@@ -1534,11 +1534,11 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI
1534
1534
Examples
1535
1535
--------
1536
1536
1537
- >>> n_a = 2
1538
- >>> n_b = 2
1537
+ >>> n_samples_a = 2
1538
+ >>> n_samples_b = 2
1539
1539
>>> reg = 0.1
1540
- >>> X_s = np.reshape(np.arange(n_a ), (dim_a , 1))
1541
- >>> X_t = np.reshape(np.arange(0, n_b ), (dim_b , 1))
1540
+ >>> X_s = np.reshape(np.arange(n_samples_a ), (n_samples_a , 1))
1541
+ >>> X_t = np.reshape(np.arange(0, n_samples_b ), (n_samples_b , 1))
1542
1542
>>> empirical_sinkhorn(X_s, X_t, reg, verbose=False) # doctest: +NORMALIZE_WHITESPACE
1543
1543
array([[4.99977301e-01, 2.26989344e-05],
1544
1544
[2.26989344e-05, 4.99977301e-01]])
@@ -1624,8 +1624,8 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
1624
1624
Examples
1625
1625
--------
1626
1626
1627
- >>> n_a = 2
1628
- >>> n_b = 2
1627
+ >>> n_samples_a = 2
1628
+ >>> n_samples_b = 2
1629
1629
>>> reg = 0.1
1630
1630
>>> X_s = np.reshape(np.arange(n_samples_a), (n_samples_a, 1))
1631
1631
>>> X_t = np.reshape(np.arange(0, n_samples_b), (n_samples_b, 1))
@@ -1730,8 +1730,8 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
1730
1730
1731
1731
Examples
1732
1732
--------
1733
- >>> n_a = 2
1734
- >>> n_b = 4
1733
+ >>> n_samples_a = 2
1734
+ >>> n_samples_b = 4
1735
1735
>>> reg = 0.1
1736
1736
>>> X_s = np.reshape(np.arange(n_samples_a), (n_samples_a, 1))
1737
1737
>>> X_t = np.reshape(np.arange(0, n_samples_b), (n_samples_b, 1))
0 commit comments