-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconf_script.py
120 lines (105 loc) · 4.76 KB
/
conf_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import sys
import argparse
import re
import json
sql_path = './query/'
parser = argparse.ArgumentParser(description='command line parsing')
parser.add_argument('sql_file', type=str, help='input sql file')
parser.add_argument('flag', type=str, help='train/load flag')
parser.add_argument('dataset_path', type=str, help='input dataset path, separate with commas')
parser.add_argument('ground_truth', type=str, help='ground truth path')
parser.add_argument('cat_attr1', type=str, help='categorical attributes of table1, separate with commas between attributes')
parser.add_argument('cat_attr2', type=str, help='categorical attributes of table2, separate with commas between attributes')
parser.add_argument('num_attr1', type=str, help='number attributes of table1, separate with commas between attributes')
parser.add_argument('num_attr2', type=str, help='number attributes of table2, separate with commas between attributes')
parser.add_argument('sampling_ratio', type=str, help='sampling ratios of tables, separate with commas')
parser.add_argument('delimiter1', type=str, help='delimiter in the dataset of table1')
parser.add_argument('delimiter2', type=str, help='delimiter in the dataset of table2')
args = parser.parse_args()
with open(sql_path + args.sql_file) as f:
sqltxt = f.readlines()
sql = "".join(sqltxt[1]).split()
table1, table2 = sql[1], sql[3]
sql = "".join(sqltxt[2]).split()
join_attr1, join_attr2 = sql[1], sql[3]
sql = "".join(sqltxt[3]).split()
groupby_attr = sql[2]
p = re.compile(r'[(](.*?)[)]')
sql = "".join(sqltxt[0]).split()
agg_col = []
for i in range(2, len(sql)):
result = re.findall(p, sql[i])
if result[0] not in agg_col:
agg_col.append(result[0])
label_columns = [join_attr1]
if join_attr1 != groupby_attr and join_attr1[0] == groupby_attr[0]:
label_columns = [join_attr1, groupby_attr]
query_name = table1 + '_join_' + table2
train_name1 = query_name + '-' + table1
train_name2 = query_name + '-' + table2
query_conf_file = 'generate_config/query/' + query_name + '.json'
train_conf_file1 = 'generate_config/train/' + train_name1 + '.json'
train_conf_file2 = 'generate_config/train/' + train_name2 + '.json'
query_conf = {"name": query_name,
"train_config_files": [train_conf_file1, train_conf_file2],
"multi_sample_times": 3,
"operation": "aqp",
"join_cols": [join_attr1, join_attr2],
"groupby_cols": [groupby_attr],
"sum_cols": agg_col,
"avg_cols": agg_col,
"ground_truth": args.ground_truth}
train_conf1 = {"name": train_name1,
"data": args.dataset_path.split(',')[0],
"categorical_columns": args.cat_attr1,
"numeric_columns": args.num_attr1,
"label_columns": [join_attr1],
"bucket_columns": label_columns,
"categorical_encoding": "binary",
"numeric_encoding": "gaussian",
"max_clusters": 5,
"model_type": "torch_cvae",
"lr": 0.001,
"optimizer_type": "adam",
"loss_agg_type": "mean",
"gpu_num": 0,
"epochs": 150,
"batch_size": 1024,
"latent_dim": 50,
"intermediate_dim": 100,
"train_flag": args.flag,
"operation": "aqp",
"sample_method": "statistics",
"sample_rate": args.sampling_ratio.split(',')[0],
"sample_for_train": 1,
"header": 1,
"delimiter": args.delimiter1}
train_conf2 = {"name": train_name2,
"data": args.dataset_path.split(',')[1],
"categorical_columns": args.cat_attr2,
"numeric_columns": args.num_attr2,
"label_columns": [join_attr2],
"bucket_columns": [],
"categorical_encoding": "binary",
"numeric_encoding": "mm",
"max_clusters": 5,
"model_type": "torch_cvae",
"lr": 0.001,
"optimizer_type": "adam",
"loss_agg_type": "mean",
"gpu_num": 0,
"epochs": 100,
"batch_size": 128,
"latent_dim": 100,
"intermediate_dim": 150,
"train_flag": args.flag,
"operation": ["aqp" if args.sampling_ratio.split(',')[1] != 1 else "other"],
"sample_method": "house",
"sample_rate": args.sampling_ratio.split(',')[1],
"sample_for_train": 1,
"header": 1,
"delimiter": args.delimiter2}
json.dump(query_conf, open(query_conf_file,'w'),indent=4)
json.dump(train_conf1, open(train_conf_file1,'w'),indent=4)
json.dump(train_conf2, open(train_conf_file2,'w'),indent=4)