This repository has been archived by the owner on Jun 30, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfuncube.c
930 lines (809 loc) · 28.6 KB
/
funcube.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// $Id: funcube.c,v 1.60 2018/12/05 07:08:01 karn Exp $
// Read from AMSAT UK Funcube Pro and Pro+ dongles
// Multicast raw 16-bit I/Q samples
// Accept control commands from UDP socket
// rewritten to use portaudio July 2018
#define _GNU_SOURCE 1 // allow bind/connect/recvfrom without casting sockaddr_in6
#include <assert.h>
#include <limits.h>
#include <pthread.h>
#include <string.h>
#include <math.h>
#include <complex.h>
#include <stdio.h>
#include <stdarg.h>
#include <portaudio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <locale.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <syslog.h>
#include <errno.h>
#include "fcd.h"
#include "sdr.h"
#include "radio.h"
#include "misc.h"
#include "status.h"
#include "multicast.h"
struct sdrstate {
// Stuff for sending commands
void *phd; // Opaque pointer to type hid_device
struct status status; // Frequency and gain settings, grouped for transmission in RTP packet
unsigned int intfreq; // Nominal (uncorrected) tuner frequency
float in_power; // Running estimate of signal power
// Smoothed error estimates
complex float DC; // DC offset
float sinphi; // I/Q phase error
float imbalance; // Ratio of I power to Q power
double calibration; // TCXO Offset (0 = on frequency)
// portaudio parameters
PaStream *Pa_Stream; // Portaudio handle
char sdr_name[50]; // name of associated audio device for A/D
int overrun; // A/D overrun count
int overflows;
};
// constants, some of which you might want to tweak
float const AGC_upper = -15;
float const AGC_lower = -50;
int const ADC_samprate = 192000;
float const SCALE16 = 1./SHRT_MAX;
float const DC_alpha = 1.0e-6; // high pass filter coefficient for DC offset estimates, per sample
float const Power_alpha = 1.0; // time constant (seconds) for smoothing power and I/Q imbalance estimates
char const *Rundir = "/run/funcube"; // Where 'status' and 'pid' are created
// Variables set by command line options
int No_hold_open; // if set, close control between commands
// A larger blocksize makes more efficient use of each frame, but the receiver generally runs on
// frames that match the Opus codec: 2.5, 5, 10, 20, 40, 60, 180, 100, 120 ms
// So to minimize latency, make this a common denominator:
// 240 samples @ 16 bit stereo = 960 bytes/packet; at 192 kHz, this is 1.25 ms (800 pkt/sec)
int Blocksize = 240;
int Device = 0;
char *Locale;
int Daemonize;
int Mcast_ttl = 1; // Don't send fast IQ streams beyond the local network by default
// Global variables
struct rtp_state Rtp;
int Rtp_sock; // Socket handle for sending real time stream
int Nctl_sock; // Socket handle for incoming commands
int Status_sock; // Socket handle for outgoing status messages
struct sockaddr_storage Output_dest_address; // Multicast output socket
struct sdrstate FCD;
pthread_t Display_thread;
pthread_t AGC_thread;
pthread_t Status_thread;
pthread_t Ncmd_thread;
FILE *Status;
char *Status_filename;
char *Pid_filename;
char *Dest;
uint64_t Commands;
void errmsg(const char *fmt,...);
int process_fc_command(char *,int);
double set_fc_LO(double);
double fcd_actual(unsigned int u32Freq);
int front_end_init(struct sdrstate *,int,int,int);
int get_adc(short *buffer,const int L);
void *display(void *arg);
void *doagc(void *arg);
void *ncmd(void *arg);
int main(int argc,char *argv[]){
struct sdrstate * const sdr = &FCD;
Locale = getenv("LANG");
if(Locale == NULL || strlen(Locale) == 0)
Locale = "en_US.UTF-8";
int c;
int List_audio = 0;
while((c = getopt(argc,argv,"dc:vl:b:oR:T:LI:S:")) != -1){
switch(c){
case 'd':
Daemonize++;
Status = NULL;
break;
case 'L':
List_audio++;
break;
case 'c':
sdr->calibration = strtod(optarg,NULL) * 1e-6; // Calibration offset in ppm
break;
case 'R':
Dest = optarg;
break;
case 'o':
No_hold_open++; // Close USB control port between commands so fcdpp can be used
break;
case 'I':
Device = strtol(optarg,NULL,0);
break;
case 'v':
if(!Daemonize)
Status = stderr; // Could be overridden by status file argument below
break;
case 'l':
Locale = optarg;
break;
case 'b':
Blocksize = strtol(optarg,NULL,0);
break;
case 'T':
Mcast_ttl = strtol(optarg,NULL,0);
break;
case 'S':
Rtp.ssrc = strtol(optarg,NULL,0);
break;
default:
case '?':
fprintf(stderr,"Unknown argument %c\n",c);
exit(1);
break;
}
}
setlocale(LC_ALL,Locale);
if(List_audio){
// On stdout, not stderr, so we can toss ALSA's noisy error messages
Pa_Initialize();
int numDevices = Pa_GetDeviceCount();
printf("%d Audio devices:\n",numDevices);
for(int inDevNum=0; inDevNum < numDevices; inDevNum++){
const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo(inDevNum);
printf("%d: %s\n",inDevNum,deviceInfo->name);
}
Pa_Terminate();
exit(0);
}
if(Dest == NULL){
errmsg("Must specify -R output_address\n");
exit(1);
}
if(Daemonize){
openlog("funcube",LOG_PID,LOG_DAEMON);
// see if one is already running
int r = asprintf(&Pid_filename,"%s%d/pid",Rundir,Device);
if(r == -1){
// Unlikely, but it makes the compiler happy
errmsg("asprintf error");
exit(1);
}
FILE *pidfile = fopen(Pid_filename,"r");
if(pidfile){
// pid file exists; read it and see if process exists
int pid = 0;
if(fscanf(pidfile,"%d",&pid) == 1 && (kill(pid,0) == 0 || errno != ESRCH)){
// Already running; exit
fclose(pidfile);
errmsg("pid %d: daemon %d already running, quitting",getpid(),pid);
exit(1);
}
fclose(pidfile); pidfile = NULL;
}
unlink(Pid_filename); // Remove any orphan
pidfile = fopen(Pid_filename,"w");
if(pidfile){
int pid = getpid();
fprintf(pidfile,"%d\n",pid);
fclose(pidfile);
}
r = asprintf(&Status_filename,"%s%d/status",Rundir,Device);
if(r == -1){
// Unlikely, but it makes the compiler happy
errmsg("asprintf error");
exit(1);
}
unlink(Status_filename); // Remove any orphaned version
Status = fopen(Status_filename,"w");
if(Status == NULL){
errmsg("Can't write %s: %s\n",Status_filename,strerror(errno));
}
if(Status)
setlinebuf(Status);
}
// Catch signals so portaudio can be shut down
signal(SIGPIPE,SIG_IGN);
signal(SIGINT,closedown);
signal(SIGKILL,closedown);
signal(SIGQUIT,closedown);
signal(SIGTERM,closedown);
signal(SIGBUS,closedown);
signal(SIGSEGV,closedown);
// Load/save calibration file
{
char *calfilename = NULL;
if(asprintf(&calfilename,"/var/local/lib/radiostate/cal-funcube-%d",Device) > 0){
FILE *calfp = NULL;
if(sdr->calibration == 0){
if((calfp = fopen(calfilename,"r")) != NULL){
if(fscanf(calfp,"%lg",&sdr->calibration) < 1){
errmsg("Can't read calibration from %s\n",calfilename);
}
}
} else {
if((calfp = fopen(calfilename,"w")) != NULL){
fprintf(calfp,"%.6lg\n",sdr->calibration);
}
}
if(calfp)
fclose(calfp);
free(calfilename);
}
}
// Set up RTP output socket
sleep(2);
Rtp_sock = setup_mcast(Dest,(struct sockaddr *)&Output_dest_address,1,Mcast_ttl,0);
if(Rtp_sock == -1){
errmsg("Can't create multicast socket: %s\n",strerror(errno));
exit(1);
}
Pa_Initialize();
if(front_end_init(sdr,Device,ADC_samprate,Blocksize) < 0){
errmsg("front_end_init(%p,%d,%d,%d) failed\n",
sdr,Device,ADC_samprate,Blocksize);
exit(1);
}
pthread_create(&Status_thread,NULL,status,sdr);
pthread_create(&Ncmd_thread,NULL,ncmd,sdr);
if(Status)
pthread_create(&Display_thread,NULL,display,sdr);
if(Rtp.ssrc == 0){
time_t tt;
time(&tt);
Rtp.ssrc = tt & 0xffffffff; // low 32 bits of clock time
}
errmsg("uid %d; device %d; dest %s; blocksize %d; RTP SSRC %lx; status file %s\n",getuid(),Device,Dest,Blocksize,Rtp.ssrc,Status_filename);
// Gain and phase corrections. These will be updated every block
float gain_q = 1;
float gain_i = 1;
float secphi = 1;
float tanphi = 0;
struct timeval tp;
gettimeofday(&tp,NULL);
// Timestamp is in nanoseconds for futureproofing, but time of day is only available in microsec
sdr->status.timestamp = ((tp.tv_sec - UNIX_EPOCH + GPS_UTC_OFFSET) * 1000000LL + tp.tv_usec) * 1000LL;
float rate_factor = Blocksize/(ADC_samprate * Power_alpha);
while(1){
struct rtp_header rtp;
memset(&rtp,0,sizeof(rtp));
rtp.version = RTP_VERS;
rtp.type = IQ_PT; // ordinarily dynamically allocated
rtp.ssrc = Rtp.ssrc;
rtp.seq = Rtp.seq++;
rtp.timestamp = Rtp.timestamp;
unsigned char buffer[16384]; // Pick a better value
unsigned char *dp = buffer;
dp = hton_rtp(dp,&rtp);
dp = hton_status(dp,&sdr->status); // This will soon be removed
signed short *sampbuf = (signed short *)dp;
// Read block of I/Q samples from A/D converter
int r = Pa_ReadStream(sdr->Pa_Stream,sampbuf,Blocksize);
if(r == paInputOverflowed)
sdr->overflows++;
dp += Blocksize * 2 * sizeof(*sampbuf);
float i_energy=0, q_energy=0;
complex float samp_sum = 0;
float dotprod = 0;
for(int i=0; i<2*Blocksize; i += 2){
complex float samp = CMPLXF(sampbuf[i],sampbuf[i+1]) * SCALE16;
//complex float samp = CMPLXF(sampbuf[i],sampbuf[i+1]);
samp_sum += samp; // Accumulate average DC values
samp -= sdr->DC; // remove smoothed DC offset (which can be fractional)
// Must correct gain and phase before frequency shift
// accumulate I and Q energies before gain correction
i_energy += crealf(samp) * crealf(samp);
q_energy += cimagf(samp) * cimagf(samp);
// Balance gains, keeping constant total energy
__real__ samp *= gain_i;
__imag__ samp *= gain_q;
// Accumulate phase error
dotprod += crealf(samp) * cimagf(samp);
// Correct phase
__imag__ samp = secphi * cimagf(samp) - tanphi * crealf(samp);
sampbuf[i] = round(crealf(samp) * SHRT_MAX);
sampbuf[i+1] = round(cimagf(samp) * SHRT_MAX);
//sampbuf[i] = round(crealf(samp));
//sampbuf[i+1] = round(cimagf(samp));
}
if(send(Rtp_sock,buffer,dp - buffer,0) == -1){
errmsg("send: %s\n",strerror(errno));
// If we're sending to a unicast address without a listener, we'll get ECONNREFUSED
// Should sleep to slow down the rate of these messages
} else {
Rtp.packets++;
Rtp.bytes += Blocksize;
}
Rtp.timestamp += Blocksize;
#if 1
// Get status timestamp from UNIX TOD clock -- but this might skew because of inexact sample rate
gettimeofday(&tp,NULL);
// Timestamp is in nanoseconds for futureproofing, but time of day is only available in microsec
sdr->status.timestamp = ((tp.tv_sec - UNIX_EPOCH + GPS_UTC_OFFSET) * 1000000LL + tp.tv_usec) * 1000LL;
#else
// Simply increment by number of samples
// But what if we lose some? Then the clock will always be off
sdr->status.timestamp += 1.e9 * Blocksize / ADC_samprate;
#endif
// Update every block
// estimates of DC offset, signal powers and phase error
sdr->DC += DC_alpha * (samp_sum - Blocksize*sdr->DC);
float block_energy = 0.5 * (i_energy + q_energy); // Normalize for complex pairs
if(block_energy > 0){ // Avoid divisions by 0, etc
sdr->in_power = block_energy/Blocksize; // Average A/D output power per channel
sdr->imbalance += rate_factor * ((i_energy / q_energy) - sdr->imbalance);
float dpn = dotprod / block_energy;
sdr->sinphi += rate_factor * (dpn - sdr->sinphi);
gain_q = sqrtf(0.5 * (1 + sdr->imbalance));
gain_i = sqrtf(0.5 * (1 + 1./sdr->imbalance));
secphi = 1/sqrtf(1 - sdr->sinphi * sdr->sinphi); // sec(phi) = 1/cos(phi)
// tan(phi) = sin(phi) * sec(phi) = sin(phi)/cos(phi)
tanphi = sdr->sinphi * secphi;
}
}
// Can't really get here
close(Rtp_sock);
exit(0);
}
int front_end_init(struct sdrstate *sdr,int device, int samprate,int L){
int r = 0;
sdr->status.samprate = samprate;
if((sdr->phd = fcdOpen(sdr->sdr_name,sizeof(sdr->sdr_name),device)) == NULL){
errmsg("fcdOpen(%s): %s\n",sdr->sdr_name,strerror(errno));
return -1;
}
if((r = fcdGetMode(sdr->phd)) == FCD_MODE_APP){
char caps_str[100];
fcdGetCapsStr(sdr->phd,caps_str);
errmsg("audio device name '%s', caps '%s'\n",sdr->sdr_name,caps_str);
} else if(r == FCD_MODE_NONE){
errmsg(" No FCD detected!\n");
r = -1;
goto done;
} else if (r == FCD_MODE_BL){
errmsg(" is in bootloader mode\n");
r = -1;
goto done;
}
// Set up sample stream through portaudio subsystem
// Search audio devices
int numDevices = Pa_GetDeviceCount();
int inDevNum = paNoDevice;
for(int i = 0; i < numDevices; i++){
const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo(i);
if(strstr(deviceInfo->name,sdr->sdr_name) != NULL){
inDevNum = i;
errmsg("portaudio name: %s\n",deviceInfo->name);
break;
}
}
if(inDevNum == paNoDevice){
errmsg("Can't find portaudio name\n");
r = -1;
goto done;
}
PaStreamParameters inputParameters;
memset(&inputParameters,0,sizeof(inputParameters));
inputParameters.channelCount = 2;
inputParameters.device = inDevNum;
inputParameters.sampleFormat = paInt16;
inputParameters.suggestedLatency = 0.020;
r = Pa_OpenStream(&sdr->Pa_Stream,&inputParameters,NULL,ADC_samprate,
paFramesPerBufferUnspecified, 0, NULL, NULL);
if(r < 0){
errmsg("error opening PCM device: %s\n",strerror(errno));
r = -1;
goto done;
}
Pa_StartStream(sdr->Pa_Stream);
done:; // Also the abort target: close handle before returning
if(No_hold_open && sdr->phd != NULL){
fcdClose(sdr->phd);
sdr->phd = NULL;
}
return r;
}
// Status display thread
void *display(void *arg){
pthread_setname("funcube-disp");
off_t stat_point;
char eol;
long messages = 0;
struct sdrstate *sdr = (struct sdrstate *)arg;
fprintf(Status,"funcube daemon pid %d device %d\n",getpid(),Device);
fprintf(Status," |---Gains dB---| |----Levels dB --| |---------Errors---------| Overflows messages\n");
fprintf(Status,"Frequency LNA mixer bband RF A/D Out DC-I DC-Q phase gain TCXO\n");
fprintf(Status,"Hz dBFS dBFS deg dB ppm\n");
stat_point = ftello(Status); // Current offset if file, -1 if terminal
// End lines with return when writing to terminal, newlines when writing to status file
eol = stat_point == -1 ? '\r' : '\n';
while(1){
// float powerdB = 10*log10f(sdr->in_power) - 90.308734;
float powerdB = 10*log10f(sdr->in_power);
if(stat_point != -1)
fseeko(Status,stat_point,SEEK_SET);
fprintf(Status,"%'-15.0lf%3d%7d%6d%'12.1f%'6.1f%'6.1f%9.4f%7.4f%7.2f%6.2f%'16d %8.4lf%'10ld%c",
sdr->status.frequency,
sdr->status.lna_gain,
sdr->status.mixer_gain,
sdr->status.if_gain,
powerdB - (sdr->status.lna_gain + sdr->status.mixer_gain + sdr->status.if_gain),
powerdB,
powerdB,
crealf(sdr->DC),
cimagf(sdr->DC),
(180/M_PI) * asin(sdr->sinphi),
10*log10(sdr->imbalance),
sdr->overflows,
sdr->calibration * 1e6,
messages,
eol
);
messages++;
fflush(Status);
usleep(100000);
}
return NULL;
}
// If we don't stop the A/D, it'll take several seconds to overflow and stop by itself,
// and during that time we can't restart
void closedown(int a){
errmsg("funcube: caught signal %d: %s\n",a,strsignal(a));
unlink(Pid_filename);
Pa_Terminate();
if(a == SIGTERM) // sent by systemd when shutting down. Return success
exit(0);
exit(1);
}
// The funcube device uses the Mirics MSi001 tuner. It has a fractional N synthesizer that can't actually do integer frequency steps.
// This formula is hacked down from code from Howard Long; it's what he uses in the firmware so I can figure out
// the *actual* frequency. Of course, we still have to correct it for the TCXO offset.
// This needs to be generalized since other tuners will be completely different!
double fcd_actual(unsigned int u32Freq){
typedef unsigned int UINT32;
typedef unsigned long long UINT64;
const UINT32 u32Thresh = 3250U;
const UINT32 u32FRef = 26000000U;
double f64FAct;
struct
{
UINT32 u32Freq;
UINT32 u32FreqOff;
UINT32 u32LODiv;
} *pts,ats[]=
{
{4000000U,130000000U,16U},
{8000000U,130000000U,16U},
{16000000U,130000000U,16U},
{32000000U,130000000U,16U},
{75000000U,130000000U,16U},
{125000000U,0U,32U},
{142000000U,0U,16U},
{148000000U,0U,16U},
{300000000U,0U,16U},
{430000000U,0U,4U},
{440000000U,0U,4U},
{875000000U,0U,4U},
{UINT32_MAX,0U,2U},
{0U,0U,0U}
};
for(pts = ats; u32Freq >= pts->u32Freq; pts++)
;
if (pts->u32Freq == 0)
pts--;
// Frequency of synthesizer before divider - can possibly exceed 32 bits, so it's stored in 64
UINT64 u64FSynth = ((UINT64)u32Freq + pts->u32FreqOff) * pts->u32LODiv;
// Integer part of divisor ("INT")
UINT32 u32Int = u64FSynth / (u32FRef*4);
// Subtract integer part to get fractional and AFC parts of divisor ("FRAC" and "AFC")
UINT32 u32Frac4096 = (u64FSynth<<12) * u32Thresh/(u32FRef*4) - (u32Int<<12) * u32Thresh;
// FRAC is higher 12 bits
UINT32 u32Frac = u32Frac4096>>12;
// AFC is lower 12 bits
UINT32 u32AFC = u32Frac4096 - (u32Frac<<12);
// Actual tuner frequency, in floating point, given specified parameters
f64FAct = (4.0 * u32FRef / (double)pts->u32LODiv) * (u32Int + ((u32Frac * 4096.0 + u32AFC) / (u32Thresh * 4096.))) - pts->u32FreqOff;
// double f64step = ( (4.0 * u32FRef) / (pts->u32LODiv * (double)u32Thresh) ) / 4096.0;
// printf("f64step = %'lf, u32LODiv = %'u, u32Frac = %'d, u32AFC = %'d, u32Int = %'d, u32Thresh = %'d, u32FreqOff = %'d, f64FAct = %'lf err = %'lf\n",
// f64step, pts->u32LODiv, u32Frac, u32AFC, u32Int, u32Thresh, pts->u32FreqOff,f64FAct,f64FAct - u32Freq);
return f64FAct;
}
// Crude analog AGC just to keep signal roughly within A/D range
// Executed only if -o option isn't specified; this allows manual control with, e.g., the fcdpp command
void *doagc(void *arg){
struct sdrstate * const sdr = (struct sdrstate *)arg;
float powerdB = 10*log10f(sdr->in_power);
if(powerdB > AGC_upper){
if(sdr->status.if_gain > 0){
// Decrease gain in 10 dB steps, down to 0
unsigned char val = sdr->status.if_gain = max(0,sdr->status.if_gain - 10);
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_IF_GAIN1,&val,sizeof(val));
} else if(sdr->status.mixer_gain){
unsigned char val = sdr->status.mixer_gain = 0;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_MIXER_GAIN,&val,sizeof(val));
} else if(sdr->status.lna_gain){
unsigned char val = sdr->status.lna_gain = 0;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_LNA_GAIN,&val,sizeof(val));
}
} else if(powerdB < AGC_lower){
if(sdr->status.lna_gain == 0){
sdr->status.lna_gain = 24;
unsigned char val = 1;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_LNA_GAIN,&val,sizeof(val));
} else if(sdr->status.mixer_gain == 0){
sdr->status.mixer_gain = 19;
unsigned char val = 1;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_MIXER_GAIN,&val,sizeof(val));
} else if(sdr->status.if_gain < 20){ // Limit to 20 dB - seems enough to keep A/D going even on noise
unsigned char val = sdr->status.if_gain = min(20,sdr->status.if_gain + 10);
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_IF_GAIN1,&val,sizeof(val));
}
}
return NULL;
}
void errmsg(const char *fmt,...){
va_list ap;
va_start(ap,fmt);
if(Daemonize)
vsyslog(LOG_INFO,fmt,ap);
else {
vfprintf(stderr,fmt,ap);
fflush(stderr);
}
va_end(ap);
}
#if 0
// AGC code fragment that uses Mirics gain tables
// This has problems, probably because of extra gain stages ahead of the Mirics tuner
int oldagc(struct sdrstate *sdr){
int change = 0;
// Hysteresis to keep AGC from changing too often
if(powerdB > AGC_upper){ // AGC upper limit
change = round(AGC_upper - powerdB);
} else if(powerdB < AGC_lower){ // AGC lower limit
change = round(AGC_lower - powerdB);
} else
goto done;
int old_lna_gain = sdr->status.lna_gain;
int old_mixer_gain = sdr->status.mixer_gain;
int old_if_gain = sdr->status.if_gain;
// Use Mirics gain map
int newgain = old_if_gain + old_mixer_gain + old_lna_gain + change;
// For all frequencies, start by turning up the IF gain until the mixer goes on at 19 dB
if(newgain < 20)
sdr->status.mixer_gain = 0;
else
sdr->status.mixer_gain = 19;
if(sdr->status.frequency < 60e6){ // 60 MHz
if(newgain <= 67)
sdr->status.lna_gain = 0;
else
sdr->status.lna_gain = 24;
} else if(sdr->status.frequency < 120e6){ // 120 MHz
if(newgain <= 73)
sdr->status.lna_gain = 0;
else
sdr->status.lna_gain = 24;
} else if(sdr->status.frequency < 250e6){ // 250 MHz
if(newgain <= 67)
sdr->status.lna_gain = 0;
else
sdr->status.lna_gain = 24;
} else if(sdr->status.frequency < 1e9){ // 1 GHz
if(newgain <= 73)
sdr->status.lna_gain = 0;
else
sdr->status.lna_gain = 7;
} else {
//if(sdr->status.frequency < 2e9){ // 2 GHz
if(newgain <= 75)
sdr->status.lna_gain = 0;
else
sdr->status.lna_gain = 7;
}
sdr->status.if_gain = newgain - sdr->status.lna_gain - sdr->status.mixer_gain;
#if 0
if(sdr->status.if_gain >= 60)
sdr->status.if_gain = 59; // Limited to +59 dB
#else
if(sdr->status.if_gain >= 10)
sdr->status.if_gain = 9; // Limited to +9 dB - hack
#endif
// Apply any changes
if(old_lna_gain != sdr->status.lna_gain){
unsigned char val = sdr->status.lna_gain ? 1 : 0;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_LNA_GAIN,&val,sizeof(val));
}
if(old_mixer_gain != sdr->status.mixer_gain){
unsigned char val = sdr->status.mixer_gain ? 1 : 0;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_MIXER_GAIN,&val,sizeof(val));
}
if(old_if_gain != sdr->status.if_gain){
unsigned char val = sdr->status.if_gain;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_IF_GAIN1,&val,sizeof(val));
}
done:;
}
#endif
void *ncmd(void *arg){
pthread_setname("new-cmd");
assert(arg != NULL);
struct sdrstate * const sdr = arg;
// Set up new control socket on port 5006
Nctl_sock = setup_mcast(Dest,NULL,0,Mcast_ttl,2); // For input
while(1){
if(sdr->phd == NULL && (sdr->phd = fcdOpen(sdr->sdr_name,sizeof(sdr->sdr_name),Device)) == NULL){
errmsg("can't re-open control port: %s\n",strerror(errno));
sleep(5);
continue;
}
// Read back FCD state every iteration, whether or not we processed a command, just in case it was set by another program
unsigned char val;
fcdAppGetParam(sdr->phd,FCD_CMD_APP_GET_LNA_GAIN,&val,sizeof(val));
if(val){
if(sdr->intfreq >= 420000000)
sdr->status.lna_gain = 7;
else
sdr->status.lna_gain = 24;
} else
sdr->status.lna_gain = 0;
fcdAppGetParam(sdr->phd,FCD_CMD_APP_GET_MIXER_GAIN,&val,sizeof(val));
sdr->status.mixer_gain = val ? 19 : 0;
fcdAppGetParam(sdr->phd,FCD_CMD_APP_GET_IF_GAIN1,&val,sizeof(val));
sdr->status.if_gain = val;
fcdAppGetParam(sdr->phd,FCD_CMD_APP_GET_FREQ_HZ,(unsigned char *)&sdr->intfreq,sizeof(sdr->intfreq));
sdr->status.frequency = fcd_actual(sdr->intfreq) * (1 + sdr->calibration);
// Need to do agc in separate thread, with interlocking on funcube control port
if(!No_hold_open)
doagc(sdr);
if(No_hold_open && sdr->phd != NULL){
fcdClose(sdr->phd);
sdr->phd = NULL;
}
if(Nctl_sock <= 0)
return NULL; // Nothing to do
unsigned char buffer[8192];
memset(buffer,0,sizeof(buffer));
int length = recv(Nctl_sock,buffer,sizeof(buffer),0);
if(length <= 0){
sleep(1);
continue;
}
// Parse entries
unsigned char *cp = buffer;
int cr = *cp++; // Command/response
if(cr == 0)
continue; // Ignore our own status messages
Commands++;
while(cp - buffer < length){
enum status_type type = *cp++; // increment cp to length field
if(type == EOL)
break; // End of list
unsigned int len = *cp++;
if(cp - buffer + len >= length)
break; // Invalid length
unsigned char val;
switch(type){
case EOL: // Shouldn't get here
break;
case CALIBRATE:
sdr->calibration = decode_double(cp,len);
break;
case RADIO_FREQUENCY:
sdr->status.frequency = decode_double(cp,len);
sdr->intfreq = round(sdr->status.frequency/ (1 + sdr->calibration));
// LNA gain is frequency-dependent
if(sdr->status.lna_gain){
if(sdr->intfreq >= 420e6)
sdr->status.lna_gain = 7;
else
sdr->status.lna_gain = 24;
}
fcdAppSetFreq(sdr->phd,sdr->intfreq);
sdr->status.frequency = fcd_actual(sdr->intfreq) * (1 + sdr->calibration);
break;
case LNA_GAIN:
sdr->status.lna_gain = decode_int(cp,len);
val = sdr->status.lna_gain ? 1 : 0;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_LNA_GAIN,&val,sizeof(val));
break;
case MIXER_GAIN:
sdr->status.mixer_gain = decode_int(cp,len);
val = sdr->status.mixer_gain ? 1 : 0;
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_MIXER_GAIN,&val,sizeof(val));
break;
case IF_GAIN:
sdr->status.if_gain = decode_int(cp,len);
fcdAppSetParam(sdr->phd,FCD_CMD_APP_SET_IF_GAIN1,&sdr->status.if_gain,sizeof(sdr->status.if_gain));
break;
default: // Ignore all others
break;
}
}
}
}
struct state State[256];
// Thread to periodically transmit our state
void *status(void *arg){
pthread_setname("funcube-status");
assert(arg != NULL);
struct sdrstate * const sdr = arg;
memset(State,0,sizeof(State));
// Set up status socket on port 5006
Status_sock = setup_mcast(Dest,NULL,1,Mcast_ttl,2);
for(int count=0;;count++){
if(Status_sock <= 0)
return NULL; // Nothing we can do, so quit
// emit status packets indefinitely
unsigned char packet[2048],*bp;
memset(packet,0,sizeof(packet));
bp = packet;
*bp++ = 0; // command/response = response
struct timeval tp;
gettimeofday(&tp,NULL);
// Timestamp is in nanoseconds for futureproofing, but time of day is only available in microsec
long long timestamp = ((tp.tv_sec - UNIX_EPOCH + GPS_UTC_OFFSET) * 1000000LL + tp.tv_usec) * 1000LL;
encode_int64(&bp,GPS_TIME,timestamp);
encode_int64(&bp,COMMANDS,Commands);
// Where we're sending output
// Right now the metadata and data are both sent to Output_dest_address, but I may add
// the option to make them different. Then Output_dest_address will refer to the data stream
// ie., the users seeing this metadata stream will know where to look for the data stream
{
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
*bp++ = OUTPUT_DEST_SOCKET;
switch(Output_dest_address.ss_family){
case AF_INET:
sin = (struct sockaddr_in *)&Output_dest_address;
*bp++ = 6;
memcpy(bp,&sin->sin_addr.s_addr,4); // Already in network order
bp += 4;
memcpy(bp,&sin->sin_port,2);
bp += 2;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)&Output_dest_address;
*bp++ = 10;
memcpy(bp,&sin6->sin6_addr,8);
bp += 8;
memcpy(bp,&sin6->sin6_port,2);
bp += 2;
break;
default:
break;
}
}
encode_int32(&bp,OUTPUT_SSRC,Rtp.ssrc);
encode_byte(&bp,OUTPUT_TTL,Mcast_ttl);
encode_int32(&bp,OUTPUT_SAMPRATE,ADC_samprate);
encode_int64(&bp,OUTPUT_PACKETS,Rtp.packets);
// Tuning
encode_double(&bp,RADIO_FREQUENCY,sdr->status.frequency);
encode_double(&bp,CALIBRATE,sdr->calibration);
// Front end
encode_byte(&bp,LNA_GAIN,sdr->status.lna_gain);
encode_byte(&bp,MIXER_GAIN,sdr->status.mixer_gain);
encode_byte(&bp,IF_GAIN,sdr->status.if_gain);
encode_float(&bp,DC_I_OFFSET,crealf(sdr->DC));
encode_float(&bp,DC_Q_OFFSET,cimagf(sdr->DC));
encode_float(&bp,IQ_IMBALANCE,sdr->imbalance);
encode_float(&bp,IQ_PHASE,sdr->sinphi);
// Filtering
encode_float(&bp,LOW_EDGE,-90.0e3);
encode_float(&bp,HIGH_EDGE,+90.0e3);
// Signals - these ALWAYS change
encode_float(&bp,BASEBAND_POWER,sdr->in_power);
// Demodulation mode
enum demod_type demod_type = LINEAR_DEMOD;
encode_byte(&bp,DEMOD_MODE,demod_type);
encode_int32(&bp,OUTPUT_CHANNELS,2);
encode_eol(&bp);
int len = compact_packet(&State[0],packet,(count % 10) == 0);
//int len = bp - packet;
send(Status_sock,packet,len,0);
usleep(100000);
}
}