-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathTips
40 lines (33 loc) · 1.08 KB
/
Tips
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
library(keras)
data <- read.csv('~/Desktop/data/CTG.csv', header=T)
data$NSP <- data$NSP -1
# Turn `data` into a matrix
data <- as.matrix(data)
dimnames(data) <- NULL
# Normalize the data
data[,1:21] <- normalize(data[,1:21])
# Partition
set.seed(1234)
ind <- sample(2, nrow(data), replace = T, prob=c(.7, .3))
training <- data[ind==1, 1:21]
test <- data[ind==2, 1:21]
trainingtarget <- data[ind==1, 22]
testtarget <- data[ind==2, 22]
# One hot encoding
trainLabels <- to_categorical(trainingtarget)
testLabels <- to_categorical(testtarget)
# model_one
model <- keras_model_sequential()
model %>%
layer_dense(units = 8, activation = 'relu', input_shape = c(21)) %>%
layer_dense(units = 3, activation = 'softmax')
# Compile the model
model %>% compile(loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = 'accuracy')
# Fit model
history <- model %>% fit(training,
trainLabels,
epochs = 200,
batch_size = 32,
validation_split = 0.2)