@@ -291,7 +291,7 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000,
291
291
292
292
Returns
293
293
-------
294
- gamma : ndarray, shape (ns, nt)
294
+ gamma : ndarray, shape (ns, nt)
295
295
Optimal transportation matrix for the given parameters
296
296
log : dict
297
297
log dictionary return only if log==True in parameters
@@ -469,7 +469,7 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log=
469
469
470
470
Returns
471
471
-------
472
- gamma : ndarray, shape (ns, nt)
472
+ gamma : ndarray, shape (ns, nt)
473
473
Optimal transportation matrix for the given parameters
474
474
log : dict
475
475
log dictionary return only if log==True in parameters
@@ -622,7 +622,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9,
622
622
623
623
Returns
624
624
-------
625
- gamma : ndarray, shape (ns, nt)
625
+ gamma : ndarray, shape (ns, nt)
626
626
Optimal transportation matrix for the given parameters
627
627
log : dict
628
628
log dictionary return only if log==True in parameters
@@ -848,7 +848,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne
848
848
849
849
Returns
850
850
-------
851
- gamma : ndarray, shape (ns, nt)
851
+ gamma : ndarray, shape (ns, nt)
852
852
Optimal transportation matrix for the given parameters
853
853
log : dict
854
854
log dictionary return only if log==True in parameters
@@ -1340,7 +1340,7 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI
1340
1340
1341
1341
Returns
1342
1342
-------
1343
- gamma : ndarray, shape (ns, nt)
1343
+ gamma : ndarray, shape (ns, nt)
1344
1344
Regularized optimal transportation matrix for the given parameters
1345
1345
log : dict
1346
1346
log dictionary return only if log==True in parameters
@@ -1430,7 +1430,7 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
1430
1430
1431
1431
Returns
1432
1432
-------
1433
- gamma : ndarray, shape (ns, nt)
1433
+ gamma : ndarray, shape (ns, nt)
1434
1434
Regularized optimal transportation matrix for the given parameters
1435
1435
log : dict
1436
1436
log dictionary return only if log==True in parameters
@@ -1537,7 +1537,7 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
1537
1537
1538
1538
Returns
1539
1539
-------
1540
- gamma : ndarray, shape (ns, nt)
1540
+ gamma : ndarray, shape (ns, nt)
1541
1541
Regularized optimal transportation matrix for the given parameters
1542
1542
log : dict
1543
1543
log dictionary return only if log==True in parameters
0 commit comments