@@ -702,7 +702,7 @@ def entropic_partial_wasserstein(a, b, M, reg, m=None, numItermax=1000,
702
702
- a and b are the sample weights
703
703
- m is the amount of mass to be transported
704
704
705
- The formulation of the problem has been proposed in [3]_
705
+ The formulation of the problem has been proposed in [3]_ (prop. 5)
706
706
707
707
708
708
Parameters
@@ -843,7 +843,8 @@ def entropic_partial_gromov_wasserstein(C1, C2, p, q, reg, m=None, G0=None,
843
843
:math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
844
844
- m is the amount of mass to be transported
845
845
846
- The formulation of the problem has been proposed in [12].
846
+ The formulation of the GW problem has been proposed in [12]_ and the
847
+ partial GW in [29]_.
847
848
848
849
Parameters
849
850
----------
@@ -903,6 +904,9 @@ def entropic_partial_gromov_wasserstein(C1, C2, p, q, reg, m=None, G0=None,
903
904
.. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
904
905
"Gromov-Wasserstein averaging of kernel and distance matrices."
905
906
International Conference on Machine Learning (ICML). 2016.
907
+ .. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
908
+ Wasserstein with Applications on Positive-Unlabeled Learning".
909
+ arXiv preprint arXiv:2002.08276.
906
910
907
911
See Also
908
912
--------
@@ -979,7 +983,8 @@ def entropic_partial_gromov_wasserstein2(C1, C2, p, q, reg, m=None, G0=None,
979
983
:math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
980
984
- m is the amount of mass to be transported
981
985
982
- The formulation of the problem has been proposed in [12].
986
+ The formulation of the GW problem has been proposed in [12]_ and the
987
+ partial GW in [29]_.
983
988
984
989
985
990
Parameters
@@ -1033,6 +1038,9 @@ def entropic_partial_gromov_wasserstein2(C1, C2, p, q, reg, m=None, G0=None,
1033
1038
.. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
1034
1039
"Gromov-Wasserstein averaging of kernel and distance matrices."
1035
1040
International Conference on Machine Learning (ICML). 2016.
1041
+ .. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
1042
+ Wasserstein with Applications on Positive-Unlabeled Learning".
1043
+ arXiv preprint arXiv:2002.08276.
1036
1044
"""
1037
1045
1038
1046
partial_gw , log_gw = entropic_partial_gromov_wasserstein (C1 , C2 , p , q , reg ,
0 commit comments