|
1 | 1 | # Releases
|
2 | 2 |
|
3 | 3 |
|
4 |
| -## 0.8.2dev Development |
| 4 | +## 0.8.2 |
| 5 | + |
| 6 | +This releases introduces several new notable features. The less important |
| 7 | +but most exiting one being that we now have a logo for the toolbox (color |
| 8 | +and dark background) : |
| 9 | + |
| 10 | + |
| 11 | + |
| 12 | +This logo is generated using with matplotlib and using the solution of an OT |
| 13 | +problem provided by POT (with `ot.emd`). Generating the logo can be done with a |
| 14 | +simple python script also provided in the [documentation gallery](https://pythonot.github.io/auto_examples/others/plot_logo.html#sphx-glr-auto-examples-others-plot-logo-py). |
| 15 | + |
| 16 | +New OT solvers include [Weak |
| 17 | +OT](https://pythonot.github.io/gen_modules/ot.weak.html#ot.weak.weak_optimal_transport) |
| 18 | + and [OT with factored |
| 19 | +coupling](https://pythonot.github.io/gen_modules/ot.factored.html#ot.factored.factored_optimal_transport) |
| 20 | +that can be used on large datasets. The [Majorization Minimization](https://pythonot.github.io/gen_modules/ot.unbalanced.html?highlight=mm_#ot.unbalanced.mm_unbalanced) solvers for |
| 21 | +non-regularized Unbalanced OT are now also available. We also now provide an |
| 22 | +implementation of [GW and FGW unmixing](https://pythonot.github.io/gen_modules/ot.gromov.html#ot.gromov.gromov_wasserstein_linear_unmixing) and [dictionary learning](https://pythonot.github.io/gen_modules/ot.gromov.html#ot.gromov.gromov_wasserstein_dictionary_learning). It is now |
| 23 | +possible to use autodiff to solve entropic an quadratic regularized OT in the |
| 24 | +dual for full or stochastic optimization thanks to the new functions to compute |
| 25 | +the dual loss for [entropic](https://pythonot.github.io/gen_modules/ot.stochastic.html#ot.stochastic.loss_dual_entropic) and [quadratic](https://pythonot.github.io/gen_modules/ot.stochastic.html#ot.stochastic.loss_dual_quadratic) regularized OT and reconstruct the [OT |
| 26 | +plan](https://pythonot.github.io/gen_modules/ot.stochastic.html#ot.stochastic.plan_dual_entropic) on part or all of the data. They can be used for instance to solve OT |
| 27 | +problems with stochastic gradient or for estimating the [dual potentials as |
| 28 | +neural networks](https://pythonot.github.io/auto_examples/backends/plot_stoch_continuous_ot_pytorch.html#sphx-glr-auto-examples-backends-plot-stoch-continuous-ot-pytorch-py). |
| 29 | + |
| 30 | +On the backend front, we now have backend compatible functions and classes in |
| 31 | +the domain adaptation [`ot.da`](https://pythonot.github.io/gen_modules/ot.da.html#module-ot.da) and unbalanced OT [`ot.unbalanced`](https://pythonot.github.io/gen_modules/ot.unbalanced.html) modules. This |
| 32 | +means that the DA classes can be used on tensors from all compatible backends. |
| 33 | +The [free support Wasserstein barycenter](https://pythonot.github.io/gen_modules/ot.lp.html?highlight=free%20support#ot.lp.free_support_barycenter) solver is now also backend compatible. |
| 34 | + |
| 35 | +Finally we have worked on the documentation to provide an update of existing |
| 36 | +examples in the gallery and and several new examples including [GW dictionary |
| 37 | +learning](https://pythonot.github.io/auto_examples/gromov/plot_gromov_wasserstein_dictionary_learning.html#sphx-glr-auto-examples-gromov-plot-gromov-wasserstein-dictionary-learning-py) |
| 38 | +[weak Optimal |
| 39 | +Transport](https://pythonot.github.io/auto_examples/others/plot_WeakOT_VS_OT.html#sphx-glr-auto-examples-others-plot-weakot-vs-ot-py), |
| 40 | +[NN based dual potentials |
| 41 | +estimation](https://pythonot.github.io/auto_examples/backends/plot_stoch_continuous_ot_pytorch.html#sphx-glr-auto-examples-backends-plot-stoch-continuous-ot-pytorch-py) |
| 42 | +and [Factored coupling OT](https://pythonot.github.io/auto_examples/others/plot_factored_coupling.html#sphx-glr-auto-examples-others-plot-factored-coupling-py). |
| 43 | +. |
5 | 44 |
|
6 | 45 | #### New features
|
7 | 46 |
|
8 | 47 | - Remove deprecated `ot.gpu` submodule (PR #361)
|
9 |
| -- Update examples in the gallery (PR #359). |
| 48 | +- Update examples in the gallery (PR #359) |
10 | 49 | - Add stochastic loss and OT plan computation for regularized OT and
|
11 |
| - backend examples(PR #360). |
12 |
| -- Implementation of factored OT with emd and sinkhorn (PR #358). |
| 50 | + backend examples(PR #360) |
| 51 | +- Implementation of factored OT with emd and sinkhorn (PR #358) |
13 | 52 | - A brand new logo for POT (PR #357)
|
14 |
| -- Better list of related examples in quick start guide with `minigallery` (PR #334). |
| 53 | +- Better list of related examples in quick start guide with `minigallery` (PR #334) |
15 | 54 | - Add optional log-domain Sinkhorn implementation in WDA to support smaller values
|
16 |
| - of the regularization parameter (PR #336). |
17 |
| -- Backend implementation for `ot.lp.free_support_barycenter` (PR #340). |
18 |
| -- Add weak OT solver + example (PR #341). |
19 |
| -- Add backend support for Domain Adaptation and Unbalanced solvers (PR #343). |
| 55 | + of the regularization parameter (PR #336) |
| 56 | +- Backend implementation for `ot.lp.free_support_barycenter` (PR #340) |
| 57 | +- Add weak OT solver + example (PR #341) |
| 58 | +- Add backend support for Domain Adaptation and Unbalanced solvers (PR #343) |
20 | 59 | - Add (F)GW linear dictionary learning solvers + example (PR #319)
|
21 | 60 | - Add links to related PR and Issues in the doc release page (PR #350)
|
22 | 61 | - Add new minimization-maximization algorithms for solving exact Unbalanced OT + example (PR #362)
|
|
0 commit comments