-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
193 lines (165 loc) · 7.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import sys
from os.path import dirname, abspath, join
from tqdm import tqdm
import numpy as np
import torch
from config import get_config
from dataset import get_dataloader
from agent import get_agent
from utils.utils import cycle, dict_get, acc
import random
import time
import os
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
acc_list = [i for i in range(5, 35, 5)]
def main():
# create experiment config containing all hyperparameters
config = get_config("train")
setup_seed(config.RD_SEED)
# create dataloader
if config.category_num == 1:
train_loader = get_dataloader(config.dataset, "train", config)
test_loaders = [get_dataloader(config.dataset, "test", config)]
categories = [config.category]
test_iters = [iter(test_loaders[0])]
else:
train_loader, _, _ = get_dataloader(config.dataset, "train", config)
_, test_loaders, categories = get_dataloader(
config.dataset, "test", config)
test_iters = [iter(cat_test_loader)
for cat_test_loader in test_loaders] # test per category
# create network and training agent
agent = get_agent(config)
# recover training
if config.cont:
agent.load_ckpt(config.ckpt)
# change lr (if needed)
for param_group in agent.optimizer_net.param_groups:
param_group["lr"] = config.lr
for param_group in agent.optimizer_flow.param_groups:
param_group["lr"] = config.lr
# start training
clock = agent.clock
while True:
# begin iteration
pbar = tqdm(train_loader)
for b, data in enumerate(pbar):
# train step
result_dict = agent.train_func(data)
loss = result_dict["loss"]
if agent.clock.iteration % config.log_frequency == 0:
agent.writer.add_scalar(
"train/lr",
agent.optimizer_flow.param_groups[0]["lr"],
clock.iteration,
)
agent.writer.add_scalar(
"train/loss", result_dict["loss"], clock.iteration
)
agent.writer.add_scalar(
"train/loss_nll", result_dict["losses_nll"].mean(
), clock.iteration
)
agent.writer.add_scalar(
"train/pre_nll", result_dict["losses_pre_nll"].mean(
), clock.iteration
)
pbar.set_description("EPOCH[{}][{}]".format(
clock.epoch, clock.minibatch))
pbar.set_postfix({"loss": loss.item()})
clock.tick()
# evaluation
if clock.iteration % config.val_frequency == 0:
categories_loss = []
categories_median = []
categories_mean = []
categories_accs = {}
for acc_num in acc_list:
categories_accs[acc_num] = []
for cate_id in range(len(categories)):
test_loss = []
test_err_deg = []
for i in range(4):
try:
data = next(test_iters[cate_id])
except:
test_iters[cate_id] = iter(test_loaders[cate_id])
data = next(test_iters[cate_id])
result_dict = agent.val_func(data)
if config.eval_train == 'nll':
test_loss.append(
result_dict["loss"].detach().cpu().numpy())
if config.eval_train == 'acc' or config.dataset == 'symsol':
test_err_deg.append(
result_dict["err_deg"].detach().cpu().numpy()
)
# entropy = discrete_entropy(fisher_dict['pred'], config.dist, agent.grids)
# fisher_test_entropy.append(entropy.detach().cpu().numpy())
if config.eval_train == 'nll':
test_loss = np.array(test_loss)
loss_mean = np.mean(test_loss)
categories_loss.append(loss_mean)
agent.writer.add_scalar(
f"test/{categories[cate_id]}/loss", np.mean(
test_loss), clock.iteration
)
if config.eval_train == 'acc' or config.dataset == 'symsol':
if config.condition:
test_err_deg = np.concatenate(
test_err_deg, 0)
elif config.dist == "fisher" or "relie" in config.dist:
test_err_deg = np.concatenate(
test_err_deg, 0)
err_mean = np.mean(test_err_deg)
for acc_num in acc_list:
categories_accs[acc_num].append(
acc(test_err_deg, acc_num))
categories_mean.append(err_mean)
categories_median.append(np.median(test_err_deg))
agent.writer.add_scalar(
f"test/{categories[cate_id]}/err_median", np.median(
test_err_deg), clock.iteration
)
agent.writer.add_scalar(
f"test/{categories[cate_id]}/err_mean", err_mean, clock.iteration
)
# agent.writer.add_scalar('test/entropy', np.mean(fisher_test_entropy), clock.iteration)
for acc_num in acc_list:
agent.writer.add_scalar(
f"test/{categories[cate_id]}/acc_{acc_num}", acc(
test_err_deg, acc_num), clock.iteration
)
if config.eval_train == 'nll':
agent.writer.add_scalar(
f"test/loss", np.mean(categories_loss), clock.iteration
)
if config.eval_train == 'acc' or config.dataset == 'symsol':
agent.writer.add_scalar(
f"test/err_median", np.mean(
categories_median), clock.iteration
)
agent.writer.add_scalar(
f"test/err_mean", np.mean(
categories_mean), clock.iteration
)
# agent.writer.add_scalar('test/entropy', np.mean(fisher_test_entropy), clock.iteration)
for acc_num in acc_list:
agent.writer.add_scalar(
f"test/acc_{acc_num}", np.mean(
categories_accs[acc_num]), clock.iteration
)
# save checkpoint
if clock.iteration % config.save_frequency == 0:
agent.save_ckpt()
if clock.iteration > config.max_iteration:
break
clock.tock()
if clock.iteration > config.max_iteration:
break
if __name__ == "__main__":
main()