You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[Optimal Transport Barycenters for Generic Costs](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter_generic_cost.html)[74]
59
+
*[Barycenters between Gaussian Mixture Models](https://pythonot.github.io/auto_examples/barycenters/plot_gmm_barycenter.html)[69, 74]
58
60
59
61
POT provides the following Machine Learning related solvers:
- :math:`Y_k` (m_k, d_k) is the k-th measure support
459
459
(`measure_locations[k]`),
460
460
- :math:`b_k` (m_k) is the k-th measure weights (`measure_weights[k]`),
461
-
- :math:`c_k: \mathbb{R}^{n\times d}\times\mathbb{R}^{m_k\times d_k} \rightarrow \mathbb{R}_+^{n\times m_k}` is the k-th cost function (which computes the pairwise cost matrix)
0 commit comments