|
| 1 | +(******************************************************************************) |
| 2 | +(* uneuralnetwork.pas ??.??.2022 *) |
| 3 | +(* *) |
| 4 | +(* Version : 0.01 *) |
| 5 | +(* *) |
| 6 | +(* Author : Uwe Schächterle (Corpsman) *) |
| 7 | +(* *) |
| 8 | +(* Support : www.Corpsman.de *) |
| 9 | +(* *) |
| 10 | +(* Description : Implementation of a multi layer neural network with bias *) |
| 11 | +(* neurons. *) |
| 12 | +(* *) |
| 13 | +(* License : See the file license.md, located under: *) |
| 14 | +(* https://github.com/PascalCorpsman/Software_Licenses/blob/main/license.md *) |
| 15 | +(* for details about the license. *) |
| 16 | +(* *) |
| 17 | +(* It is not allowed to change or remove this text from any *) |
| 18 | +(* source file of the project. *) |
| 19 | +(* *) |
| 20 | +(* Warranty : There is no warranty, neither in correctness of the *) |
| 21 | +(* implementation, nor anything other that could happen *) |
| 22 | +(* or go wrong, use at your own risk. *) |
| 23 | +(* *) |
| 24 | +(* Known Issues: none *) |
| 25 | +(* *) |
| 26 | +(* History : 0.01 - Initial version *) |
| 27 | +(* *) |
| 28 | +(******************************************************************************) |
| 29 | +Unit uneuralnetwork; |
| 30 | + |
| 31 | +{$MODE objfpc}{$H+} |
| 32 | + |
| 33 | +Interface |
| 34 | + |
| 35 | +Uses |
| 36 | + Classes, SysUtils, uvectormath; |
| 37 | + |
| 38 | +Type |
| 39 | + |
| 40 | + { TNeuralNetwork } |
| 41 | + |
| 42 | + TNeuralNetwork = Class |
| 43 | + private |
| 44 | + // -- Alles was gespeichert wird |
| 45 | + flayers: Array Of TMatrixNxM; |
| 46 | + fBias: Array Of TMatrixNxM; |
| 47 | + finputDim, fOutputDim: integer; |
| 48 | + fRecentAverageError: Single; |
| 49 | + // -- Arbeitsvariablen |
| 50 | + fModified: Boolean; |
| 51 | + public |
| 52 | + LearnRate: Single; |
| 53 | + Property Modified: Boolean read fModified; |
| 54 | + Constructor Create(Layers: Array Of Integer); // z.B. [2,4,1] -> 2 Eingang, 4 hidden, 1 Output |
| 55 | + Function Predict(input: TVectorN): TVectorN; |
| 56 | + Procedure Train(input, targets: TVectorN); |
| 57 | + Function getRecentAverageError(): Single; |
| 58 | + Function SaveToFile(Const Filename: String): Boolean; |
| 59 | + Function LoadFromFile(Const Filename: String): Boolean; |
| 60 | + Function Info(): String; |
| 61 | + End; |
| 62 | + |
| 63 | +Implementation |
| 64 | + |
| 65 | +Function Sigmoid(x: Single): Single; |
| 66 | +Begin |
| 67 | + result := 1 / (1 + exp(-x)); |
| 68 | +End; |
| 69 | + |
| 70 | +Function DerivSigmoid(x: Single): Single; |
| 71 | +Var |
| 72 | + s: Single; |
| 73 | +Begin |
| 74 | + //s := Sigmoid(x); // Da der Übergabe parameter bereits via Sigmoid bearbeitet wurde, kann das hier weg gelassen werden |
| 75 | + s := x; |
| 76 | + result := s * (1 - s); |
| 77 | +End; |
| 78 | + |
| 79 | +{ TNeuralNetwork } |
| 80 | + |
| 81 | +Constructor TNeuralNetwork.Create(Layers: Array Of Integer); |
| 82 | +Var |
| 83 | + i: Integer; |
| 84 | +Begin |
| 85 | + fModified := false; |
| 86 | + LearnRate := 0.1; // Egal hauptsache Definiert, macht nachher eh die Kontrollierende Anwendung |
| 87 | + If length(Layers) < 2 Then Begin |
| 88 | + Raise Exception.Create('Error, you have to select at leas 2 layers.'); |
| 89 | + End; |
| 90 | + fRecentAverageError := layers[high(Layers)]; // Wir gehen davon aus, dass jeder Ausgangsknoten Falsch ist ! |
| 91 | + // Wir benötigen 1-Schicht weniger als Layers Angefragt sind |
| 92 | + setlength(fLayers, high(Layers)); |
| 93 | + setlength(fBias, high(Layers)); |
| 94 | + // Erstellen der ganzen Übergangsmatrizen |
| 95 | + For i := 0 To high(Layers) - 1 Do Begin |
| 96 | + flayers[i] := ZeroNxM(Layers[i], Layers[i + 1]); |
| 97 | + fBias[i] := ZeroNxM(1, Layers[i + 1]); |
| 98 | + RandomizeNxM(flayers[i]); |
| 99 | + RandomizeNxM(fBias[i]); |
| 100 | + End; |
| 101 | + // Für die Checks |
| 102 | + finputDim := Layers[0]; |
| 103 | + fOutputDim := layers[high(layers)]; |
| 104 | +End; |
| 105 | + |
| 106 | +Function TNeuralNetwork.Predict(input: TVectorN): TVectorN; |
| 107 | +Var |
| 108 | + v: TMatrixNxM; |
| 109 | + i: Integer; |
| 110 | +Begin |
| 111 | + If length(input) <> finputDim Then Begin |
| 112 | + Raise exception.Create('Error, input has invalid size.'); |
| 113 | + End; |
| 114 | + // Input Conversion |
| 115 | + v := VNToNxM(input); |
| 116 | + // FeedForward |
| 117 | + For i := 0 To high(flayers) Do Begin |
| 118 | + v := flayers[i] * v; |
| 119 | + v := v + fBias[i]; |
| 120 | + MapMatrix(v, @Sigmoid); |
| 121 | + End; |
| 122 | + // Output Conversion |
| 123 | + result := NxMToVN(v); |
| 124 | +End; |
| 125 | + |
| 126 | +Procedure TNeuralNetwork.Train(input, targets: TVectorN); |
| 127 | +Var |
| 128 | + v: Array Of TMatrixNxM; |
| 129 | + i: Integer; |
| 130 | + delta, g, e: TMatrixNxM; |
| 131 | +Begin |
| 132 | + If length(input) <> finputDim Then Begin |
| 133 | + Raise exception.Create('Error, input has invalid size.'); |
| 134 | + End; |
| 135 | + If length(targets) <> fOutputDim Then Begin |
| 136 | + Raise exception.Create('Error, target has invalid size.'); |
| 137 | + End; |
| 138 | + fModified := true; |
| 139 | + // 1. Feed Forward |
| 140 | + setlength(v, length(flayers) + 1); |
| 141 | + // Input Conversion |
| 142 | + v[0] := VNToNxM(input); |
| 143 | + // FeedForward |
| 144 | + For i := 0 To high(flayers) Do Begin |
| 145 | + v[i + 1] := flayers[i] * v[i]; |
| 146 | + v[i + 1] := v[i + 1] + fBias[i]; |
| 147 | + MapMatrix(v[i + 1], @Sigmoid); |
| 148 | + End; |
| 149 | + // Output stands in v[length(flayers)] |
| 150 | + // 2. Back Propagation |
| 151 | + // Calculate Error of Output |
| 152 | + e := VNToNxM(targets) - v[length(flayers)]; |
| 153 | + fRecentAverageError := (fRecentAverageError + LenVN(targets - NxMToVN(v[length(flayers)]))) / 2; // Schleifender Mittelwert |
| 154 | + // Propagate through the layers |
| 155 | + For i := high(flayers) Downto 0 Do Begin |
| 156 | + // Calculate the Gradient |
| 157 | + g := MapMatrix2(v[i + 1], @DerivSigmoid); |
| 158 | + g := HadamardNxM(g, e); |
| 159 | + g := LearnRate * g; |
| 160 | + |
| 161 | + delta := g * TransposeMatrix(v[i]); |
| 162 | + |
| 163 | + // Adjust Weights and bias |
| 164 | + flayers[i] := flayers[i] + delta; |
| 165 | + fBias[i] := fBias[i] + g; |
| 166 | + |
| 167 | + // Calculate Error for next layer |
| 168 | + If i <> 0 Then Begin |
| 169 | + // i = 0 would calculate the Error from the input, this is not needed |
| 170 | + // anymore => not calculate it to preserve compution time |
| 171 | + e := TransposeMatrix(flayers[i]) * e; |
| 172 | + End; |
| 173 | + End; |
| 174 | +End; |
| 175 | + |
| 176 | +Function TNeuralNetwork.getRecentAverageError(): Single; |
| 177 | +Begin |
| 178 | + result := fRecentAverageError; |
| 179 | +End; |
| 180 | + |
| 181 | +Function TNeuralNetwork.SaveToFile(Const Filename: String): Boolean; |
| 182 | +Var |
| 183 | + fs: TFileStream; |
| 184 | + ui: uint32; |
| 185 | +Begin |
| 186 | + result := false; |
| 187 | + fs := TFileStream.Create(Filename, fmCreate Or fmOpenWrite); |
| 188 | + // Speichern der Dimension |
| 189 | + fs.Write(finputDim, sizeof(finputDim)); |
| 190 | + fs.Write(fOutputDim, sizeof(fOutputDim)); |
| 191 | + fs.Write(fRecentAverageError, sizeof(fRecentAverageError)); |
| 192 | + // Speichern der Matrizen |
| 193 | + ui := length(flayers); |
| 194 | + fs.Write(ui, sizeof(ui)); |
| 195 | + For ui := 0 To high(flayers) Do Begin |
| 196 | + SaveMNxMToStream(fs, flayers[ui]); |
| 197 | + End; |
| 198 | + ui := length(fBias); |
| 199 | + fs.Write(ui, sizeof(ui)); |
| 200 | + For ui := 0 To high(fBias) Do Begin |
| 201 | + SaveMNxMToStream(fs, fBias[ui]); |
| 202 | + End; |
| 203 | + fs.free; |
| 204 | +End; |
| 205 | + |
| 206 | +Function TNeuralNetwork.LoadFromFile(Const Filename: String): Boolean; |
| 207 | +Var |
| 208 | + fs: TFileStream; |
| 209 | + ui: uint32; |
| 210 | + fiDim, fODim: integer; |
| 211 | +Begin |
| 212 | + result := false; |
| 213 | + fs := TFileStream.Create(Filename, fmOpenRead); |
| 214 | + // Speichern der Dimension |
| 215 | + fiDim := 0; |
| 216 | + fODim := 0; |
| 217 | + fs.read(fiDim, sizeof(finputDim)); |
| 218 | + fs.read(fODim, sizeof(fOutputDim)); |
| 219 | + If (finputDim <> fiDim) Or (fOutputDim <> fODim) Then Begin |
| 220 | + fs.free; |
| 221 | + Raise exception.create('Error, the defined net has a different interface, than the net to load.'); |
| 222 | + exit; |
| 223 | + End; |
| 224 | + fs.Read(fRecentAverageError, sizeof(fRecentAverageError)); |
| 225 | + // Speichern der Matrizen |
| 226 | + ui := 0; |
| 227 | + fs.Read(ui, sizeof(ui)); |
| 228 | + setlength(flayers, ui); |
| 229 | + For ui := 0 To high(flayers) Do Begin |
| 230 | + flayers[ui] := LoadMNxMFromStream(fs); |
| 231 | + End; |
| 232 | + |
| 233 | + ui := 0; |
| 234 | + fs.Read(ui, sizeof(ui)); |
| 235 | + setlength(fBias, ui); |
| 236 | + If length(fBias) <> length(flayers) Then Begin |
| 237 | + Raise exception.create('Error, bias and layer dim is different, file invalid.'); |
| 238 | + result := false; |
| 239 | + fs.free; |
| 240 | + End; |
| 241 | + For ui := 0 To high(fBias) Do Begin |
| 242 | + fBias[ui] := LoadMNxMFromStream(fs); |
| 243 | + End; |
| 244 | + fs.free; |
| 245 | + result := true; |
| 246 | +End; |
| 247 | + |
| 248 | +Function TNeuralNetwork.Info(): String; |
| 249 | +Var |
| 250 | + i: Integer; |
| 251 | + ui64: uint64; |
| 252 | +Begin |
| 253 | + // Layer Informationen |
| 254 | + result := 'Layers: ['; |
| 255 | + ui64 := 0; |
| 256 | + For i := 0 To high(flayers) Do Begin |
| 257 | + result := result + inttostr(length(flayers[i])) + ', '; |
| 258 | + ui64 := ui64 + length(flayers[i]) * length(flayers[i, 0]); |
| 259 | + ui64 := ui64 + length(fBias[i]) * length(fBias[i, 0]); |
| 260 | + End; |
| 261 | + result := result + inttostr(length(flayers[high(flayers), 0])) + ']' + LineEnding; |
| 262 | + result := result + 'Trainable params: ' + IntToStr(ui64); |
| 263 | + |
| 264 | +End; |
| 265 | + |
| 266 | +End. |
| 267 | + |
0 commit comments