33.143</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_debiased_barycenter.html#sphx-glr-auto-examples-barycenters-plot-debiased-barycenter-py"><span class="std std-ref">Debiased Sinkhorn barycenter demo</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_debiased_barycenter.py</span></code>)</p></td>
<td><p>00:31.276</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_dmmot.html#sphx-glr-auto-examples-others-plot-dmmot-py"><span class="std std-ref">Computing d-dimensional Barycenters via d-MMOT</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_dmmot.py</span></code>)</p></td>
<td><p>00:29.862</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/unbalanced-partial/plot_regpath.html#sphx-glr-auto-examples-unbalanced-partial-plot-regpath-py"><span class="std std-ref">Regularization path of l2-penalized unbalanced optimal transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/unbalanced-partial/plot_regpath.py</span></code>)</p></td>
<td><p>00:29.262</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_color_images.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-color-images-py"><span class="std std-ref">OT for image color adaptation</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_color_images.py</span></code>)</p></td>
<td><p>00:24.449</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_mapping_colors_images.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-mapping-colors-images-py"><span class="std std-ref">OT for image color adaptation with mapping estimation</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_mapping_colors_images.py</span></code>)</p></td>
<td><p>00:22.790</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/gromov/plot_gromov_wasserstein_dictionary_learning.html#sphx-glr-auto-examples-gromov-plot-gromov-wasserstein-dictionary-learning-py"><span class="std std-ref">(Fused) Gromov-Wasserstein Linear Dictionary Learning</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_gromov_wasserstein_dictionary_learning.py</span></code>)</p></td>
<td><p>00:19.970</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_convolutional_barycenter.html#sphx-glr-auto-examples-barycenters-plot-convolutional-barycenter-py"><span class="std std-ref">Convolutional Wasserstein Barycenter example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_convolutional_barycenter.py</span></code>)</p></td>
<td><p>00:19.353</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_lowrank_sinkhorn.html#sphx-glr-auto-examples-others-plot-lowrank-sinkhorn-py"><span class="std std-ref">Low rank Sinkhorn</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_lowrank_sinkhorn.py</span></code>)</p></td>
<td><p>00:17.690</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/backends/plot_dual_ot_pytorch.html#sphx-glr-auto-examples-backends-plot-dual-ot-pytorch-py"><span class="std std-ref">Dual OT solvers for entropic and quadratic regularized OT with Pytorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_dual_ot_pytorch.py</span></code>)</p></td>
<td><p>00:11.460</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_d2.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-d2-py"><span class="std std-ref">OT for domain adaptation on empirical distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_d2.py</span></code>)</p></td>
<td><p>00:06.911</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_stochastic.html#sphx-glr-auto-examples-others-plot-stochastic-py"><span class="std std-ref">Stochastic examples</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_stochastic.py</span></code>)</p></td>
<td><p>00:06.416</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/gromov/plot_gromov.html#sphx-glr-auto-examples-gromov-plot-gromov-py"><span class="std std-ref">Gromov-Wasserstein example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_gromov.py</span></code>)</p></td>
<td><p>00:05.997</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_WDA.html#sphx-glr-auto-examples-others-plot-wda-py"><span class="std std-ref">Wasserstein Discriminant Analysis</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_WDA.py</span></code>)</p></td>
<td><p>00:05.907</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/backends/plot_optim_gromov_pytorch.html#sphx-glr-auto-examples-backends-plot-optim-gromov-pytorch-py"><span class="std std-ref">Optimizing the Gromov-Wasserstein distance with PyTorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_optim_gromov_pytorch.py</span></code>)</p></td>
<td><p>00:05.214</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/sliced-wasserstein/plot_variance_ssw.html#sphx-glr-auto-examples-sliced-wasserstein-plot-variance-ssw-py"><span class="std std-ref">Spherical Sliced Wasserstein on distributions in S^2</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/sliced-wasserstein/plot_variance_ssw.py</span></code>)</p></td>
<td><p>00:05.158</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/gromov/plot_quantized_gromov_wasserstein.html#sphx-glr-auto-examples-gromov-plot-quantized-gromov-wasserstein-py"><span class="std std-ref">Quantized Fused Gromov-Wasserstein examples</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_quantized_gromov_wasserstein.py</span></code>)</p></td>
<td><p>00:05.060</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_outlier_detection_with_COOT_and_unbalanced_COOT.html#sphx-glr-auto-examples-others-plot-outlier-detection-with-coot-and-unbalanced-coot-py"><span class="std std-ref">Detecting outliers by learning sample marginal distribution with CO-Optimal Transport and by using unbalanced Co-Optimal Transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_outlier_detection_with_COOT_and_unbalanced_COOT.py</span></code>)</p></td>
<td><p>00:04.924</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/gromov/plot_semirelaxed_gromov_wasserstein_barycenter.html#sphx-glr-auto-examples-gromov-plot-semirelaxed-gromov-wasserstein-barycenter-py"><span class="std std-ref">Semi-relaxed (Fused) Gromov-Wasserstein Barycenter as Dictionary Learning</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_semirelaxed_gromov_wasserstein_barycenter.py</span></code>)</p></td>
<td><p>00:04.568</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_free_support_sinkhorn_barycenter.html#sphx-glr-auto-examples-barycenters-plot-free-support-sinkhorn-barycenter-py"><span class="std std-ref">2D free support Sinkhorn barycenters of distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_free_support_sinkhorn_barycenter.py</span></code>)</p></td>
<td><p>00:04.215</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/gromov/plot_entropic_semirelaxed_fgw.html#sphx-glr-auto-examples-gromov-plot-entropic-semirelaxed-fgw-py"><span class="std std-ref">Entropic-regularized semi-relaxed (Fused) Gromov-Wasserstein example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_entropic_semirelaxed_fgw.py</span></code>)</p></td>
<td><p>00:04.150</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/plot_compute_wasserstein_circle.html#sphx-glr-auto-examples-plot-compute-wasserstein-circle-py"><span class="std std-ref">OT distance on the Circle</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_compute_wasserstein_circle.py</span></code>)</p></td>
<td><p>00:03.494</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/unbalanced-partial/plot_unbalanced_OT.html#sphx-glr-auto-examples-unbalanced-partial-plot-unbalanced-ot-py"><span class="std std-ref">2D examples of exact and entropic unbalanced optimal transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/unbalanced-partial/plot_unbalanced_OT.py</span></code>)</p></td>
<td><p>00:03.120</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/gromov/plot_fgw_solvers.html#sphx-glr-auto-examples-gromov-plot-fgw-solvers-py"><span class="std std-ref">Comparison of Fused Gromov-Wasserstein solvers</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_fgw_solvers.py</span></code>)</p></td>
<td><p>00:03.107</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/backends/plot_wass1d_torch.html#sphx-glr-auto-examples-backends-plot-wass1d-torch-py"><span class="std std-ref">Wasserstein 1D (flow and barycenter) with PyTorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_wass1d_torch.py</span></code>)</p></td>
<td><p>00:02.967</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/plot_OT_2D_samples.html#sphx-glr-auto-examples-plot-ot-2d-samples-py"><span class="std std-ref">Optimal Transport between 2D empirical distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_OT_2D_samples.py</span></code>)</p></td>
<td><p>00:02.491</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/plot_solve_variants.html#sphx-glr-auto-examples-plot-solve-variants-py"><span class="std std-ref">Optimal Transport solvers comparison</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_solve_variants.py</span></code>)</p></td>
<td><p>00:02.315</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_jcpot.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-jcpot-py"><span class="std std-ref">OT for multi-source target shift</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_jcpot.py</span></code>)</p></td>
<td><p>00:02.303</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/plot_Intro_OT.html#sphx-glr-auto-examples-plot-intro-ot-py"><span class="std std-ref">Introduction to Optimal Transport with Python</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_Intro_OT.py</span></code>)</p></td>
<td><p>00:02.140</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html#sphx-glr-auto-examples-unbalanced-partial-plot-partial-wass-and-gromov-py"><span class="std std-ref">Partial Wasserstein and Gromov-Wasserstein example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/unbalanced-partial/plot_partial_wass_and_gromov.py</span></code>)</p></td>
<td><p>00:02.024</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/sliced-wasserstein/plot_variance.html#sphx-glr-auto-examples-sliced-wasserstein-plot-variance-py"><span class="std std-ref">Sliced Wasserstein Distance on 2D distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/sliced-wasserstein/plot_variance.py</span></code>)</p></td>
<td><p>00:02.014</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_WeakOT_VS_OT.html#sphx-glr-auto-examples-others-plot-weakot-vs-ot-py"><span class="std std-ref">Weak Optimal Transport VS exact Optimal Transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_WeakOT_VS_OT.py</span></code>)</p></td>
<td><p>00:02.007</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/unbalanced-partial/plot_conv_sinkhorn_ti.html#sphx-glr-auto-examples-unbalanced-partial-plot-conv-sinkhorn-ti-py"><span class="std std-ref">Translation Invariant Sinkhorn for Unbalanced Optimal Transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/unbalanced-partial/plot_conv_sinkhorn_ti.py</span></code>)</p></td>
<td><p>00:01.998</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_factored_coupling.html#sphx-glr-auto-examples-others-plot-factored-coupling-py"><span class="std std-ref">Optimal transport with factored couplings</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_factored_coupling.py</span></code>)</p></td>
<td><p>00:01.894</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_laplacian.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-laplacian-py"><span class="std std-ref">OT with Laplacian regularization for domain adaptation</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_laplacian.py</span></code>)</p></td>
<td><p>00:01.786</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/gromov/plot_semirelaxed_fgw.html#sphx-glr-auto-examples-gromov-plot-semirelaxed-fgw-py"><span class="std std-ref">Semi-relaxed (Fused) Gromov-Wasserstein example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_semirelaxed_fgw.py</span></code>)</p></td>
<td><p>00:01.723</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_lowrank_GW.html#sphx-glr-auto-examples-others-plot-lowrank-gw-py"><span class="std std-ref">Low rank Gromov-Wasterstein between samples</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_lowrank_GW.py</span></code>)</p></td>
<td><p>00:01.710</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/gromov/plot_gromov_barycenter.html#sphx-glr-auto-examples-gromov-plot-gromov-barycenter-py"><span class="std std-ref">Gromov-Wasserstein Barycenter example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_gromov_barycenter.py</span></code>)</p></td>
<td><p>00:01.644</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_GMM_flow.html#sphx-glr-auto-examples-others-plot-gmm-flow-py"><span class="std std-ref">GMM Flow</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_GMM_flow.py</span></code>)</p></td>
<td><p>00:01.571</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_free_support_barycenter.html#sphx-glr-auto-examples-barycenters-plot-free-support-barycenter-py"><span class="std std-ref">2D free support Wasserstein barycenters of distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_free_support_barycenter.py</span></code>)</p></td>
<td><p>00:01.351</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/backends/plot_unmix_optim_torch.html#sphx-glr-auto-examples-backends-plot-unmix-optim-torch-py"><span class="std std-ref">Wasserstein unmixing with PyTorch</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/backends/plot_unmix_optim_torch.py</span></code>)</p></td>
<td><p>00:01.334</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_linear_mapping.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-linear-mapping-py"><span class="std std-ref">Linear OT mapping estimation</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_linear_mapping.py</span></code>)</p></td>
<td><p>00:01.281</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html#sphx-glr-auto-examples-unbalanced-partial-plot-uot-barycenter-1d-py"><span class="std std-ref">1D Wasserstein barycenter demo for Unbalanced distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/unbalanced-partial/plot_UOT_barycenter_1D.py</span></code>)</p></td>
<td><p>00:01.256</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/gromov/plot_barycenter_fgw.html#sphx-glr-auto-examples-gromov-plot-barycenter-fgw-py"><span class="std std-ref">Plot graphs barycenter using FGW</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_barycenter_fgw.py</span></code>)</p></td>
<td><p>00:01.182</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html#sphx-glr-auto-examples-barycenters-plot-barycenter-lp-vs-entropic-py"><span class="std std-ref">1D Wasserstein barycenter: exact LP vs entropic regularization</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_barycenter_lp_vs_entropic.py</span></code>)</p></td>
<td><p>00:01.165</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/plot_OT_L1_vs_L2.html#sphx-glr-auto-examples-plot-ot-l1-vs-l2-py"><span class="std std-ref">Optimal Transport with different ground metrics</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_OT_L1_vs_L2.py</span></code>)</p></td>
<td><p>00:00.994</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/plot_optim_OTreg.html#sphx-glr-auto-examples-plot-optim-otreg-py"><span class="std std-ref">Regularized OT with generic solver</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_optim_OTreg.py</span></code>)</p></td>
<td><p>00:00.950</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_classes.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-classes-py"><span class="std std-ref">OT for domain adaptation</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_classes.py</span></code>)</p></td>
<td><p>00:00.914</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_semi_supervised.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-semi-supervised-py"><span class="std std-ref">OTDA unsupervised vs semi-supervised setting</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_semi_supervised.py</span></code>)</p></td>
<td><p>00:00.716</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/domain-adaptation/plot_otda_mapping.html#sphx-glr-auto-examples-domain-adaptation-plot-otda-mapping-py"><span class="std std-ref">OT mapping estimation for domain adaptation</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/domain-adaptation/plot_otda_mapping.py</span></code>)</p></td>
<td><p>00:00.654</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/plot_OT_1D_smooth.html#sphx-glr-auto-examples-plot-ot-1d-smooth-py"><span class="std std-ref">Smooth and sparse OT example</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_OT_1D_smooth.py</span></code>)</p></td>
<td><p>00:00.649</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-gromov-plot-fgw-py"><span class="std std-ref">Plot Fused-Gromov-Wasserstein</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/gromov/plot_fgw.py</span></code>)</p></td>
<td><p>00:00.544</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_barycenter_1D.html#sphx-glr-auto-examples-barycenters-plot-barycenter-1d-py"><span class="std std-ref">1D Wasserstein barycenter demo</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_barycenter_1D.py</span></code>)</p></td>
<td><p>00:00.519</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/plot_compute_emd.html#sphx-glr-auto-examples-plot-compute-emd-py"><span class="std std-ref">OT distances in 1D</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_compute_emd.py</span></code>)</p></td>
<td><p>00:00.501</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_EWCA.html#sphx-glr-auto-examples-others-plot-ewca-py"><span class="std std-ref">Entropic Wasserstein Component Analysis</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_EWCA.py</span></code>)</p></td>
<td><p>00:00.456</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_COOT.html#sphx-glr-auto-examples-others-plot-coot-py"><span class="std std-ref">Row and column alignments with CO-Optimal Transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_COOT.py</span></code>)</p></td>
<td><p>00:00.355</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/barycenters/plot_gaussian_barycenter.html#sphx-glr-auto-examples-barycenters-plot-gaussian-barycenter-py"><span class="std std-ref">Gaussian Bures-Wasserstein barycenters</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/barycenters/plot_gaussian_barycenter.py</span></code>)</p></td>
<td><p>00:00.333</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py"><span class="std std-ref">GMM Plan 1D</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_GMMOT_plan.py</span></code>)</p></td>
<td><p>00:00.305</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/plot_OT_1D.html#sphx-glr-auto-examples-plot-ot-1d-py"><span class="std std-ref">Optimal Transport for 1D distributions</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/plot_OT_1D.py</span></code>)</p></td>
<td><p>00:00.269</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/unbalanced-partial/plot_UOT_1D.html#sphx-glr-auto-examples-unbalanced-partial-plot-uot-1d-py"><span class="std std-ref">1D Unbalanced optimal transport</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/unbalanced-partial/plot_UOT_1D.py</span></code>)</p></td>
<td><p>00:00.259</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="auto_examples/others/plot_screenkhorn_1D.html#sphx-glr-auto-examples-others-plot-screenkhorn-1d-py"><span class="std std-ref">Screened optimal transport (Screenkhorn)</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_screenkhorn_1D.py</span></code>)</p></td>
<td><p>00:00.175</p></td>
<td><p>0.0</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="auto_examples/others/plot_logo.html#sphx-glr-auto-examples-others-plot-logo-py"><span class="std std-ref">Logo of the POT toolbox</span></a> (<code class="docutils literal notranslate"><span class="pre">../../examples/others/plot_logo.py</span></code>)</p></td>
<td><p>00:00.053</p></td>
<td><p>0.0</p></td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>© Copyright 2016-2023, POT Contributors.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" data-toggle="rst-versions" role="note"
aria-label="versions">
<!-- add shift_up to the class for force viewing ,
data-toggle="rst-current-version" -->
<span class="rst-current-version" style="margin-bottom:1mm;">
<span class="fa fa-book"> Python Optimal Transport</span>
<hr style="margin-bottom:1.5mm;margin-top:5mm;">
<!-- versions
<span class="fa fa-caret-down"></span>-->
<span class="rst-current-version" style="display: inline-block;padding:
0px;color:#fcfcfcab;float:left;font-size: 100%;">
Versions:
<a href="https://pythonot.github.io/"
style="padding: 3px;color:#fcfcfc;font-size: 100%;">Release</a>
<a href="https://pythonot.github.io/master"
style="padding: 3px;color:#fcfcfc;font-size: 100%;">Development</a>
<a href="https://github.com/PythonOT/POT"
style="padding: 3px;color:#fcfcfc;font-size: 100%;">Code</a>
</span>
</span>
<!--
<div class="rst-other-versions">
<div class="injected">
<dl>
<dt>Versions</dt>
<dd><a href="https://pythonot.github.io/">Release</a></dd>
<dd><a href="https://pythonot.github.io/master">Development</a></dd>
<dt><a href="https://github.com/PythonOT/POT">Code on Github</a></dt>
</dl>
<hr>
</div>
</div>-->
</div><script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>