Skip to content

Commit 08c2285

Browse files
committed
ruff fix attempt
1 parent 818b3e7 commit 08c2285

7 files changed

+24
-19
lines changed

README.md

+6-1
Original file line numberDiff line numberDiff line change
@@ -51,10 +51,11 @@ POT provides the following generic OT solvers (links to examples):
5151
* [Efficient Discrete Multi Marginal Optimal Transport Regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html) [50].
5252
* [Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.
5353
* [Smooth Strongly Convex Nearest Brenier Potentials](https://pythonot.github.io/auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py) [58], with an extension to bounding potentials using [59].
54-
* Gaussian Mixture Model OT [69]
54+
* [Gaussian Mixture Model OT](https://pythonot.github.io/auto_examples/others/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py) [69].
5555
* [Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_COOT.html) [49] and
5656
[unbalanced Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_learning_weights_with_COOT.html) [71].
5757
* Fused unbalanced Gromov-Wasserstein [70].
58+
* OT Barycenters for generic transport costs [].
5859

5960
POT provides the following Machine Learning related solvers:
6061

@@ -391,3 +392,7 @@ Artificial Intelligence.
391392
[72] Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré (2021). [The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation](https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf). Neural Information Processing Systems (NeurIPS).
392393

393394
[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). [Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe](https://proceedings.mlr.press/v151/sejourne22a.html). In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
395+
396+
[74] Tanguy, Eloi and Delon, Julie and Gozlan, Nathaël (2024). [Computing
397+
Barycentres of Measures for Generic Transport
398+
Costs](https://arxiv.org/abs/2501.04016). arXiv preprint 2501.04016 (2024)

ot/gromov/_partial.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -185,7 +185,7 @@ def partial_gromov_wasserstein(
185185
if m is None:
186186
m = min(np.sum(p), np.sum(q))
187187
elif m < 0:
188-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
188+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
189189
elif m > min(np.sum(p), np.sum(q)):
190190
raise ValueError(
191191
"Problem infeasible. Parameter m should lower or"
@@ -654,7 +654,7 @@ def partial_fused_gromov_wasserstein(
654654
if m is None:
655655
m = min(np.sum(p), np.sum(q))
656656
elif m < 0:
657-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
657+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
658658
elif m > min(np.sum(p), np.sum(q)):
659659
raise ValueError(
660660
"Problem infeasible. Parameter m should lower or"
@@ -1213,7 +1213,7 @@ def entropic_partial_gromov_wasserstein(
12131213
if m is None:
12141214
m = min(nx.sum(p), nx.sum(q))
12151215
elif m < 0:
1216-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
1216+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
12171217
elif m > min(nx.sum(p), nx.sum(q)):
12181218
raise ValueError(
12191219
"Problem infeasible. Parameter m should lower or"

ot/gromov/_quantized.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -375,7 +375,7 @@ def get_graph_partition(
375375
raise ValueError(
376376
f"""
377377
Unknown `part_method='{part_method}'`. Use one of:
378-
{'random', 'louvain', 'fluid', 'spectral', 'GW', 'FGW'}.
378+
{"random", "louvain", "fluid", "spectral", "GW", "FGW"}.
379379
"""
380380
)
381381
return nx.from_numpy(part, type_as=C0)
@@ -447,7 +447,7 @@ def get_graph_representants(C, part, rep_method="pagerank", random_state=0, nx=N
447447
raise ValueError(
448448
f"""
449449
Unknown `rep_method='{rep_method}'`. Use one of:
450-
{'random', 'pagerank'}.
450+
{"random", "pagerank"}.
451451
"""
452452
)
453453

@@ -953,7 +953,7 @@ def get_partition_and_representants_samples(
953953
else:
954954
raise ValueError(
955955
f"""
956-
Unknown `method='{method}'`. Use one of: {'random', 'kmeans'}
956+
Unknown `method='{method}'`. Use one of: {"random", "kmeans"}
957957
"""
958958
)
959959

ot/lp/__init__.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -12,9 +12,9 @@
1212
from .cvx import barycenter
1313
from .dmmot import dmmot_monge_1dgrid_loss, dmmot_monge_1dgrid_optimize
1414
from .network_simplex import emd, emd2
15-
from .barycenter import (
16-
free_support_barycenter,
17-
generalized_free_support_barycenter
15+
from .barycenter_solvers import (
16+
free_support_barycenter,
17+
generalized_free_support_barycenter,
1818
)
1919

2020
# import compiled emd
File renamed without changes.

ot/partial.py

+7-7
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@ def partial_wasserstein_lagrange(
126126
nx = get_backend(a, b, M)
127127

128128
if nx.sum(a) > 1 + 1e-15 or nx.sum(b) > 1 + 1e-15: # 1e-15 for numerical errors
129-
raise ValueError("Problem infeasible. Check that a and b are in the " "simplex")
129+
raise ValueError("Problem infeasible. Check that a and b are in the simplex")
130130

131131
if reg_m is None:
132132
reg_m = float(nx.max(M)) + 1
@@ -171,7 +171,7 @@ def partial_wasserstein_lagrange(
171171

172172
if log_emd["warning"] is not None:
173173
raise ValueError(
174-
"Error in the EMD resolution: try to increase the" " number of dummy points"
174+
"Error in the EMD resolution: try to increase the number of dummy points"
175175
)
176176
log_emd["cost"] = nx.sum(gamma * M0)
177177
log_emd["u"] = nx.from_numpy(log_emd["u"], type_as=a0)
@@ -287,7 +287,7 @@ def partial_wasserstein(a, b, M, m=None, nb_dummies=1, log=False, **kwargs):
287287
if m is None:
288288
return partial_wasserstein_lagrange(a, b, M, log=log, **kwargs)
289289
elif m < 0:
290-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
290+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
291291
elif m > nx.min(nx.stack((nx.sum(a), nx.sum(b)))):
292292
raise ValueError(
293293
"Problem infeasible. Parameter m should lower or"
@@ -315,7 +315,7 @@ def partial_wasserstein(a, b, M, m=None, nb_dummies=1, log=False, **kwargs):
315315

316316
if log_emd["warning"] is not None:
317317
raise ValueError(
318-
"Error in the EMD resolution: try to increase the" " number of dummy points"
318+
"Error in the EMD resolution: try to increase the number of dummy points"
319319
)
320320
log_emd["partial_w_dist"] = nx.sum(M * gamma)
321321
log_emd["u"] = log_emd["u"][: len(a)]
@@ -522,7 +522,7 @@ def entropic_partial_wasserstein(
522522
if m is None:
523523
m = nx.min(nx.stack((nx.sum(a), nx.sum(b)))) * 1.0
524524
if m < 0:
525-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
525+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
526526
if m > nx.min(nx.stack((nx.sum(a), nx.sum(b)))):
527527
raise ValueError(
528528
"Problem infeasible. Parameter m should lower or"
@@ -780,7 +780,7 @@ def partial_gromov_wasserstein(
780780
if m is None:
781781
m = np.min((np.sum(p), np.sum(q)))
782782
elif m < 0:
783-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
783+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
784784
elif m > np.min((np.sum(p), np.sum(q))):
785785
raise ValueError(
786786
"Problem infeasible. Parameter m should lower or"
@@ -1132,7 +1132,7 @@ def entropic_partial_gromov_wasserstein(
11321132
if m is None:
11331133
m = np.min((np.sum(p), np.sum(q)))
11341134
elif m < 0:
1135-
raise ValueError("Problem infeasible. Parameter m should be greater" " than 0.")
1135+
raise ValueError("Problem infeasible. Parameter m should be greater than 0.")
11361136
elif m > np.min((np.sum(p), np.sum(q))):
11371137
raise ValueError(
11381138
"Problem infeasible. Parameter m should lower or"

ot/utils.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -517,7 +517,7 @@ def check_random_state(seed):
517517
if isinstance(seed, np.random.RandomState):
518518
return seed
519519
raise ValueError(
520-
"{} cannot be used to seed a numpy.random.RandomState" " instance".format(seed)
520+
"{} cannot be used to seed a numpy.random.RandomState instance".format(seed)
521521
)
522522

523523

@@ -787,7 +787,7 @@ def _update_doc(self, olddoc):
787787
def _is_deprecated(func):
788788
r"""Helper to check if func is wrapped by our deprecated decorator"""
789789
if sys.version_info < (3, 5):
790-
raise NotImplementedError("This is only available for python3.5 " "or above")
790+
raise NotImplementedError("This is only available for python3.5 or above")
791791
closures = getattr(func, "__closure__", [])
792792
if closures is None:
793793
closures = []

0 commit comments

Comments
 (0)