You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Several backends for easy use with Pytorch, Jax, Tensorflow, Numpy and Cupy arrays.
32
+
33
+
### Implemented Features
34
+
35
+
POT provides the following generic OT solvers:
20
36
21
37
*[OT Network Simplex solver](https://pythonot.github.io/auto_examples/plot_OT_1D.html) for the linear program/ Earth Movers Distance [1] .
22
38
*[Conditional gradient](https://pythonot.github.io/auto_examples/plot_optim_OTreg.html)[6] and [Generalized conditional gradient](https://pythonot.github.io/auto_examples/plot_optim_OTreg.html) for regularized OT [7].
23
39
* Entropic regularization OT solver with [Sinkhorn Knopp
*[Smooth optimal transport solvers](https://pythonot.github.io/auto_examples/plot_OT_1D_smooth.html) (dual and semi-dual) for KL and squared L2 regularizations [17].
46
+
* Smooth optimal transport solvers (dual and semi-dual) for KL and squared L2 regularizations [17].
32
47
* Weak OT solver between empirical distributions [39]
33
48
* Non regularized [Wasserstein barycenters [16]](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html) with LP solver (only small scale).
34
49
*[Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12,51]), differentiable using gradients from Graph Dictionary Learning [38]
@@ -42,15 +57,16 @@ POT provides the following generic OT solvers (links to examples):
42
57
*[One dimensional Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25]. Also [exact unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_unbalanced_ot.html) with KL and quadratic regularization and the [regularization path of UOT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_regpath.html)[41]
43
58
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) and [Partial Fused Gromov-Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_partial_fgw.html) (exact [29] and entropic [3] formulations).
44
59
*[Sliced Wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html)[31, 32] and Max-sliced Wasserstein [35] that can be used for gradient flows [36].
45
-
*[Wasserstein distance on the circle](https://pythonot.github.io/auto_examples/plot_compute_wasserstein_circle.html)[44, 45]
*[Efficient Discrete Multi Marginal Optimal Transport Regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html)[50].
51
67
*[Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.
52
68
*[Smooth Strongly Convex Nearest Brenier Potentials](https://pythonot.github.io/auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py)[58], with an extension to bounding potentials using [59].
53
-
*[Gaussian Mixture Model OT](https://pythonot.github.io/auto_examples/others/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py)[69].
69
+
*[Gaussian Mixture Model OT](https://pythonot.github.io/auto_examples/gaussian_gmm/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py)[69].
54
70
*[Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_COOT.html)[49] and
0 commit comments