@@ -54,7 +54,7 @@ def test_binning_1d() -> None:
54
54
)
55
55
result = timer .repeat (5 , number = 1 )
56
56
print (result )
57
- assert min (result ) < targets ["binning_1d" ] * 1.25 # allows 25% error margin
57
+ assert min (result ) < targets ["binning_1d" ] * 1.25 # allows 25% error margin
58
58
# update targets if > 20% improvement occurs beyond old bestmark
59
59
if np .mean (result ) < 0.8 * targets ["binning_1d" ]:
60
60
print (f"Updating targets for 'binning_1d' to { float (np .mean (result ))} " )
@@ -78,7 +78,7 @@ def test_binning_4d() -> None:
78
78
)
79
79
result = timer .repeat (5 , number = 1 )
80
80
print (result )
81
- assert min (result ) < targets ["binning_4d" ] * 1.25 # allows 25% error margin
81
+ assert min (result ) < targets ["binning_4d" ] * 1.25 # allows 25% error margin
82
82
# update targets if > 20% improvement occurs beyond old bestmark
83
83
if np .mean (result ) < 0.8 * targets ["binning_4d" ]:
84
84
print (f"Updating targets for 'binning_4d' to { float (np .mean (result ))} " )
@@ -95,6 +95,7 @@ def test_splinewarp() -> None:
95
95
user_config = {},
96
96
system_config = {},
97
97
verbose = True ,
98
+ verify_config = False ,
98
99
)
99
100
processor .apply_momentum_correction ()
100
101
timer = timeit .Timer (
@@ -103,7 +104,7 @@ def test_splinewarp() -> None:
103
104
)
104
105
result = timer .repeat (5 , number = 1 )
105
106
print (result )
106
- assert min (result ) < targets ["inv_dfield" ] * 1.25 # allows 25% error margin
107
+ assert min (result ) < targets ["inv_dfield" ] * 1.25 # allows 25% error margin
107
108
# update targets if > 20% improvement occurs beyond old bestmark
108
109
if np .mean (result ) < 0.8 * targets ["inv_dfield" ]:
109
110
print (f"Updating targets for 'inv_dfield' to { float (np .mean (result ))} " )
@@ -120,6 +121,7 @@ def test_workflow_1d() -> None:
120
121
user_config = {},
121
122
system_config = {},
122
123
verbose = True ,
124
+ verify_config = False ,
123
125
)
124
126
processor .dataframe ["sampleBias" ] = 16.7
125
127
processor .add_jitter ()
@@ -138,7 +140,7 @@ def test_workflow_1d() -> None:
138
140
)
139
141
result = timer .repeat (5 , number = 1 )
140
142
print (result )
141
- assert min (result ) < targets ["workflow_1d" ] * 1.25 # allows 25% error margin
143
+ assert min (result ) < targets ["workflow_1d" ] * 1.25 # allows 25% error margin
142
144
# update targets if > 20% improvement occurs beyond old bestmark
143
145
if np .mean (result ) < 0.8 * targets ["workflow_1d" ]:
144
146
print (f"Updating targets for 'workflow_1d' to { float (np .mean (result ))} " )
@@ -155,6 +157,7 @@ def test_workflow_4d() -> None:
155
157
user_config = {},
156
158
system_config = {},
157
159
verbose = True ,
160
+ verify_config = False ,
158
161
)
159
162
processor .dataframe ["sampleBias" ] = 16.7
160
163
processor .add_jitter ()
@@ -173,7 +176,7 @@ def test_workflow_4d() -> None:
173
176
)
174
177
result = timer .repeat (5 , number = 1 )
175
178
print (result )
176
- assert min (result ) < targets ["workflow_4d" ] * 1.25 # allows 25% error margin
179
+ assert min (result ) < targets ["workflow_4d" ] * 1.25 # allows 25% error margin
177
180
# update targets if > 20% improvement occurs beyond old bestmark
178
181
if np .mean (result ) < 0.8 * targets ["workflow_4d" ]:
179
182
print (f"Updating targets for 'workflow_4d' to { float (np .mean (result ))} " )
@@ -199,7 +202,7 @@ def test_loader_compute(loader: BaseLoader) -> None:
199
202
)
200
203
result = timer .repeat (20 , number = 1 )
201
204
print (result )
202
- assert min (result ) < targets [f"loader_compute_{ loader_name } " ] * 1.25 # allows 25% margin
205
+ assert min (result ) < targets [f"loader_compute_{ loader_name } " ] * 1.25 # allows 25% margin
203
206
# update targets if > 20% improvement occurs beyond old bestmark
204
207
if np .mean (result ) < 0.8 * targets [f"loader_compute_{ loader_name } " ]:
205
208
print (
0 commit comments