@@ -79,7 +79,7 @@ def solve(
79
79
80
80
Parameters
81
81
----------
82
- M : array_like , shape (dim_a, dim_b)
82
+ M : array-like , shape (dim_a, dim_b)
83
83
Loss matrix
84
84
a : array-like, shape (dim_a,), optional
85
85
Samples weights in the source domain (default is uniform)
@@ -88,10 +88,10 @@ def solve(
88
88
reg : float, optional
89
89
Regularization weight :math:`\lambda_r`, by default None (no reg., exact
90
90
OT)
91
- c : array-like (dim_a, dim_b), optional (default=None)
91
+ c : array-like, shape (dim_a, dim_b), optional (default=None)
92
92
Reference measure for the regularization.
93
93
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
94
- If :math:`\texttt{reg_type}='entropy'` , then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
94
+ If :math:`\texttt{reg_type}=` 'entropy', then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
95
95
reg_type : str, optional
96
96
Type of regularization :math:`R` either "KL", "L2", "entropy",
97
97
by default "KL". a tuple of functions can be provided for general
@@ -116,9 +116,9 @@ def solve(
116
116
Number of OMP threads for exact OT solver, by default 1
117
117
max_iter : int, optional
118
118
Maximum number of iterations, by default None (default values in each solvers)
119
- plan_init : array_like , shape (dim_a, dim_b), optional
119
+ plan_init : array-like , shape (dim_a, dim_b), optional
120
120
Initialization of the OT plan for iterative methods, by default None
121
- potentials_init : (array_like (dim_a,),array_like (dim_b,)), optional
121
+ potentials_init : (array-like (dim_a,),array-like (dim_b,)), optional
122
122
Initialization of the OT dual potentials for iterative methods, by default None
123
123
tol : _type_, optional
124
124
Tolerance for solution precision, by default None (default values in each solvers)
@@ -628,11 +628,11 @@ def solve_gromov(
628
628
629
629
Parameters
630
630
----------
631
- Ca : array_like , shape (dim_a, dim_a)
631
+ Ca : array-like , shape (dim_a, dim_a)
632
632
Cost matrix in the source domain
633
- Cb : array_like , shape (dim_b, dim_b)
633
+ Cb : array-like , shape (dim_b, dim_b)
634
634
Cost matrix in the target domain
635
- M : array_like , shape (dim_a, dim_b), optional
635
+ M : array-like , shape (dim_a, dim_b), optional
636
636
Linear cost matrix for Fused Gromov-Wasserstein (default is None).
637
637
a : array-like, shape (dim_a,), optional
638
638
Samples weights in the source domain (default is uniform)
@@ -669,7 +669,7 @@ def solve_gromov(
669
669
max_iter : int, optional
670
670
Maximum number of iterations, by default None (default values in each
671
671
solvers)
672
- plan_init : array_like , shape (dim_a, dim_b), optional
672
+ plan_init : array-like , shape (dim_a, dim_b), optional
673
673
Initialization of the OT plan for iterative methods, by default None
674
674
tol : float, optional
675
675
Tolerance for solution precision, by default None (default values in
@@ -1342,10 +1342,10 @@ def solve_sample(
1342
1342
reg : float, optional
1343
1343
Regularization weight :math:`\lambda_r`, by default None (no reg., exact
1344
1344
OT)
1345
- c : array-like (dim_a, dim_b), optional (default=None)
1345
+ c : array-like, shape (dim_a, dim_b), optional (default=None)
1346
1346
Reference measure for the regularization.
1347
1347
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
1348
- If :math:`\texttt{reg_type}='entropy'` , then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
1348
+ If :math:`\texttt{reg_type}=` 'entropy', then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
1349
1349
reg_type : str, optional
1350
1350
Type of regularization :math:`R` either "KL", "L2", "entropy", by default "KL"
1351
1351
unbalanced : float or indexable object of length 1 or 2
@@ -1374,13 +1374,13 @@ def solve_sample(
1374
1374
Number of OMP threads for exact OT solver, by default 1
1375
1375
max_iter : int, optional
1376
1376
Maximum number of iteration, by default None (default values in each solvers)
1377
- plan_init : array_like , shape (dim_a, dim_b), optional
1377
+ plan_init : array-like , shape (dim_a, dim_b), optional
1378
1378
Initialization of the OT plan for iterative methods, by default None
1379
1379
rank : int, optional
1380
1380
Rank of the OT matrix for lazy solers (method='factored'), by default 100
1381
1381
scaling : float, optional
1382
1382
Scaling factor for the epsilon scaling lazy solvers (method='geomloss'), by default 0.95
1383
- potentials_init : (array_like (dim_a,),array_like (dim_b,)), optional
1383
+ potentials_init : (array-like (dim_a,),array-like (dim_b,)), optional
1384
1384
Initialization of the OT dual potentials for iterative methods, by default None
1385
1385
tol : _type_, optional
1386
1386
Tolerance for solution precision, by default None (default values in each solvers)
@@ -1511,7 +1511,7 @@ def solve_sample(
1511
1511
.. math::
1512
1512
\min_{\mathbf{T}\geq 0} \quad \sum_{i,j} T_{i,j}M_{i,j} + \lambda_u U(\mathbf{T}\mathbf{1},\mathbf{a}) + \lambda_u U(\mathbf{T}^T\mathbf{1},\mathbf{b})
1513
1513
1514
- with M_{i,j} = d(x_i,y_j)
1514
+ \text{ with} \ M_{i,j} = d(x_i,y_j)
1515
1515
1516
1516
can be solved with the following code:
1517
1517
@@ -1530,7 +1530,7 @@ def solve_sample(
1530
1530
.. math::
1531
1531
\min_{\mathbf{T}\geq 0} \quad \sum_{i,j} T_{i,j}M_{i,j} + \lambda_r R(\mathbf{T}) + \lambda_u U(\mathbf{T}\mathbf{1},\mathbf{a}) + \lambda_u U(\mathbf{T}^T\mathbf{1},\mathbf{b})
1532
1532
1533
- with M_{i,j} = d(x_i,y_j)
1533
+ \text{ with} \ M_{i,j} = d(x_i,y_j)
1534
1534
1535
1535
can be solved with the following code:
1536
1536
0 commit comments