@@ -473,22 +473,24 @@ def joint_OT_mapping_kernel(xs, xt, mu=1, eta=0.001, kerneltype='gaussian',
473
473
Weight for the linear OT loss (>0)
474
474
eta : float, optional
475
475
Regularization term for the linear mapping L (>0)
476
- bias : bool,optional
477
- Estimate linear mapping with constant bias
478
476
kerneltype : str,optional
479
477
kernel used by calling function ot.utils.kernel (gaussian by default)
480
478
sigma : float, optional
481
479
Gaussian kernel bandwidth.
480
+ bias : bool,optional
481
+ Estimate linear mapping with constant bias
482
+ verbose : bool, optional
483
+ Print information along iterations
484
+ verbose2 : bool, optional
485
+ Print information along iterations
482
486
numItermax : int, optional
483
487
Max number of BCD iterations
484
- stopThr : float, optional
485
- Stop threshold on relative loss decrease (>0)
486
488
numInnerItermax : int, optional
487
489
Max number of iterations (inner CG solver)
488
490
stopInnerThr : float, optional
489
491
Stop threshold on error (inner CG solver) (>0)
490
- verbose : bool , optional
491
- Print information along iterations
492
+ stopThr : float , optional
493
+ Stop threshold on relative loss decrease (>0)
492
494
log : bool, optional
493
495
record log if True
494
496
@@ -1184,26 +1186,26 @@ class SinkhornTransport(BaseTransport):
1184
1186
algorithm if no it has not converged
1185
1187
tol : float, optional (default=10e-9)
1186
1188
The precision required to stop the optimization algorithm.
1187
- mapping : string, optional (default="barycentric")
1188
- The kind of mapping to apply to transport samples from a domain into
1189
- another one.
1190
- if "barycentric" only the samples used to estimate the coupling can
1191
- be transported from a domain to another one.
1189
+ verbose : bool, optional (default=False)
1190
+ Controls the verbosity of the optimization algorithm
1191
+ log : int, optional (default=False)
1192
+ Controls the logs of the optimization algorithm
1192
1193
metric : string, optional (default="sqeuclidean")
1193
1194
The ground metric for the Wasserstein problem
1194
1195
norm : string, optional (default=None)
1195
1196
If given, normalize the ground metric to avoid numerical errors that
1196
1197
can occur with large metric values.
1197
- distribution : string , optional (default=" uniform" )
1198
+ distribution_estimation : callable , optional (defaults to the uniform)
1198
1199
The kind of distribution estimation to employ
1199
- verbose : int , optional (default=0 )
1200
- Controls the verbosity of the optimization algorithm
1201
- log : int, optional (default=0)
1202
- Controls the logs of the optimization algorithm
1200
+ out_of_sample_map : string , optional (default="ferradans" )
1201
+ The kind of out of sample mapping to apply to transport samples
1202
+ from a domain into another one. Currently the only possible option is
1203
+ "ferradans" which uses the method proposed in [6].
1203
1204
limit_max: float, optional (defaul=np.infty)
1204
1205
Controls the semi supervised mode. Transport between labeled source
1205
- and target samples of different classes will exhibit an infinite cost
1206
-
1206
+ and target samples of different classes will exhibit an cost defined
1207
+ by this variable
1208
+
1207
1209
Attributes
1208
1210
----------
1209
1211
coupling_ : array-like, shape (n_source_samples, n_target_samples)
@@ -1287,22 +1289,19 @@ class EMDTransport(BaseTransport):
1287
1289
1288
1290
Parameters
1289
1291
----------
1290
- mapping : string, optional (default="barycentric")
1291
- The kind of mapping to apply to transport samples from a domain into
1292
- another one.
1293
- if "barycentric" only the samples used to estimate the coupling can
1294
- be transported from a domain to another one.
1295
1292
metric : string, optional (default="sqeuclidean")
1296
1293
The ground metric for the Wasserstein problem
1297
1294
norm : string, optional (default=None)
1298
1295
If given, normalize the ground metric to avoid numerical errors that
1299
1296
can occur with large metric values.
1300
- distribution : string, optional (default="uniform")
1301
- The kind of distribution estimation to employ
1302
- verbose : int, optional (default=0)
1303
- Controls the verbosity of the optimization algorithm
1304
- log : int, optional (default=0)
1297
+ log : int, optional (default=False)
1305
1298
Controls the logs of the optimization algorithm
1299
+ distribution_estimation : callable, optional (defaults to the uniform)
1300
+ The kind of distribution estimation to employ
1301
+ out_of_sample_map : string, optional (default="ferradans")
1302
+ The kind of out of sample mapping to apply to transport samples
1303
+ from a domain into another one. Currently the only possible option is
1304
+ "ferradans" which uses the method proposed in [6].
1306
1305
limit_max: float, optional (default=10)
1307
1306
Controls the semi supervised mode. Transport between labeled source
1308
1307
and target samples of different classes will exhibit an infinite cost
@@ -1387,28 +1386,32 @@ class SinkhornLpl1Transport(BaseTransport):
1387
1386
Entropic regularization parameter
1388
1387
reg_cl : float, optional (default=0.1)
1389
1388
Class regularization parameter
1390
- mapping : string, optional (default="barycentric")
1391
- The kind of mapping to apply to transport samples from a domain into
1392
- another one.
1393
- if "barycentric" only the samples used to estimate the coupling can
1394
- be transported from a domain to another one.
1395
- metric : string, optional (default="sqeuclidean")
1396
- The ground metric for the Wasserstein problem
1397
- norm : string, optional (default=None)
1398
- If given, normalize the ground metric to avoid numerical errors that
1399
- can occur with large metric values.
1400
- distribution : string, optional (default="uniform")
1401
- The kind of distribution estimation to employ
1402
1389
max_iter : int, float, optional (default=10)
1403
1390
The minimum number of iteration before stopping the optimization
1404
1391
algorithm if no it has not converged
1405
1392
max_inner_iter : int, float, optional (default=200)
1406
1393
The number of iteration in the inner loop
1407
- verbose : int, optional (default=0)
1394
+ log : bool, optional (default=False)
1395
+ Controls the logs of the optimization algorithm
1396
+ tol : float, optional (default=10e-9)
1397
+ Stop threshold on error (inner sinkhorn solver) (>0)
1398
+ verbose : bool, optional (default=False)
1408
1399
Controls the verbosity of the optimization algorithm
1400
+ metric : string, optional (default="sqeuclidean")
1401
+ The ground metric for the Wasserstein problem
1402
+ norm : string, optional (default=None)
1403
+ If given, normalize the ground metric to avoid numerical errors that
1404
+ can occur with large metric values.
1405
+ distribution_estimation : callable, optional (defaults to the uniform)
1406
+ The kind of distribution estimation to employ
1407
+ out_of_sample_map : string, optional (default="ferradans")
1408
+ The kind of out of sample mapping to apply to transport samples
1409
+ from a domain into another one. Currently the only possible option is
1410
+ "ferradans" which uses the method proposed in [6].
1409
1411
limit_max: float, optional (defaul=np.infty)
1410
1412
Controls the semi supervised mode. Transport between labeled source
1411
- and target samples of different classes will exhibit an infinite cost
1413
+ and target samples of different classes will exhibit a cost defined by
1414
+ limit_max.
1412
1415
1413
1416
Attributes
1414
1417
----------
@@ -1504,27 +1507,28 @@ class SinkhornL1l2Transport(BaseTransport):
1504
1507
Entropic regularization parameter
1505
1508
reg_cl : float, optional (default=0.1)
1506
1509
Class regularization parameter
1507
- mapping : string, optional (default="barycentric")
1508
- The kind of mapping to apply to transport samples from a domain into
1509
- another one.
1510
- if "barycentric" only the samples used to estimate the coupling can
1511
- be transported from a domain to another one.
1512
- metric : string, optional (default="sqeuclidean")
1513
- The ground metric for the Wasserstein problem
1514
- norm : string, optional (default=None)
1515
- If given, normalize the ground metric to avoid numerical errors that
1516
- can occur with large metric values.
1517
- distribution : string, optional (default="uniform")
1518
- The kind of distribution estimation to employ
1519
1510
max_iter : int, float, optional (default=10)
1520
1511
The minimum number of iteration before stopping the optimization
1521
1512
algorithm if no it has not converged
1522
1513
max_inner_iter : int, float, optional (default=200)
1523
1514
The number of iteration in the inner loop
1524
- verbose : int, optional (default=0)
1515
+ tol : float, optional (default=10e-9)
1516
+ Stop threshold on error (inner sinkhorn solver) (>0)
1517
+ verbose : bool, optional (default=False)
1525
1518
Controls the verbosity of the optimization algorithm
1526
- log : int , optional (default=0 )
1519
+ log : bool , optional (default=False )
1527
1520
Controls the logs of the optimization algorithm
1521
+ metric : string, optional (default="sqeuclidean")
1522
+ The ground metric for the Wasserstein problem
1523
+ norm : string, optional (default=None)
1524
+ If given, normalize the ground metric to avoid numerical errors that
1525
+ can occur with large metric values.
1526
+ distribution_estimation : callable, optional (defaults to the uniform)
1527
+ The kind of distribution estimation to employ
1528
+ out_of_sample_map : string, optional (default="ferradans")
1529
+ The kind of out of sample mapping to apply to transport samples
1530
+ from a domain into another one. Currently the only possible option is
1531
+ "ferradans" which uses the method proposed in [6].
1528
1532
limit_max: float, optional (default=10)
1529
1533
Controls the semi supervised mode. Transport between labeled source
1530
1534
and target samples of different classes will exhibit an infinite cost
@@ -1646,10 +1650,12 @@ class MappingTransport(BaseEstimator):
1646
1650
Max number of iterations (inner CG solver)
1647
1651
inner_tol : float, optional (default=1e-6)
1648
1652
Stop threshold on error (inner CG solver) (>0)
1649
- verbose : bool, optional (default=False)
1650
- Print information along iterations
1651
1653
log : bool, optional (default=False)
1652
1654
record log if True
1655
+ verbose : bool, optional (default=False)
1656
+ Print information along iterations
1657
+ verbose2 : bool, optional (default=False)
1658
+ Print information along iterations
1653
1659
1654
1660
Attributes
1655
1661
----------
0 commit comments