You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- M is the (ns,nt) squared euclidean cost matrix between samples in Xs and Xt (scaled by ns)
142
+
- :math:`L` is a dxd linear operator that approximates the barycentric mapping
143
+
- :math:`I` is the identity matrix (neutral linear mapping)
144
+
- a and b are uniform source and target weights
145
+
146
+
The problem consist in solving jointly an optimal transport matrix
147
+
:math:`\gamma` and a linear mapping that fits the barycentric mapping
148
+
:math:`n_s\gamma X_t`
149
+
150
+
The algorithm used for solving the problem is the block coordinate
151
+
descent that alternates between updates of G (using conditionnal gradient)
152
+
abd the update of L using a classical least square solver.
153
+
154
+
155
+
Parameters
156
+
----------
157
+
xs : np.ndarray (ns,d)
158
+
samples in the source domain
159
+
xt : np.ndarray (nt,d)
160
+
samples in the target domain
161
+
mu: float,optional
162
+
Weight for the linear OT loss (>0)
163
+
eta: float, optional
164
+
Regularization term for the linear mapping L (>0)
165
+
bias: bool,optional
166
+
Estimate linear mapping with constant bias
167
+
numItermax: int, optional
168
+
Max number of BCD iterations
169
+
stopThr: float, optional
170
+
Stop threshold on relative loss decrease (>0)
171
+
numInnerItermax: int, optional
172
+
Max number of iterations (inner CG solver)
173
+
stopInnerThr: float, optional
174
+
Stop threshold on error (inner CG solver) (>0)
175
+
verbose : bool, optional
176
+
Print information along iterations
177
+
log : bool, optional
178
+
record log if True
179
+
180
+
181
+
Returns
182
+
-------
183
+
gamma: (ns x nt) ndarray
184
+
Optimal transportation matrix for the given parameters
185
+
L: (d x d) ndarray
186
+
Linear mapping matrix (d+1 x d if bias)
187
+
log: dict
188
+
log dictionary return only if log==True in parameters
189
+
190
+
191
+
References
192
+
----------
193
+
194
+
.. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for discrete optimal transport", Neural Information Processing Systems (NIPS), 2016.
0 commit comments