You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+6-1Lines changed: 6 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -51,10 +51,11 @@ POT provides the following generic OT solvers (links to examples):
51
51
*[Efficient Discrete Multi Marginal Optimal Transport Regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html)[50].
52
52
*[Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.
53
53
*[Smooth Strongly Convex Nearest Brenier Potentials](https://pythonot.github.io/auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py)[58], with an extension to bounding potentials using [59].
54
-
* Gaussian Mixture Model OT [69]
54
+
*[Gaussian Mixture Model OT](https://pythonot.github.io/auto_examples/others/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py)[69].
55
55
*[Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_COOT.html)[49] and
POT provides the following Machine Learning related solvers:
60
61
@@ -391,3 +392,7 @@ Artificial Intelligence.
391
392
[72] Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré (2021). [The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation](https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf). Neural Information Processing Systems (NeurIPS).
392
393
393
394
[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). [Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe](https://proceedings.mlr.press/v151/sejourne22a.html). In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
395
+
396
+
[74] Tanguy, Eloi and Delon, Julie and Gozlan, Nathaël (2024). [Computing
0 commit comments