Skip to content

Commit d54184c

Browse files
committed
add rst file for documentation
1 parent 6ac8d40 commit d54184c

File tree

2 files changed

+492
-0
lines changed

2 files changed

+492
-0
lines changed
Lines changed: 314 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,314 @@
1+
.. only:: html
2+
3+
.. note::
4+
:class: sphx-glr-download-link-note
5+
6+
Click :ref:`here <sphx_glr_download_auto_examples_plot_partial_wass_and_gromov.py>` to download the full example code
7+
.. rst-class:: sphx-glr-example-title
8+
9+
.. _sphx_glr_auto_examples_plot_partial_wass_and_gromov.py:
10+
11+
12+
==========================
13+
Partial Wasserstein and Gromov-Wasserstein example
14+
==========================
15+
16+
This example is designed to show how to use the Partial (Gromov-)Wassertsein
17+
distance computation in POT.
18+
19+
20+
.. code-block:: default
21+
22+
23+
# Author: Laetitia Chapel <[email protected]>
24+
# License: MIT License
25+
26+
# necessary for 3d plot even if not used
27+
from mpl_toolkits.mplot3d import Axes3D # noqa
28+
import scipy as sp
29+
import numpy as np
30+
import matplotlib.pylab as pl
31+
import ot
32+
33+
34+
35+
36+
37+
38+
39+
40+
41+
Sample two 2D Gaussian distributions and plot them
42+
--------------------------------------------------
43+
44+
For demonstration purpose, we sample two Gaussian distributions in 2-d
45+
spaces and add some random noise.
46+
47+
48+
.. code-block:: default
49+
50+
51+
52+
n_samples = 20 # nb samples (gaussian)
53+
n_noise = 20 # nb of samples (noise)
54+
55+
mu = np.array([0, 0])
56+
cov = np.array([[1, 0], [0, 2]])
57+
58+
xs = ot.datasets.make_2D_samples_gauss(n_samples, mu, cov)
59+
xs = np.append(xs, (np.random.rand(n_noise, 2) + 1) * 4).reshape((-1, 2))
60+
xt = ot.datasets.make_2D_samples_gauss(n_samples, mu, cov)
61+
xt = np.append(xt, (np.random.rand(n_noise, 2) + 1) * -3).reshape((-1, 2))
62+
63+
M = sp.spatial.distance.cdist(xs, xt)
64+
65+
fig = pl.figure()
66+
ax1 = fig.add_subplot(131)
67+
ax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
68+
ax2 = fig.add_subplot(132)
69+
ax2.scatter(xt[:, 0], xt[:, 1], color='r')
70+
ax3 = fig.add_subplot(133)
71+
ax3.imshow(M)
72+
pl.show()
73+
74+
75+
76+
77+
.. image:: /auto_examples/images/sphx_glr_plot_partial_wass_and_gromov_001.png
78+
:class: sphx-glr-single-img
79+
80+
81+
.. rst-class:: sphx-glr-script-out
82+
83+
Out:
84+
85+
.. code-block:: none
86+
87+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:51: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
88+
pl.show()
89+
90+
91+
92+
93+
Compute partial Wasserstein plans and distance,
94+
by transporting 50% of the mass
95+
----------------------------------------------
96+
97+
98+
.. code-block:: default
99+
100+
101+
p = ot.unif(n_samples + n_noise)
102+
q = ot.unif(n_samples + n_noise)
103+
104+
w0, log0 = ot.partial.partial_wasserstein(p, q, M, m=0.5, log=True)
105+
w, log = ot.partial.entropic_partial_wasserstein(p, q, M, reg=0.1, m=0.5,
106+
log=True)
107+
108+
print('Partial Wasserstein distance (m = 0.5): ' + str(log0['partial_w_dist']))
109+
print('Entropic partial Wasserstein distance (m = 0.5): ' +
110+
str(log['partial_w_dist']))
111+
112+
pl.figure(1, (10, 5))
113+
pl.subplot(1, 2, 1)
114+
pl.imshow(w0, cmap='jet')
115+
pl.title('Partial Wasserstein')
116+
pl.subplot(1, 2, 2)
117+
pl.imshow(w, cmap='jet')
118+
pl.title('Entropic partial Wasserstein')
119+
pl.show()
120+
121+
122+
123+
124+
125+
.. image:: /auto_examples/images/sphx_glr_plot_partial_wass_and_gromov_002.png
126+
:class: sphx-glr-single-img
127+
128+
129+
.. rst-class:: sphx-glr-script-out
130+
131+
Out:
132+
133+
.. code-block:: none
134+
135+
Partial Wasserstein distance (m = 0.5): 0.29721185147886475
136+
Entropic partial Wasserstein distance (m = 0.5): 0.31204119793315976
137+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:77: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
138+
pl.show()
139+
140+
141+
142+
143+
Sample one 2D and 3D Gaussian distributions and plot them
144+
---------------------------------------------------------
145+
146+
The Gromov-Wasserstein distance allows to compute distances with samples that
147+
do not belong to the same metric space. For demonstration purpose, we sample
148+
two Gaussian distributions in 2- and 3-dimensional spaces.
149+
150+
151+
.. code-block:: default
152+
153+
154+
n_samples = 20 # nb samples
155+
n_noise = 10 # nb of samples (noise)
156+
157+
p = ot.unif(n_samples + n_noise)
158+
q = ot.unif(n_samples + n_noise)
159+
160+
mu_s = np.array([0, 0])
161+
cov_s = np.array([[1, 0], [0, 1]])
162+
163+
mu_t = np.array([0, 0, 0])
164+
cov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
165+
166+
167+
xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s)
168+
xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) + 1) * 4)), axis=0)
169+
P = sp.linalg.sqrtm(cov_t)
170+
xt = np.random.randn(n_samples, 3).dot(P) + mu_t
171+
xt = np.concatenate((xt, ((np.random.rand(n_noise, 3) + 1) * 10)), axis=0)
172+
173+
fig = pl.figure()
174+
ax1 = fig.add_subplot(121)
175+
ax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
176+
ax2 = fig.add_subplot(122, projection='3d')
177+
ax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r')
178+
pl.show()
179+
180+
181+
182+
183+
184+
.. image:: /auto_examples/images/sphx_glr_plot_partial_wass_and_gromov_003.png
185+
:class: sphx-glr-single-img
186+
187+
188+
.. rst-class:: sphx-glr-script-out
189+
190+
Out:
191+
192+
.. code-block:: none
193+
194+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:113: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
195+
pl.show()
196+
197+
198+
199+
200+
Compute partial Gromov-Wasserstein plans and distance,
201+
by transporting 100% and 2/3 of the mass
202+
-----------------------------------------------------
203+
204+
205+
.. code-block:: default
206+
207+
208+
C1 = sp.spatial.distance.cdist(xs, xs)
209+
C2 = sp.spatial.distance.cdist(xt, xt)
210+
211+
print('-----m = 1')
212+
m = 1
213+
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C2, p, q, m=m,
214+
log=True)
215+
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C2, p, q, 10,
216+
m=m, log=True)
217+
218+
print('Partial Wasserstein distance (m = 1): ' + str(log0['partial_gw_dist']))
219+
print('Entropic partial Wasserstein distance (m = 1): ' +
220+
str(log['partial_gw_dist']))
221+
222+
pl.figure(1, (10, 5))
223+
pl.title("mass to be transported m = 1")
224+
pl.subplot(1, 2, 1)
225+
pl.imshow(res0, cmap='jet')
226+
pl.title('Partial Wasserstein')
227+
pl.subplot(1, 2, 2)
228+
pl.imshow(res, cmap='jet')
229+
pl.title('Entropic partial Wasserstein')
230+
pl.show()
231+
232+
print('-----m = 2/3')
233+
m = 2 / 3
234+
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C2, p, q, m=m, log=True)
235+
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C2, p, q, 10,
236+
m=m, log=True)
237+
238+
print('Partial Wasserstein distance (m = 2/3): ' +
239+
str(log0['partial_gw_dist']))
240+
print('Entropic partial Wasserstein distance (m = 2/3): ' +
241+
str(log['partial_gw_dist']))
242+
243+
pl.figure(1, (10, 5))
244+
pl.title("mass to be transported m = 2/3")
245+
pl.subplot(1, 2, 1)
246+
pl.imshow(res0, cmap='jet')
247+
pl.title('Partial Wasserstein')
248+
pl.subplot(1, 2, 2)
249+
pl.imshow(res, cmap='jet')
250+
pl.title('Entropic partial Wasserstein')
251+
pl.show()
252+
253+
254+
255+
.. image:: /auto_examples/images/sphx_glr_plot_partial_wass_and_gromov_004.png
256+
:class: sphx-glr-single-img
257+
258+
259+
.. rst-class:: sphx-glr-script-out
260+
261+
Out:
262+
263+
.. code-block:: none
264+
265+
-----m = 1
266+
Partial Wasserstein distance (m = 1): 56.18870587756925
267+
Entropic partial Wasserstein distance (m = 1): 57.63642536818668
268+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:144: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
269+
pl.show()
270+
-----m = 2/3
271+
Partial Wasserstein distance (m = 2/3): 0.18550643334550976
272+
Entropic partial Wasserstein distance (m = 2/3): 1.0781947761552997
273+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:159: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
274+
pl.subplot(1, 2, 1)
275+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:162: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
276+
pl.subplot(1, 2, 2)
277+
/home/rflamary/PYTHON/POT/examples/plot_partial_wass_and_gromov.py:165: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
278+
pl.show()
279+
280+
281+
282+
283+
284+
.. rst-class:: sphx-glr-timing
285+
286+
**Total running time of the script:** ( 0 minutes 1.656 seconds)
287+
288+
289+
.. _sphx_glr_download_auto_examples_plot_partial_wass_and_gromov.py:
290+
291+
292+
.. only :: html
293+
294+
.. container:: sphx-glr-footer
295+
:class: sphx-glr-footer-example
296+
297+
298+
299+
.. container:: sphx-glr-download sphx-glr-download-python
300+
301+
:download:`Download Python source code: plot_partial_wass_and_gromov.py <plot_partial_wass_and_gromov.py>`
302+
303+
304+
305+
.. container:: sphx-glr-download sphx-glr-download-jupyter
306+
307+
:download:`Download Jupyter notebook: plot_partial_wass_and_gromov.ipynb <plot_partial_wass_and_gromov.ipynb>`
308+
309+
310+
.. only:: html
311+
312+
.. rst-class:: sphx-glr-signature
313+
314+
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_

0 commit comments

Comments
 (0)