From 47aecc65e70b1c645653a88a028e4d3e70adf301 Mon Sep 17 00:00:00 2001 From: github-actions Date: Thu, 6 Mar 2025 09:52:16 +0000 Subject: [PATCH] Update documentation --- sed/latest | 1 + sed/latest/searchindex.js | 1 - ..._hextof_workflow_trXPS_bam_correction.html | 1389 -------- ...low_trXPS_energy_calibration_using_SB.html | 1318 -------- sed/latest/tutorial/1_binning_fake_data.html | 921 ------ ..._for_example_time-resolved_ARPES_data.html | 1651 ---------- ...tadata_collection_and_export_to_NeXus.html | 1048 ------ sed/latest/tutorial/4_hextof_workflow.html | 2931 ----------------- .../6_binning_with_time-stamped_data.html | 1224 ------- .../7_correcting_orthorhombic_symmetry.html | 937 ------ sed/latest/tutorial/8_jittering_tutorial.html | 1166 ------- .../tutorial/9_hextof_workflow_trXPD.html | 1378 -------- sed/stable | 2 +- sed/switcher.json | 8 +- sed/{latest => v1.0.0}/_modules/index.html | 10 +- .../_modules/sed/binning/binning.html | 10 +- .../_modules/sed/binning/numba_bin.html | 10 +- .../_modules/sed/binning/utils.html | 10 +- .../_modules/sed/calibrator/delay.html | 10 +- .../_modules/sed/calibrator/energy.html | 10 +- .../_modules/sed/calibrator/momentum.html | 10 +- .../_modules/sed/core/config.html | 10 +- .../_modules/sed/core/dfops.html | 10 +- .../_modules/sed/core/metadata.html | 10 +- .../_modules/sed/core/processor.html | 10 +- .../_modules/sed/dataset/dataset.html | 10 +- .../_modules/sed/diagnostics.html | 10 +- .../_modules/sed/io/hdf5.html | 10 +- .../_modules/sed/io/nexus.html | 10 +- .../_modules/sed/io/tiff.html | 10 +- .../_modules/sed/loader/base/loader.html | 10 +- .../_modules/sed/loader/flash/loader.html | 10 +- .../_modules/sed/loader/flash/metadata.html | 10 +- .../_modules/sed/loader/generic/loader.html | 10 +- .../_modules/sed/loader/loader_interface.html | 10 +- .../_modules/sed/loader/mirrorutil.html | 10 +- .../_modules/sed/loader/mpes/loader.html | 10 +- .../_modules/sed/loader/sxp/loader.html | 10 +- .../_modules/sed/loader/utils.html | 10 +- sed/{latest => v1.0.0}/_sources/index.md.txt | 0 .../_sources/misc/contributing.rst.txt | 0 .../_sources/misc/contribution.md.txt | 0 .../_sources/misc/maintain.rst.txt | 0 .../_sources/sed/api.rst.txt | 0 .../_sources/sed/binning.rst.txt | 0 .../_sources/sed/calibrator.rst.txt | 0 .../_sources/sed/config.rst.txt | 0 .../_sources/sed/core.rst.txt | 0 .../_sources/sed/dataset.rst.txt | 0 .../_sources/sed/dfops.rst.txt | 0 .../_sources/sed/diagnostic.rst.txt | 0 .../_sources/sed/io.rst.txt | 0 .../_sources/sed/loader.rst.txt | 0 .../_sources/sed/metadata.rst.txt | 0 ...of_workflow_trXPS_bam_correction.ipynb.txt | 0 ...rXPS_energy_calibration_using_SB.ipynb.txt | 0 .../tutorial/1_binning_fake_data.ipynb.txt | 0 ...example_time-resolved_ARPES_data.ipynb.txt | 0 ...a_collection_and_export_to_NeXus.ipynb.txt | 0 .../tutorial/4_hextof_workflow.ipynb.txt | 0 .../tutorial/5_sxp_workflow.ipynb.txt | 0 ...6_binning_with_time-stamped_data.ipynb.txt | 0 ...correcting_orthorhombic_symmetry.ipynb.txt | 0 .../tutorial/8_jittering_tutorial.ipynb.txt | 0 .../9_hextof_workflow_trXPD.ipynb.txt | 0 .../_sources/user_guide/config.md.txt | 0 .../_sources/user_guide/index.md.txt | 0 .../_sources/user_guide/installation.md.txt | 0 .../_sources/workflows/index.md.txt | 0 sed/{latest => v1.0.0}/_static/basic.css | 0 sed/{latest => v1.0.0}/_static/doctools.js | 0 .../_static/documentation_options.js | 2 +- sed/{latest => v1.0.0}/_static/file.png | Bin .../_static/language_data.js | 0 sed/{latest => v1.0.0}/_static/minus.png | Bin .../_static/nbsphinx-broken-thumbnail.svg | 0 .../_static/nbsphinx-code-cells.css | 0 .../_static/nbsphinx-gallery.css | 0 .../_static/nbsphinx-no-thumbnail.svg | 0 sed/{latest => v1.0.0}/_static/plus.png | Bin sed/{latest => v1.0.0}/_static/pygments.css | 0 .../_static/scripts/bootstrap.js | 0 .../_static/scripts/bootstrap.js.LICENSE.txt | 0 .../_static/scripts/bootstrap.js.map | 0 .../_static/scripts/fontawesome.js | 0 .../scripts/fontawesome.js.LICENSE.txt | 0 .../_static/scripts/fontawesome.js.map | 0 .../_static/scripts/pydata-sphinx-theme.js | 0 .../scripts/pydata-sphinx-theme.js.map | 0 sed/{latest => v1.0.0}/_static/searchtools.js | 0 .../_static/sphinx_highlight.js | 0 .../_static/styles/pydata-sphinx-theme.css | 0 .../styles/pydata-sphinx-theme.css.map | 0 .../_static/styles/theme.css | 0 .../fontawesome/webfonts/fa-brands-400.ttf | Bin .../fontawesome/webfonts/fa-brands-400.woff2 | Bin .../fontawesome/webfonts/fa-regular-400.ttf | Bin .../fontawesome/webfonts/fa-regular-400.woff2 | Bin .../fontawesome/webfonts/fa-solid-900.ttf | Bin .../fontawesome/webfonts/fa-solid-900.woff2 | Bin .../_static/webpack-macros.html | 0 sed/{latest => v1.0.0}/genindex.html | 10 +- sed/{latest => v1.0.0}/index.html | 10 +- sed/{latest => v1.0.0}/misc/contributing.html | 10 +- sed/{latest => v1.0.0}/misc/contribution.html | 10 +- sed/{latest => v1.0.0}/misc/maintain.html | 10 +- sed/{latest => v1.0.0}/objects.inv | Bin 11109 -> 11092 bytes sed/{latest => v1.0.0}/py-modindex.html | 10 +- sed/{latest => v1.0.0}/search.html | 10 +- sed/v1.0.0/searchindex.js | 1 + sed/{latest => v1.0.0}/sed/api.html | 10 +- sed/{latest => v1.0.0}/sed/binning.html | 10 +- sed/{latest => v1.0.0}/sed/calibrator.html | 10 +- sed/{latest => v1.0.0}/sed/config.html | 10 +- sed/{latest => v1.0.0}/sed/core.html | 10 +- sed/{latest => v1.0.0}/sed/dataset.html | 10 +- sed/{latest => v1.0.0}/sed/dfops.html | 10 +- sed/{latest => v1.0.0}/sed/diagnostic.html | 10 +- sed/{latest => v1.0.0}/sed/io.html | 10 +- sed/{latest => v1.0.0}/sed/loader.html | 10 +- sed/{latest => v1.0.0}/sed/metadata.html | 10 +- ..._hextof_workflow_trXPS_bam_correction.html | 1389 ++++++++ ...low_trXPS_energy_calibration_using_SB.html | 1318 ++++++++ sed/v1.0.0/tutorial/1_binning_fake_data.html | 921 ++++++ ..._for_example_time-resolved_ARPES_data.html | 1651 ++++++++++ ...tadata_collection_and_export_to_NeXus.html | 1048 ++++++ sed/v1.0.0/tutorial/4_hextof_workflow.html | 2931 +++++++++++++++++ .../tutorial/5_sxp_workflow.html | 92 +- .../6_binning_with_time-stamped_data.html | 1224 +++++++ .../7_correcting_orthorhombic_symmetry.html | 937 ++++++ sed/v1.0.0/tutorial/8_jittering_tutorial.html | 1166 +++++++ .../tutorial/9_hextof_workflow_trXPD.html | 1378 ++++++++ sed/{latest => v1.0.0}/user_guide/config.html | 10 +- sed/{latest => v1.0.0}/user_guide/index.html | 10 +- .../user_guide/installation.html | 10 +- sed/{latest => v1.0.0}/workflows/index.html | 10 +- 136 files changed, 14252 insertions(+), 14251 deletions(-) create mode 120000 sed/latest delete mode 100644 sed/latest/searchindex.js delete mode 100644 sed/latest/tutorial/10_hextof_workflow_trXPS_bam_correction.html delete mode 100644 sed/latest/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html delete mode 100644 sed/latest/tutorial/1_binning_fake_data.html delete mode 100644 sed/latest/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html delete mode 100644 sed/latest/tutorial/3_metadata_collection_and_export_to_NeXus.html delete mode 100644 sed/latest/tutorial/4_hextof_workflow.html delete mode 100644 sed/latest/tutorial/6_binning_with_time-stamped_data.html delete mode 100644 sed/latest/tutorial/7_correcting_orthorhombic_symmetry.html delete mode 100644 sed/latest/tutorial/8_jittering_tutorial.html delete mode 100644 sed/latest/tutorial/9_hextof_workflow_trXPD.html rename sed/{latest => v1.0.0}/_modules/index.html (97%) rename sed/{latest => v1.0.0}/_modules/sed/binning/binning.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/binning/numba_bin.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/binning/utils.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/calibrator/delay.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/calibrator/energy.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/calibrator/momentum.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/core/config.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/core/dfops.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/core/metadata.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/core/processor.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/dataset/dataset.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/diagnostics.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/io/hdf5.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/io/nexus.html (98%) rename sed/{latest => v1.0.0}/_modules/sed/io/tiff.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/base/loader.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/flash/loader.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/flash/metadata.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/generic/loader.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/loader_interface.html (98%) rename sed/{latest => v1.0.0}/_modules/sed/loader/mirrorutil.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/mpes/loader.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/sxp/loader.html (99%) rename sed/{latest => v1.0.0}/_modules/sed/loader/utils.html (99%) rename sed/{latest => v1.0.0}/_sources/index.md.txt (100%) rename sed/{latest => v1.0.0}/_sources/misc/contributing.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/misc/contribution.md.txt (100%) rename sed/{latest => v1.0.0}/_sources/misc/maintain.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/api.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/binning.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/calibrator.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/config.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/core.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/dataset.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/dfops.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/diagnostic.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/io.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/loader.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/sed/metadata.rst.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/1_binning_fake_data.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/3_metadata_collection_and_export_to_NeXus.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/4_hextof_workflow.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/5_sxp_workflow.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/6_binning_with_time-stamped_data.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/7_correcting_orthorhombic_symmetry.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/8_jittering_tutorial.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/tutorial/9_hextof_workflow_trXPD.ipynb.txt (100%) rename sed/{latest => v1.0.0}/_sources/user_guide/config.md.txt (100%) rename sed/{latest => v1.0.0}/_sources/user_guide/index.md.txt (100%) rename sed/{latest => v1.0.0}/_sources/user_guide/installation.md.txt (100%) rename sed/{latest => v1.0.0}/_sources/workflows/index.md.txt (100%) rename sed/{latest => v1.0.0}/_static/basic.css (100%) rename sed/{latest => v1.0.0}/_static/doctools.js (100%) rename sed/{latest => v1.0.0}/_static/documentation_options.js (88%) rename sed/{latest => v1.0.0}/_static/file.png (100%) rename sed/{latest => v1.0.0}/_static/language_data.js (100%) rename sed/{latest => v1.0.0}/_static/minus.png (100%) rename sed/{latest => v1.0.0}/_static/nbsphinx-broken-thumbnail.svg (100%) rename sed/{latest => v1.0.0}/_static/nbsphinx-code-cells.css (100%) rename sed/{latest => v1.0.0}/_static/nbsphinx-gallery.css (100%) rename sed/{latest => v1.0.0}/_static/nbsphinx-no-thumbnail.svg (100%) rename sed/{latest => v1.0.0}/_static/plus.png (100%) rename sed/{latest => v1.0.0}/_static/pygments.css (100%) rename sed/{latest => v1.0.0}/_static/scripts/bootstrap.js (100%) rename sed/{latest => v1.0.0}/_static/scripts/bootstrap.js.LICENSE.txt (100%) rename sed/{latest => v1.0.0}/_static/scripts/bootstrap.js.map (100%) rename sed/{latest => v1.0.0}/_static/scripts/fontawesome.js (100%) rename sed/{latest => v1.0.0}/_static/scripts/fontawesome.js.LICENSE.txt (100%) rename sed/{latest => v1.0.0}/_static/scripts/fontawesome.js.map (100%) rename sed/{latest => v1.0.0}/_static/scripts/pydata-sphinx-theme.js (100%) rename sed/{latest => v1.0.0}/_static/scripts/pydata-sphinx-theme.js.map (100%) rename sed/{latest => v1.0.0}/_static/searchtools.js (100%) rename sed/{latest => v1.0.0}/_static/sphinx_highlight.js (100%) rename sed/{latest => v1.0.0}/_static/styles/pydata-sphinx-theme.css (100%) rename sed/{latest => v1.0.0}/_static/styles/pydata-sphinx-theme.css.map (100%) rename sed/{latest => v1.0.0}/_static/styles/theme.css (100%) rename sed/{latest => v1.0.0}/_static/vendor/fontawesome/webfonts/fa-brands-400.ttf (100%) rename sed/{latest => v1.0.0}/_static/vendor/fontawesome/webfonts/fa-brands-400.woff2 (100%) rename sed/{latest => v1.0.0}/_static/vendor/fontawesome/webfonts/fa-regular-400.ttf (100%) rename sed/{latest => v1.0.0}/_static/vendor/fontawesome/webfonts/fa-regular-400.woff2 (100%) rename sed/{latest => v1.0.0}/_static/vendor/fontawesome/webfonts/fa-solid-900.ttf (100%) rename sed/{latest => v1.0.0}/_static/vendor/fontawesome/webfonts/fa-solid-900.woff2 (100%) rename sed/{latest => v1.0.0}/_static/webpack-macros.html (100%) rename sed/{latest => v1.0.0}/genindex.html (99%) rename sed/{latest => v1.0.0}/index.html (98%) rename sed/{latest => v1.0.0}/misc/contributing.html (98%) rename sed/{latest => v1.0.0}/misc/contribution.html (98%) rename sed/{latest => v1.0.0}/misc/maintain.html (98%) rename sed/{latest => v1.0.0}/objects.inv (99%) rename sed/{latest => v1.0.0}/py-modindex.html (98%) rename sed/{latest => v1.0.0}/search.html (97%) create mode 100644 sed/v1.0.0/searchindex.js rename sed/{latest => v1.0.0}/sed/api.html (98%) rename sed/{latest => v1.0.0}/sed/binning.html (99%) rename sed/{latest => v1.0.0}/sed/calibrator.html (99%) rename sed/{latest => v1.0.0}/sed/config.html (99%) rename sed/{latest => v1.0.0}/sed/core.html (99%) rename sed/{latest => v1.0.0}/sed/dataset.html (99%) rename sed/{latest => v1.0.0}/sed/dfops.html (99%) rename sed/{latest => v1.0.0}/sed/diagnostic.html (98%) rename sed/{latest => v1.0.0}/sed/io.html (98%) rename sed/{latest => v1.0.0}/sed/loader.html (99%) rename sed/{latest => v1.0.0}/sed/metadata.html (98%) create mode 100644 sed/v1.0.0/tutorial/10_hextof_workflow_trXPS_bam_correction.html create mode 100644 sed/v1.0.0/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html create mode 100644 sed/v1.0.0/tutorial/1_binning_fake_data.html create mode 100644 sed/v1.0.0/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html create mode 100644 sed/v1.0.0/tutorial/3_metadata_collection_and_export_to_NeXus.html create mode 100644 sed/v1.0.0/tutorial/4_hextof_workflow.html rename sed/{latest => v1.0.0}/tutorial/5_sxp_workflow.html (69%) create mode 100644 sed/v1.0.0/tutorial/6_binning_with_time-stamped_data.html create mode 100644 sed/v1.0.0/tutorial/7_correcting_orthorhombic_symmetry.html create mode 100644 sed/v1.0.0/tutorial/8_jittering_tutorial.html create mode 100644 sed/v1.0.0/tutorial/9_hextof_workflow_trXPD.html rename sed/{latest => v1.0.0}/user_guide/config.html (99%) rename sed/{latest => v1.0.0}/user_guide/index.html (98%) rename sed/{latest => v1.0.0}/user_guide/installation.html (98%) rename sed/{latest => v1.0.0}/workflows/index.html (98%) diff --git a/sed/latest b/sed/latest new file mode 120000 index 0000000..60453e6 --- /dev/null +++ b/sed/latest @@ -0,0 +1 @@ +v1.0.0 \ No newline at end of file diff --git a/sed/latest/searchindex.js b/sed/latest/searchindex.js deleted file mode 100644 index 3787d81..0000000 --- a/sed/latest/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({"alltitles": {"1. Step:": [[18, "1.-Step:"], [18, "id9"]], "1. step:": [[18, "1.-step:"]], "1st step:": [[18, "1st-step:"]], "2. Step": [[18, "2.-Step"]], "2. Step:": [[18, "2.-Step:"], [18, "id6"], [18, "id10"]], "3. Step:": [[18, "3.-Step:"], [18, "id11"]], "4. Delay calibration:": [[18, "4.-Delay-calibration:"]], "4. Step:": [[18, "4.-Step:"], [18, "id13"]], "5. Step:": [[18, "5.-Step:"]], "5. Visualization of calibrated histograms": [[18, "5.-Visualization-of-calibrated-histograms"]], "API": [[0, "api"], [4, null], [9, "module-sed.dataset.dataset"]], "Abstract BaseLoader": [[13, "module-sed.loader.base.loader"]], "Add Jitter": [[20, "Add-Jitter"]], "Advanced Topics": [[27, "advanced-topics"]], "Append energy axis into a data frame, bin and visualize data in the calibrated energy and corrected delay axis": [[16, "Append-energy-axis-into-a-data-frame,-bin-and-visualize-data-in-the-calibrated-energy-and-corrected-delay-axis"]], "Apply BAM correction": [[15, "Apply-BAM-correction"]], "Attributes useful for user": [[9, "attributes-useful-for-user"]], "Automatically extract number and position of peaks in the ROI around t0": [[16, "Automatically-extract-number-and-position-of-peaks-in-the-ROI-around-t0"]], "Basic concepts": [[27, "basic-concepts"]], "Bin data with energy axis": [[21, "Bin-data-with-energy-axis"]], "Bin in energy": [[20, "Bin-in-energy"]], "Bin the top of the valence band": [[23, "Bin-the-top-of-the-valence-band"]], "Binning": [[5, null], [20, "Binning"]], "Binning demonstration on locally generated fake data": [[17, null]], "Binning of temperature-dependent ARPES data using time-stamped external temperature data": [[22, null]], "Binning with metadata generation, and storing into a NeXus file": [[19, null]], "Calibrator": [[6, null]], "Channel Histograms": [[21, "Channel-Histograms"]], "Check BAM versus pulse and train IDs": [[15, "Check-BAM-versus-pulse-and-train-IDs"]], "Community and contribution guide": [[0, "community-and-contribution-guide"]], "Compare to reference": [[16, "Compare-to-reference"]], "Comparison of the BAM correction effect": [[15, "Comparison-of-the-BAM-correction-effect"]], "Compute distributed binning on the partitioned dask dataframe": [[17, "Compute-distributed-binning-on-the-partitioned-dask-dataframe"]], "Compute final data volume": [[19, "Compute-final-data-volume"]], "Compute the binning along the pandas dataframe": [[17, "Compute-the-binning-along-the-pandas-dataframe"]], "Compute the results": [[20, "Compute-the-results"]], "Config": [[7, null]], "Config setup": [[15, "Config-setup"], [16, "Config-setup"], [20, "Config-setup"], [21, "Config-setup"], [25, "Config-setup"]], "Configuration": [[26, null]], "Contributing to sed": [[1, null]], "Core": [[8, null]], "Correct delay axis": [[20, "Correct-delay-axis"]], "Correct delay stage offset.": [[21, "Correct-delay-stage-offset."]], "Correct use of Jittering": [[24, null]], "Data loader": [[13, null]], "Data w/o BAM correction": [[15, "Data-w/o-BAM-correction"]], "Dataframe Operations": [[10, null]], "Dataset": [[9, null]], "DatasetsManager": [[9, "datasetsmanager"]], "Default configuration settings": [[26, "default-configuration-settings"]], "Default datasets.json": [[9, "default-datasets-json"]], "Define the binning range": [[17, "Define-the-binning-range"]], "Define the binning ranges and compute calibrated data volume": [[18, "Define-the-binning-ranges-and-compute-calibrated-data-volume"], [22, "Define-the-binning-ranges-and-compute-calibrated-data-volume"]], "Delay calibration and correction": [[6, "module-sed.calibrator.delay"]], "Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo": [[18, null]], "Developing a Loader": [[1, "developing-a-loader"]], "Development": [[2, null]], "Development Workflow": [[1, "development-workflow"]], "Development version": [[28, "development-version"]], "Diagnostics": [[11, null]], "Distortion correction": [[18, "Distortion-correction"]], "Distortion correction and Momentum Calibration workflow": [[18, "Distortion-correction-and-Momentum-Calibration-workflow"]], "Distortion correction with orthorhombic symmetry": [[23, null]], "Documentation": [[3, "documentation"]], "Energy Calibration": [[20, "Energy-Calibration"], [21, "Energy-Calibration"]], "Energy Correction (optional)": [[18, "Energy-Correction-(optional)"]], "Energy Correction and Calibration workflow": [[18, "Energy-Correction-and-Calibration-workflow"]], "Energy calibration": [[18, "Energy-calibration"]], "Energy calibration and correction": [[6, "module-sed.calibrator.energy"]], "Energy calibration using side-band peaks": [[16, "Energy-calibration-using-side-band-peaks"]], "Example configuration file for flash (HEXTOF momentum microscope at FLASH, Desy)": [[26, "example-configuration-file-for-flash-hextof-momentum-microscope-at-flash-desy"]], "Example configuration file for mpes (METIS momentum microscope at FHI-Berlin)": [[26, "example-configuration-file-for-mpes-metis-momentum-microscope-at-fhi-berlin"]], "Example of adding custom datasets": [[9, "example-of-adding-custom-datasets"]], "Examples": [[0, "examples"]], "Feature definition:": [[23, "Feature-definition:"]], "FlashLoader": [[13, "module-sed.loader.flash.loader"]], "Generate Fake Data": [[17, "Generate-Fake-Data"]], "Generate the Processor instance": [[20, "Generate-the-Processor-instance"]], "GenericLoader": [[13, "module-sed.loader.generic.loader"]], "Get data paths": [[15, "Get-data-paths"], [16, "Get-data-paths"], [20, "Get-data-paths"], [21, "Get-data-paths"], [25, "Get-data-paths"]], "Getting Started": [[1, "getting-started"]], "Getting datasets": [[9, "getting-datasets"]], "How to Maintain": [[3, null]], "IO": [[12, null]], "Import necessary libraries": [[15, "Import-necessary-libraries"], [16, "Import-necessary-libraries"], [20, "Import-necessary-libraries"], [21, "Import-necessary-libraries"], [25, "Import-necessary-libraries"]], "Important note": [[20, "Important-note"]], "Inspect the dataframe": [[21, "Inspect-the-dataframe"]], "Installation": [[28, null]], "Installing SED": [[27, "installing-sed"]], "Load Au/Mica data": [[21, "Load-Au/Mica-data"]], "Load Data": [[18, "Load-Data"], [19, "Load-Data"], [22, "Load-Data"], [23, "Load-Data"], [24, "Load-Data"]], "Load a chessy sample run": [[20, "Load-a-chessy-sample-run"]], "Load bias series": [[21, "Load-bias-series"]], "Load energy calibration files": [[21, "Load-energy-calibration-files"]], "Loader Interface": [[13, "module-sed.loader.loader_interface"]], "Main functions": [[5, "module-sed.binning"]], "Metadata": [[14, null]], "Momentum calibration and correction": [[6, "module-sed.calibrator.momentum"]], "Momentum calibration with orthorhombic axes": [[23, "Momentum-calibration-with-orthorhombic-axes"]], "Momentum calibration workflow": [[18, "Momentum-calibration-workflow"]], "MpesLoader": [[13, "module-sed.loader.mpes.loader"]], "Now we can use those parameters and load our trXPS data using the additional config file": [[16, "Now-we-can-use-those-parameters-and-load-our-trXPS-data-using-the-additional-config-file"]], "Optical Spot Profile": [[20, "Optical-Spot-Profile"]], "Optional (Step 1a):": [[18, "Optional-(Step-1a):"], [18, "id7"]], "Optional (Step 3a):": [[18, "Optional-(Step-3a):"], [18, "id12"]], "Preparation": [[15, "Preparation"], [16, "Preparation"], [20, "Preparation"], [21, "Preparation"], [25, "Preparation"]], "Prepare Energy Calibration": [[25, "Prepare-Energy-Calibration"]], "Pull Request Guidelines": [[1, "pull-request-guidelines"]], "PulseIds, ElectronIds": [[21, "PulseIds,-ElectronIds"]], "Read data": [[25, "Read-data"]], "Reference calibration from a bias series": [[16, "Reference-calibration-from-a-bias-series"]], "Release": [[3, "release"]], "Run the workflow from the config file": [[20, "Run-the-workflow-from-the-config-file"]], "Run workflow entirely from config.": [[20, "Run-workflow-entirely-from-config."]], "SED documentation": [[0, null]], "SXPLoader": [[13, "module-sed.loader.sxp.loader"]], "Save calibration": [[21, "Save-calibration"]], "Save results": [[20, "Save-results"]], "Some visualization:": [[18, "Some-visualization:"], [22, "Some-visualization:"]], "Spectrum vs. MicrobunchId": [[21, "Spectrum-vs.-MicrobunchId"]], "Spline-warp generation:": [[23, "Spline-warp-generation:"]], "Train IDs in scans": [[21, "Train-IDs-in-scans"]], "Transform to dask dataframe": [[17, "Transform-to-dask-dataframe"]], "Tutorial for binning data from the HEXTOF instrument at FLASH": [[20, null]], "Tutorial for binning data from the SXP instrument at the European XFEL": [[21, null]], "Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization": [[25, null]], "Tutorial for trXPS for energy calibration using core level side-bands": [[16, null]], "Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction": [[15, null]], "Used helper functions": [[5, "module-sed.binning.numba_bin"]], "User Guide": [[27, null]], "User guide": [[0, "user-guide"]], "Utilities": [[13, "module-sed.loader.utils"]], "Visualize trXPS data bin in the dldTimeSteps and the corrected delay axis to prepare for energy calibration using SB": [[16, "Visualize-trXPS-data-bin-in-the-dldTimeSteps-and-the-corrected-delay-axis-to-prepare-for-energy-calibration-using-SB"]], "Visualizing event histograms": [[20, "Visualizing-event-histograms"]], "We correct delay stage, t0 position and BAM (see previous tutorial)": [[16, "We-correct-delay-stage,-t0-position-and-BAM-(see-previous-tutorial)"]], "We use the stored energy calibration parameters and load trXPS data set to define:": [[15, "We-use-the-stored-energy-calibration-parameters-and-load-trXPS-data-set-to-define:"]], "Workflows": [[29, null]], "XPD from W4f core level": [[25, "XPD-from-W4f-core-level"]], "bin in the calibrated energy and corrected delay axis": [[25, "bin-in-the-calibrated-energy-and-corrected-delay-axis"]], "bin in the corrected delay axis": [[15, "bin-in-the-corrected-delay-axis"], [20, "bin-in-the-corrected-delay-axis"]], "cleanup previous config files": [[20, "cleanup-previous-config-files"], [21, "cleanup-previous-config-files"]], "correct offsets": [[20, "correct-offsets"]], "find calibration parameters": [[16, "find-calibration-parameters"], [16, "id1"], [20, "find-calibration-parameters"], [21, "find-calibration-parameters"]], "generate the energy axis": [[20, "generate-the-energy-axis"]], "get()": [[9, "get"]], "inspect the dataframe": [[20, "inspect-the-dataframe"]], "plot the delayStage values": [[20, "plot-the-delayStage-values"]], "remove()": [[9, "remove"]], "save parameters": [[20, "save-parameters"]], "save the calibration parameters": [[20, "save-the-calibration-parameters"]], "sector alignment": [[20, "sector-alignment"]], "time-of-flight spectrum": [[20, "time-of-flight-spectrum"], [21, "time-of-flight-spectrum"]], "visualize the result": [[20, "visualize-the-result"]]}, "docnames": ["index", "misc/contributing", "misc/contribution", "misc/maintain", "sed/api", "sed/binning", "sed/calibrator", "sed/config", "sed/core", "sed/dataset", "sed/dfops", "sed/diagnostic", "sed/io", "sed/loader", "sed/metadata", "tutorial/10_hextof_workflow_trXPS_bam_correction", "tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB", "tutorial/1_binning_fake_data", "tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data", "tutorial/3_metadata_collection_and_export_to_NeXus", "tutorial/4_hextof_workflow", "tutorial/5_sxp_workflow", "tutorial/6_binning_with_time-stamped_data", "tutorial/7_correcting_orthorhombic_symmetry", "tutorial/8_jittering_tutorial", "tutorial/9_hextof_workflow_trXPD", "user_guide/config", "user_guide/index", "user_guide/installation", "workflows/index"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.md", "misc/contributing.rst", "misc/contribution.md", "misc/maintain.rst", "sed/api.rst", "sed/binning.rst", "sed/calibrator.rst", "sed/config.rst", "sed/core.rst", "sed/dataset.rst", "sed/dfops.rst", "sed/diagnostic.rst", "sed/io.rst", "sed/loader.rst", "sed/metadata.rst", "tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb", "tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb", "tutorial/1_binning_fake_data.ipynb", "tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb", "tutorial/3_metadata_collection_and_export_to_NeXus.ipynb", "tutorial/4_hextof_workflow.ipynb", "tutorial/5_sxp_workflow.ipynb", "tutorial/6_binning_with_time-stamped_data.ipynb", "tutorial/7_correcting_orthorhombic_symmetry.ipynb", "tutorial/8_jittering_tutorial.ipynb", "tutorial/9_hextof_workflow_trXPD.ipynb", "user_guide/config.md", "user_guide/index.md", "user_guide/installation.md", "workflows/index.md"], "indexentries": {"add() (sed.core.metadata.metahandler method)": [[14, "sed.core.metadata.MetaHandler.add", false]], "add() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.add", false]], "add_attribute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_attribute", false]], "add_delay_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_delay_offset", false]], "add_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_energy_offset", false]], "add_features() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.add_features", false]], "add_jitter() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_jitter", false]], "add_offsets() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.add_offsets", false]], "add_offsets() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_offsets", false]], "add_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_ranges", false]], "add_time_stamped_data() (in module sed.core.dfops)": [[10, "sed.core.dfops.add_time_stamped_data", false]], "add_time_stamped_data() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_time_stamped_data", false]], "adjust_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_energy_correction", false]], "adjust_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.adjust_energy_correction", false]], "adjust_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_ranges", false]], "align_dld_sectors() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.align_dld_sectors", false]], "align_dld_sectors() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.align_dld_sectors", false]], "append_delay_axis() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.append_delay_axis", false]], "append_energy_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_energy_axis", false]], "append_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_energy_axis", false]], "append_k_axis() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.append_k_axis", false]], "append_tof_ns_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_tof_ns_axis", false]], "append_tof_ns_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_tof_ns_axis", false]], "apply_correction() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_correction", false]], "apply_corrections() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_corrections", false]], "apply_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.apply_dfield", false]], "apply_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.apply_energy_correction", false]], "apply_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_energy_correction", false]], "apply_filter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_filter", false]], "apply_jitter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_jitter", false]], "apply_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_calibration", false]], "apply_momentum_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_correction", false]], "attributes (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.attributes", false]], "available (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.available", false]], "available_channels (sed.loader.sxp.loader.sxploader property)": [[13, "sed.loader.sxp.loader.SXPLoader.available_channels", false]], "available_runs (sed.loader.flash.loader.flashloader property)": [[13, "sed.loader.flash.loader.FlashLoader.available_runs", false]], "backward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.backward_fill_lazy", false]], "baseloader (class in sed.loader.base.loader)": [[13, "sed.loader.base.loader.BaseLoader", false]], "bin_and_load_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.bin_and_load_momentum_calibration", false]], "bin_centers_to_bin_edges() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_centers_to_bin_edges", false]], "bin_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.bin_data", false]], "bin_dataframe() (in module sed.binning)": [[5, "sed.binning.bin_dataframe", false]], "bin_edges_to_bin_centers() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_edges_to_bin_centers", false]], "bin_partition() (in module sed.binning)": [[5, "sed.binning.bin_partition", false]], "binned (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.binned", false]], "binsearch() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.binsearch", false]], "buffer_file_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.buffer_file_handler", false]], "calc_geometric_distances() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_geometric_distances", false]], "calc_inverse_dfield() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_inverse_dfield", false]], "calc_symmetry_scores() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_symmetry_scores", false]], "calibrate() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.calibrate", false]], "calibrate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calibrate", false]], "calibrate_delay_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_delay_axis", false]], "calibrate_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_energy_axis", false]], "calibrate_momentum_axes() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_momentum_axes", false]], "cleanup_oldest_scan() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.cleanup_oldest_scan", false]], "cm2palette() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.cm2palette", false]], "complete_dictionary() (in module sed.core.config)": [[7, "sed.core.config.complete_dictionary", false]], "compute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.compute", false]], "concatenate_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.concatenate_channels", false]], "config (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.config", false]], "coordinate_transform() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.coordinate_transform", false]], "copy() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.copy", false]], "copytool (class in sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.CopyTool", false]], "correction_function() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.correction_function", false]], "cpy() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.cpy", false]], "create_buffer_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_buffer_file", false]], "create_dataframe_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_channel", false]], "create_dataframe_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_electron", false]], "create_dataframe_per_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_file", false]], "create_dataframe_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_pulse", false]], "create_dataframe_per_train() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_train", false]], "create_multi_index_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_electron", false]], "create_multi_index_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_pulse", false]], "create_numpy_array_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_numpy_array_per_channel", false]], "data_name (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.data_name", false]], "dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.dataframe", false]], "dataset (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.Dataset", false]], "datasetsmanager (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.DatasetsManager", false]], "define_features() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.define_features", false]], "delaycalibrator (class in sed.calibrator.delay)": [[6, "sed.calibrator.delay.DelayCalibrator", false]], "detector_coordinates_2_k_coordinates() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.detector_coordinates_2_k_coordinates", false]], "dictmerge() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.dictmerge", false]], "drop_column() (in module sed.core.dfops)": [[10, "sed.core.dfops.drop_column", false]], "dup (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.dup", false]], "duplicateentryerror": [[14, "sed.core.metadata.DuplicateEntryError", false]], "energycalibrator (class in sed.calibrator.energy)": [[6, "sed.calibrator.energy.EnergyCalibrator", false]], "existing_data_paths (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.existing_data_paths", false]], "extract_bias() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.extract_bias", false]], "extract_delay_stage_parameters() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.extract_delay_stage_parameters", false]], "feature_extract() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.feature_extract", false]], "feature_extract() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_extract", false]], "feature_select() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_select", false]], "features (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.features", false]], "filename (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.FILENAME", false]], "files (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.files", false]], "filter_column() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.filter_column", false]], "find_bias_peaks() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.find_bias_peaks", false]], "find_correspondence() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_correspondence", false]], "find_nearest() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_nearest", false]], "fit_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.fit_energy_calibration", false]], "flashloader (class in sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.FlashLoader", false]], "forward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.forward_fill_lazy", false]], "gather_calibration_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_calibration_metadata", false]], "gather_calibration_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_calibration_metadata", false]], "gather_correction_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_correction_metadata", false]], "gather_correction_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_correction_metadata", false]], "gather_files() (in module sed.loader.utils)": [[13, "sed.loader.utils.gather_files", false]], "gather_metadata() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.gather_metadata", false]], "gather_metadata() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.gather_metadata", false]], "generate_inverse_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.generate_inverse_dfield", false]], "generate_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.generate_splinewarp", false]], "genericloader (class in sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.GenericLoader", false]], "get() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.get", false]], "get_archiver_data() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_archiver_data", false]], "get_attribute() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_attribute", false]], "get_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_channels", false]], "get_count_rate() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_count_rate", false]], "get_count_rate() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_count_rate", false]], "get_count_rate() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_count_rate", false]], "get_count_rate() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_count_rate", false]], "get_count_rate() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_count_rate", false]], "get_count_rate() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_count_rate", false]], "get_datasets_and_aliases() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_datasets_and_aliases", false]], "get_elapsed_time() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_elapsed_time", false]], "get_files_from_run_id() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_files_from_run_id", false]], "get_loader() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_loader", false]], "get_metadata() (sed.loader.flash.metadata.metadataretriever method)": [[13, "sed.loader.flash.metadata.MetadataRetriever.get_metadata", false]], "get_names_of_all_loaders() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_names_of_all_loaders", false]], "get_normalization_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.get_normalization_histogram", false]], "get_parquet_metadata() (in module sed.loader.utils)": [[13, "sed.loader.utils.get_parquet_metadata", false]], "get_start_and_end_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_start_and_end_time", false]], "get_stats() (in module sed.loader.utils)": [[13, "sed.loader.utils.get_stats", false]], "get_target_dir() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.get_target_dir", false]], "grid_histogram() (in module sed.diagnostics)": [[11, "sed.diagnostics.grid_histogram", false]], "hdf5_to_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_array", false]], "hdf5_to_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_dataframe", false]], "hdf5_to_timed_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_array", false]], "hdf5_to_timed_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_dataframe", false]], "json_path (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.json_path", false]], "load() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load", false]], "load_bias_series() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load_bias_series", false]], "load_config() (in module sed.core.config)": [[7, "sed.core.config.load_config", false]], "load_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.load_data", false]], "load_data() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.load_data", false]], "load_datasets_dict() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.load_datasets_dict", false]], "load_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.load_dfield", false]], "load_h5() (in module sed.io)": [[12, "sed.io.load_h5", false]], "load_h5_in_memory() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.load_h5_in_memory", false]], "load_tiff() (in module sed.io)": [[12, "sed.io.load_tiff", false]], "loader (in module sed.loader.base.loader)": [[13, "sed.loader.base.loader.LOADER", false]], "loader (in module sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.LOADER", false]], "loader (in module sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.LOADER", false]], "loader (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.LOADER", false]], "loader (in module sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.LOADER", false]], "map_columns_2d() (in module sed.core.dfops)": [[10, "sed.core.dfops.map_columns_2d", false]], "metadata (sed.core.metadata.metahandler property)": [[14, "sed.core.metadata.MetaHandler.metadata", false]], "metadataretriever (class in sed.loader.flash.metadata)": [[13, "sed.loader.flash.metadata.MetadataRetriever", false]], "metahandler (class in sed.core.metadata)": [[14, "sed.core.metadata.MetaHandler", false]], "mm_to_ps() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.mm_to_ps", false]], "module": [[5, "module-sed.binning", false], [5, "module-sed.binning.numba_bin", false], [5, "module-sed.binning.utils", false], [6, "module-sed.calibrator.delay", false], [6, "module-sed.calibrator.energy", false], [6, "module-sed.calibrator.momentum", false], [7, "module-sed.core.config", false], [8, "module-sed.core", false], [9, "module-sed.dataset.dataset", false], [10, "module-sed.core.dfops", false], [11, "module-sed.diagnostics", false], [12, "module-sed.io", false], [13, "module-sed.loader.base.loader", false], [13, "module-sed.loader.flash.loader", false], [13, "module-sed.loader.flash.metadata", false], [13, "module-sed.loader.generic.loader", false], [13, "module-sed.loader.loader_interface", false], [13, "module-sed.loader.mirrorutil", false], [13, "module-sed.loader.mpes.loader", false], [13, "module-sed.loader.sxp.loader", false], [13, "module-sed.loader.utils", false], [14, "module-sed.core.metadata", false]], "momentumcorrector (class in sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.MomentumCorrector", false]], "mpesloader (class in sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.MpesLoader", false]], "mycopy() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mycopy", false]], "mymakedirs() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mymakedirs", false]], "name (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.NAME", false]], "normalization_histogram (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalization_histogram", false]], "normalize() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.normalize", false]], "normalized (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalized", false]], "normspec() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.normspec", false]], "nranges (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.nranges", false]], "ntraces (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.ntraces", false]], "numba_histogramdd() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.numba_histogramdd", false]], "offset_by_other_columns() (in module sed.core.dfops)": [[10, "sed.core.dfops.offset_by_other_columns", false]], "parquet_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.parquet_handler", false]], "parse_config() (in module sed.core.config)": [[7, "sed.core.config.parse_config", false]], "parse_h5_keys() (in module sed.loader.utils)": [[13, "sed.loader.utils.parse_h5_keys", false]], "parse_metadata() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.parse_metadata", false]], "peakdetect1d() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peakdetect1d", false]], "peaksearch() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peaksearch", false]], "plot_single_hist() (in module sed.diagnostics)": [[11, "sed.diagnostics.plot_single_hist", false]], "poly_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.poly_energy_calibration", false]], "pose_adjustment() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.pose_adjustment", false]], "pose_adjustment() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pose_adjustment", false]], "pre_binning() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pre_binning", false]], "range_convert() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.range_convert", false]], "read_dataframe() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.read_dataframe", false]], "read_dataframe() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.read_dataframe", false]], "read_dataframe() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.read_dataframe", false]], "read_dataframe() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.read_dataframe", false]], "read_dataframe() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.read_dataframe", false]], "read_env_var() (in module sed.core.config)": [[7, "sed.core.config.read_env_var", false]], "remove() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.remove", false]], "remove() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.remove", false]], "reset_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.reset_deformation", false]], "reset_multi_index() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.reset_multi_index", false]], "save() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save", false]], "save_config() (in module sed.core.config)": [[7, "sed.core.config.save_config", false]], "save_delay_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_calibration", false]], "save_delay_offsets() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_offsets", false]], "save_energy_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_calibration", false]], "save_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_correction", false]], "save_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_offset", false]], "save_env_var() (in module sed.core.config)": [[7, "sed.core.config.save_env_var", false]], "save_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_momentum_calibration", false]], "save_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_splinewarp", false]], "save_transformations() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_transformations", false]], "save_workflow_params() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_workflow_params", false]], "sed.binning": [[5, "module-sed.binning", false]], "sed.binning.numba_bin": [[5, "module-sed.binning.numba_bin", false]], "sed.binning.utils": [[5, "module-sed.binning.utils", false]], "sed.calibrator.delay": [[6, "module-sed.calibrator.delay", false]], "sed.calibrator.energy": [[6, "module-sed.calibrator.energy", false]], "sed.calibrator.momentum": [[6, "module-sed.calibrator.momentum", false]], "sed.core": [[8, "module-sed.core", false]], "sed.core.config": [[7, "module-sed.core.config", false]], "sed.core.dfops": [[10, "module-sed.core.dfops", false]], "sed.core.metadata": [[14, "module-sed.core.metadata", false]], "sed.dataset.dataset": [[9, "module-sed.dataset.dataset", false]], "sed.diagnostics": [[11, "module-sed.diagnostics", false]], "sed.io": [[12, "module-sed.io", false]], "sed.loader.base.loader": [[13, "module-sed.loader.base.loader", false]], "sed.loader.flash.loader": [[13, "module-sed.loader.flash.loader", false]], "sed.loader.flash.metadata": [[13, "module-sed.loader.flash.metadata", false]], "sed.loader.generic.loader": [[13, "module-sed.loader.generic.loader", false]], "sed.loader.loader_interface": [[13, "module-sed.loader.loader_interface", false]], "sed.loader.mirrorutil": [[13, "module-sed.loader.mirrorutil", false]], "sed.loader.mpes.loader": [[13, "module-sed.loader.mpes.loader", false]], "sed.loader.sxp.loader": [[13, "module-sed.loader.sxp.loader", false]], "sed.loader.utils": [[13, "module-sed.loader.utils", false]], "sedprocessor (class in sed.core)": [[8, "sed.core.SedProcessor", false]], "select_k_range() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_k_range", false]], "select_slice() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slice", false]], "select_slicer() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slicer", false]], "simplify_binning_arguments() (in module sed.binning.utils)": [[5, "sed.binning.utils.simplify_binning_arguments", false]], "size() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.size", false]], "spline_warp_estimate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.spline_warp_estimate", false]], "split_channel_bitwise() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_channel_bitwise", false]], "split_dld_time_from_sector_id() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_dld_time_from_sector_id", false]], "supported_file_types (sed.loader.base.loader.baseloader attribute)": [[13, "sed.loader.base.loader.BaseLoader.supported_file_types", false]], "supported_file_types (sed.loader.flash.loader.flashloader attribute)": [[13, "sed.loader.flash.loader.FlashLoader.supported_file_types", false]], "supported_file_types (sed.loader.generic.loader.genericloader attribute)": [[13, "sed.loader.generic.loader.GenericLoader.supported_file_types", false]], "supported_file_types (sed.loader.mpes.loader.mpesloader attribute)": [[13, "sed.loader.mpes.loader.MpesLoader.supported_file_types", false]], "supported_file_types (sed.loader.sxp.loader.sxploader attribute)": [[13, "sed.loader.sxp.loader.SXPLoader.supported_file_types", false]], "sxploader (class in sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.SXPLoader", false]], "symscores (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.symscores", false]], "timed_dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.timed_dataframe", false]], "to_h5() (in module sed.io)": [[12, "sed.io.to_h5", false]], "to_nexus() (in module sed.io)": [[12, "sed.io.to_nexus", false]], "to_tiff() (in module sed.io)": [[12, "sed.io.to_tiff", false]], "tof2ev() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ev", false]], "tof2evpoly() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2evpoly", false]], "tof2ns() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ns", false]], "update_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.update_deformation", false]], "verbose (sed.calibrator.delay.delaycalibrator property)": [[6, "sed.calibrator.delay.DelayCalibrator.verbose", false]], "verbose (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.verbose", false]], "verbose (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.verbose", false]], "verbose (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.verbose", false]], "verbose (sed.loader.base.loader.baseloader property)": [[13, "sed.loader.base.loader.BaseLoader.verbose", false]], "verbose (sed.loader.flash.loader.flashloader property)": [[13, "sed.loader.flash.loader.FlashLoader.verbose", false]], "verbose (sed.loader.mpes.loader.mpesloader property)": [[13, "sed.loader.mpes.loader.MpesLoader.verbose", false]], "verbose (sed.loader.sxp.loader.sxploader property)": [[13, "sed.loader.sxp.loader.SXPLoader.verbose", false]], "view() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.view", false]], "view() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.view", false]], "view_event_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.view_event_histogram", false]]}, "objects": {"sed": [[5, 0, 0, "-", "binning"], [8, 0, 0, "-", "core"], [11, 0, 0, "-", "diagnostics"], [12, 0, 0, "-", "io"]], "sed.binning": [[5, 1, 1, "", "bin_dataframe"], [5, 1, 1, "", "bin_partition"], [5, 0, 0, "-", "numba_bin"], [5, 0, 0, "-", "utils"]], "sed.binning.numba_bin": [[5, 1, 1, "", "binsearch"], [5, 1, 1, "", "numba_histogramdd"]], "sed.binning.utils": [[5, 1, 1, "", "bin_centers_to_bin_edges"], [5, 1, 1, "", "bin_edges_to_bin_centers"], [5, 1, 1, "", "simplify_binning_arguments"]], "sed.calibrator": [[6, 0, 0, "-", "delay"], [6, 0, 0, "-", "energy"], [6, 0, 0, "-", "momentum"]], "sed.calibrator.delay": [[6, 2, 1, "", "DelayCalibrator"], [6, 1, 1, "", "extract_delay_stage_parameters"], [6, 1, 1, "", "mm_to_ps"]], "sed.calibrator.delay.DelayCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "append_delay_axis"], [6, 4, 1, "", "verbose"]], "sed.calibrator.energy": [[6, 2, 1, "", "EnergyCalibrator"], [6, 1, 1, "", "correction_function"], [6, 1, 1, "", "extract_bias"], [6, 1, 1, "", "find_correspondence"], [6, 1, 1, "", "find_nearest"], [6, 1, 1, "", "fit_energy_calibration"], [6, 1, 1, "", "normspec"], [6, 1, 1, "", "peakdetect1d"], [6, 1, 1, "", "peaksearch"], [6, 1, 1, "", "poly_energy_calibration"], [6, 1, 1, "", "range_convert"], [6, 1, 1, "", "tof2ev"], [6, 1, 1, "", "tof2evpoly"], [6, 1, 1, "", "tof2ns"]], "sed.calibrator.energy.EnergyCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "add_ranges"], [6, 3, 1, "", "adjust_energy_correction"], [6, 3, 1, "", "adjust_ranges"], [6, 3, 1, "", "align_dld_sectors"], [6, 3, 1, "", "append_energy_axis"], [6, 3, 1, "", "append_tof_ns_axis"], [6, 3, 1, "", "apply_energy_correction"], [6, 3, 1, "", "bin_data"], [6, 3, 1, "", "calibrate"], [6, 4, 1, "", "dup"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "normalize"], [6, 4, 1, "", "nranges"], [6, 4, 1, "", "ntraces"], [6, 4, 1, "", "verbose"], [6, 3, 1, "", "view"]], "sed.calibrator.momentum": [[6, 2, 1, "", "MomentumCorrector"], [6, 1, 1, "", "apply_dfield"], [6, 1, 1, "", "cm2palette"], [6, 1, 1, "", "detector_coordinates_2_k_coordinates"], [6, 1, 1, "", "dictmerge"], [6, 1, 1, "", "generate_inverse_dfield"], [6, 1, 1, "", "load_dfield"]], "sed.calibrator.momentum.MomentumCorrector": [[6, 3, 1, "", "add_features"], [6, 3, 1, "", "append_k_axis"], [6, 3, 1, "", "apply_correction"], [6, 3, 1, "", "apply_corrections"], [6, 3, 1, "", "calc_geometric_distances"], [6, 3, 1, "", "calc_inverse_dfield"], [6, 3, 1, "", "calc_symmetry_scores"], [6, 3, 1, "", "calibrate"], [6, 3, 1, "", "coordinate_transform"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "feature_select"], [6, 4, 1, "", "features"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "pose_adjustment"], [6, 3, 1, "", "reset_deformation"], [6, 3, 1, "", "select_k_range"], [6, 3, 1, "", "select_slice"], [6, 3, 1, "", "select_slicer"], [6, 3, 1, "", "spline_warp_estimate"], [6, 4, 1, "", "symscores"], [6, 3, 1, "", "update_deformation"], [6, 4, 1, "", "verbose"], [6, 3, 1, "", "view"]], "sed.core": [[8, 2, 1, "", "SedProcessor"], [7, 0, 0, "-", "config"], [10, 0, 0, "-", "dfops"], [14, 0, 0, "-", "metadata"]], "sed.core.SedProcessor": [[8, 3, 1, "", "add_attribute"], [8, 3, 1, "", "add_delay_offset"], [8, 3, 1, "", "add_energy_offset"], [8, 3, 1, "", "add_jitter"], [8, 3, 1, "", "add_time_stamped_data"], [8, 3, 1, "", "adjust_energy_correction"], [8, 3, 1, "", "align_dld_sectors"], [8, 3, 1, "", "append_energy_axis"], [8, 3, 1, "", "append_tof_ns_axis"], [8, 3, 1, "", "apply_energy_correction"], [8, 3, 1, "", "apply_momentum_calibration"], [8, 3, 1, "", "apply_momentum_correction"], [8, 4, 1, "", "attributes"], [8, 3, 1, "", "bin_and_load_momentum_calibration"], [8, 4, 1, "", "binned"], [8, 3, 1, "", "calibrate_delay_axis"], [8, 3, 1, "", "calibrate_energy_axis"], [8, 3, 1, "", "calibrate_momentum_axes"], [8, 3, 1, "", "compute"], [8, 4, 1, "", "config"], [8, 3, 1, "", "cpy"], [8, 4, 1, "", "dataframe"], [8, 3, 1, "", "define_features"], [8, 4, 1, "", "files"], [8, 3, 1, "", "filter_column"], [8, 3, 1, "", "find_bias_peaks"], [8, 3, 1, "", "generate_splinewarp"], [8, 3, 1, "", "get_normalization_histogram"], [8, 3, 1, "", "load"], [8, 3, 1, "", "load_bias_series"], [8, 4, 1, "", "normalization_histogram"], [8, 4, 1, "", "normalized"], [8, 3, 1, "", "pose_adjustment"], [8, 3, 1, "", "pre_binning"], [8, 3, 1, "", "save"], [8, 3, 1, "", "save_delay_calibration"], [8, 3, 1, "", "save_delay_offsets"], [8, 3, 1, "", "save_energy_calibration"], [8, 3, 1, "", "save_energy_correction"], [8, 3, 1, "", "save_energy_offset"], [8, 3, 1, "", "save_momentum_calibration"], [8, 3, 1, "", "save_splinewarp"], [8, 3, 1, "", "save_transformations"], [8, 3, 1, "", "save_workflow_params"], [8, 4, 1, "", "timed_dataframe"], [8, 4, 1, "", "verbose"], [8, 3, 1, "", "view_event_histogram"]], "sed.core.config": [[7, 1, 1, "", "complete_dictionary"], [7, 1, 1, "", "load_config"], [7, 1, 1, "", "parse_config"], [7, 1, 1, "", "read_env_var"], [7, 1, 1, "", "save_config"], [7, 1, 1, "", "save_env_var"]], "sed.core.dfops": [[10, 1, 1, "", "add_time_stamped_data"], [10, 1, 1, "", "apply_filter"], [10, 1, 1, "", "apply_jitter"], [10, 1, 1, "", "backward_fill_lazy"], [10, 1, 1, "", "drop_column"], [10, 1, 1, "", "forward_fill_lazy"], [10, 1, 1, "", "map_columns_2d"], [10, 1, 1, "", "offset_by_other_columns"]], "sed.core.metadata": [[14, 5, 1, "", "DuplicateEntryError"], [14, 2, 1, "", "MetaHandler"]], "sed.core.metadata.MetaHandler": [[14, 3, 1, "", "add"], [14, 4, 1, "", "metadata"]], "sed.dataset": [[9, 0, 0, "-", "dataset"]], "sed.dataset.dataset": [[9, 2, 1, "", "Dataset"], [9, 2, 1, "", "DatasetsManager"]], "sed.dataset.dataset.Dataset": [[9, 4, 1, "", "available"], [9, 4, 1, "", "data_name"], [9, 4, 1, "", "existing_data_paths"], [9, 3, 1, "", "get"], [9, 3, 1, "", "remove"]], "sed.dataset.dataset.DatasetsManager": [[9, 6, 1, "", "FILENAME"], [9, 6, 1, "", "NAME"], [9, 3, 1, "", "add"], [9, 6, 1, "", "json_path"], [9, 3, 1, "", "load_datasets_dict"], [9, 3, 1, "", "remove"]], "sed.diagnostics": [[11, 1, 1, "", "grid_histogram"], [11, 1, 1, "", "plot_single_hist"]], "sed.io": [[12, 1, 1, "", "load_h5"], [12, 1, 1, "", "load_tiff"], [12, 1, 1, "", "to_h5"], [12, 1, 1, "", "to_nexus"], [12, 1, 1, "", "to_tiff"]], "sed.loader": [[13, 0, 0, "-", "loader_interface"], [13, 0, 0, "-", "mirrorutil"], [13, 0, 0, "-", "utils"]], "sed.loader.base": [[13, 0, 0, "-", "loader"]], "sed.loader.base.loader": [[13, 2, 1, "", "BaseLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.base.loader.BaseLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.flash": [[13, 0, 0, "-", "loader"], [13, 0, 0, "-", "metadata"]], "sed.loader.flash.loader": [[13, 2, 1, "", "FlashLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.flash.loader.FlashLoader": [[13, 4, 1, "", "available_runs"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "parse_metadata"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.flash.metadata": [[13, 2, 1, "", "MetadataRetriever"]], "sed.loader.flash.metadata.MetadataRetriever": [[13, 3, 1, "", "get_metadata"]], "sed.loader.generic": [[13, 0, 0, "-", "loader"]], "sed.loader.generic.loader": [[13, 2, 1, "", "GenericLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.generic.loader.GenericLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.loader_interface": [[13, 1, 1, "", "get_loader"], [13, 1, 1, "", "get_names_of_all_loaders"]], "sed.loader.mirrorutil": [[13, 2, 1, "", "CopyTool"], [13, 1, 1, "", "get_target_dir"], [13, 1, 1, "", "mycopy"], [13, 1, 1, "", "mymakedirs"]], "sed.loader.mirrorutil.CopyTool": [[13, 3, 1, "", "cleanup_oldest_scan"], [13, 3, 1, "", "copy"], [13, 3, 1, "", "size"]], "sed.loader.mpes": [[13, 0, 0, "-", "loader"]], "sed.loader.mpes.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "MpesLoader"], [13, 1, 1, "", "get_archiver_data"], [13, 1, 1, "", "get_attribute"], [13, 1, 1, "", "get_count_rate"], [13, 1, 1, "", "get_datasets_and_aliases"], [13, 1, 1, "", "get_elapsed_time"], [13, 1, 1, "", "hdf5_to_array"], [13, 1, 1, "", "hdf5_to_dataframe"], [13, 1, 1, "", "hdf5_to_timed_array"], [13, 1, 1, "", "hdf5_to_timed_dataframe"], [13, 1, 1, "", "load_h5_in_memory"]], "sed.loader.mpes.loader.MpesLoader": [[13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "get_start_and_end_time"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.sxp": [[13, 0, 0, "-", "loader"]], "sed.loader.sxp.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "SXPLoader"]], "sed.loader.sxp.loader.SXPLoader": [[13, 4, 1, "", "available_channels"], [13, 3, 1, "", "buffer_file_handler"], [13, 3, 1, "", "concatenate_channels"], [13, 3, 1, "", "create_buffer_file"], [13, 3, 1, "", "create_dataframe_per_channel"], [13, 3, 1, "", "create_dataframe_per_electron"], [13, 3, 1, "", "create_dataframe_per_file"], [13, 3, 1, "", "create_dataframe_per_pulse"], [13, 3, 1, "", "create_dataframe_per_train"], [13, 3, 1, "", "create_multi_index_per_electron"], [13, 3, 1, "", "create_multi_index_per_pulse"], [13, 3, 1, "", "create_numpy_array_per_channel"], [13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_channels"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "parquet_handler"], [13, 3, 1, "", "read_dataframe"], [13, 3, 1, "", "reset_multi_index"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.utils": [[13, 1, 1, "", "gather_files"], [13, 1, 1, "", "get_parquet_metadata"], [13, 1, 1, "", "get_stats"], [13, 1, 1, "", "parse_h5_keys"], [13, 1, 1, "", "split_channel_bitwise"], [13, 1, 1, "", "split_dld_time_from_sector_id"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute"}, "terms": {"": [3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 26], "0": [3, 5, 6, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "00": [9, 16, 19, 20, 21], "000000": 18, "00001": 25, "0000e": [16, 20], "000425": 19, "000e": 21, "001": [15, 16, 20, 25, 26], "001104": 18, "00151332": 16, "00179088": 22, "00218781": 18, "002500171914066": 19, "00328578": 21, "003489": 20, "0039765": 18, "00443912e": 22, "005021": 17, "0058": 21, "0059": 21, "00590705871582": 20, "0060": 21, "006012999918311834": 20, "0061": 21, "0064": 21, "0065": 21, "0066": 21, "0067": 21, "0068": 21, "0069": 21, "0070": 21, "0071": 21, "0072": 21, "0073": 21, "0074": 21, "009799": 19, "01": [9, 18, 19, 22, 25, 26], "010614999569952488": 20, "010729535670610963": 26, "01091141": 15, "01091173": 15, "01302544": 15, "01302554": 15, "0148196706891397e": [15, 25], "01481967e": 25, "0148e": 16, "017107": 19, "019408": 18, "02": [9, 15, 25], "020127": 19, "020576": [15, 20, 25], "020576132461428642": 20, "021264": 20, "02242043": 15, "022802": 18, "02345275878906": 20, "023453": 20, "023721": 18, "02405744": 16, "024353": 19, "02569442": 15, "026834": 24, "028869": 15, "02957200": 21, "03": [15, 16, 18, 19, 20, 21, 22, 23, 25], "03067258": 15, "03103103103": 18, "031950": 19, "035797": 24, "03646409": 18, "038803": 25, "04": [18, 20, 21, 22], "04108057657348": 18, "04277721": 20, "04327152": 18, "043494": 18, "04413499": 15, "04504504506": 18, "04811488": 16, "048293": 16, "049513": 18, "05": [16, 18, 19, 20, 21, 22, 23, 26], "051270": 20, "051626": 19, "055127": 19, "0567e": 16, "05692": 15, "0576131995767355e": 26, "058206295066418": 26, "06": [15, 20, 22], "060071": 18, "06206206206": 18, "062860": 18, "063714": 18, "064098": 19, "064821": 15, "06668048": 22, "06775099784135818": 20, "068115234375": 20, "068771": 19, "07": [15, 16, 18, 20, 21, 22, 25, 26], "070081": 19, "070368": 20, "071216": 18, "072181": 18, "073857": [15, 25], "08": [16, 19, 20, 21, 22], "08010900020599365": 20, "081524": 19, "0855611": 22, "087260": 15, "09": [9, 15, 18, 20, 21, 25], "090835": 18, "09335629": 22, "09375": 20, "094060": 17, "09544523": 18, "09667724e": 25, "097632": 19, "0_20vtof_v3": 26, "0_30vtof": 19, "0_30vtof_453ns_focu": 26, "0arrai": 20, "0unit": 20, "0x7f1a8c96d420": 16, "0x7f1ab0240340": 16, "0x7f378898f4c0": 22, "0x7f3788b42380": 22, "0x7f3788bf26b0": 22, "0x7f3788f29090": 22, "0x7f7b25f812d0": 18, "0x7f7b7d13cbe0": 18, "0x7f7daedae500": 21, "0x7f7dc41f0af0": 21, "0x7f7dd0093340": 21, "0x7f7dd01985b0": 21, "0x7f7de414c940": 21, "0x7f826c984970": 24, "0x7f826f287070": 24, "0x7f826f2e3ee0": 24, "0x7f826f2ef970": 24, "0x7f826f3c7e20": 24, "0x7f826f4997e0": 24, "0x7f8270ff72b0": 24, "0x7f8276bf0f70": 24, "0x7f90c7bceb90": 20, "0x7f90d0993f70": 20, "0x7f90d80eaad0": 20, "0x7f91041425f0": 20, "0x7f910428c670": 20, "0x7fab20eb5ba0": 23, "1": [3, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "10": [1, 3, 7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "100": [5, 6, 8, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "1000": [13, 15, 21, 26], "100000": [17, 26], "1001": [13, 18], "1002": [18, 19, 24], "1005": 19, "1006": 18, "100mhz": 26, "101": [16, 21], "10151": 20, "101537": 18, "10160182": 9, "103": 15, "1030": 16, "1032": 18, "1034": 19, "1037": 19, "1039": 18, "1050": 20, "10510510512": 18, "105156": 20, "106147": 18, "10658470": 9, "1070499": 21, "107772": 18, "108": 15, "1087817": 22, "109": 15, "10file": 9, "11": [1, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "110": 19, "11019101": [15, 16, 20, 25, 26], "111": 20, "111415": 19, "1120": 21, "113": [9, 26], "115": 21, "116": [15, 25], "1163": 19, "1164": 18, "117295": 17, "117483": 17, "1185": 18, "1187": 19, "11file": 9, "12": [1, 9, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26], "120": 17, "1200": 26, "120790": 18, "122146": 19, "123": 16, "123485": 19, "1239": 20, "12446500": 15, "125": 21, "125150": 19, "125e": 26, "126": 21, "12609441": [9, 15, 16, 25], "127": 22, "12877": 19, "129031": 18, "129541": 18, "129621": 18, "129837": 18, "13": [15, 16, 18, 19, 20, 21, 22, 24, 25], "130000": 18, "130062": 18, "130142": 18, "130612": 18, "130662": 18, "131203": 18, "131213": 18, "13137674e": 22, "131793": 18, "131803": 18, "132": [15, 25], "132000": 26, "132250": 26, "132384": 18, "132434": 18, "133045": 18, "133105": 18, "133715": 18, "133805": 18, "1338843": 15, "134436": 18, "134546": 18, "135": 21, "135197": 18, "135361": 19, "136": 22, "137": 22, "13775487": 15, "138000": 26, "13952965": 9, "13t10": 19, "14": [15, 16, 18, 19, 20, 21, 22, 24, 25], "140": 19, "140000": 18, "14195": 19, "14214214214": 18, "143680": 19, "144": 23, "1446": 15, "144652": 19, "1447": 15, "1448": [15, 16, 20, 25], "1449": 15, "145711": 18, "145974": 18, "1462": 20, "1463": 20, "1464": 20, "1471": [18, 19], "1472": [18, 19], "1472e": 16, "1488e": 20, "1489": 26, "149": [18, 19, 26], "15": [15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26], "150": [6, 16, 18, 20, 21, 24], "1500": [18, 19, 21, 26], "150000": 26, "152": [18, 19, 26], "152m": 9, "153": 18, "154": [18, 19, 26], "155": 23, "156": 23, "156196": 19, "15625": [15, 25], "156440": 17, "1571": 20, "158": 22, "158378": 18, "158618": 17, "15914419": 15, "159477": 20, "1594998158": 22, "16": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "1600": [18, 19], "1600349": 16, "161": 22, "161099": 19, "1628022640": 15, "1628022830": [15, 25], "1628046700": 15, "163": 22, "1646339970": 20, "1646341348": 20, "1679395179": 20, "1679395317": 20, "168125": 18, "17": [15, 16, 18, 19, 20, 21, 22, 24, 25], "170": 18, "1700200225439552": 19, "1708": 21, "1713": 21, "1745": 21, "175437": 19, "17668": 26, "178828": 18, "1792": 26, "18": [15, 16, 17, 18, 20, 21, 22, 25], "1800": [18, 26], "181": 17, "183146": 19, "1850e": 16, "185146": 18, "1862196735": 21, "187": 22, "1872e": 20, "1877259516608": 18, "18838": 21, "189": 22, "189275": 19, "189744": 19, "19": [15, 16, 18, 20, 21, 22, 25], "1900": 26, "1900000000000004": 19, "190509": 18, "191434": 18, "191642": 18, "191991": 25, "192207": 18, "193": 16, "193636": 20, "19427038": 18, "1971971972": 18, "199": [18, 19, 26], "199633": 17, "19976": 19, "1d": [5, 6, 11], "1e": [6, 15, 16, 18, 20, 21, 22], "1q": 20, "1st": 8, "2": [5, 6, 7, 8, 10, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "20": [3, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26], "200": [6, 15, 16, 18, 19, 21, 24, 25, 26], "2000": [17, 21], "200078": 19, "20067596435547": 20, "2018": 26, "2019": 19, "2020": 26, "2023": [15, 16, 20, 25, 26], "202302": 21, "2024": [15, 25], "20244008": 18, "2025": [16, 18, 19, 20, 21, 22, 23], "203": [18, 19, 23, 26], "20320320321": 18, "2048": 26, "206": [18, 19, 23], "208": [15, 25, 26], "208209": 17, "2091": 15, "209350": 18, "2099": 21, "21": [15, 18, 19, 20, 21, 22, 25], "211234": 19, "21321321322": 18, "213258": 18, "215844": 18, "216": [18, 19, 23], "2180090": 16, "219": 15, "219586": 18, "22": [18, 20, 21], "22135979e": 22, "222848": 18, "223453": 19, "223831": 18, "224036": 18, "2246e": 16, "225": 15, "2272e": 20, "228": 26, "229589": 20, "23": [16, 18, 19, 20, 21, 22, 23], "230": [18, 19], "2309": 21, "231": 20, "231543": 17, "232": 26, "236": 22, "23t19": 26, "24": [9, 15, 17, 18, 20, 21], "240": 25, "241533": 17, "242": [18, 19, 22, 26], "243": [18, 19, 26], "244": 18, "244e": 21, "2452": 26, "247": [18, 23], "248": [18, 19, 26], "249": 18, "2494": 26, "25": [6, 13, 15, 16, 18, 19, 20, 21, 25, 26], "250": [15, 16, 20, 22, 23], "2500": 26, "25000": 21, "251": 23, "252": 23, "254": 23, "256": [6, 23, 26], "25600": 26, "256000": 26, "25773261": 22, "258": 22, "2588": 18, "26": [18, 20, 21], "260191": 19, "260945": 18, "262755": 19, "264000": 26, "264500": 26, "265": 19, "267318": 17, "2678e": 16, "27": [15, 16, 18, 19, 20, 21, 22, 25, 26], "270": 22, "270348": 17, "2704e": 20, "272000": 26, "275": 15, "275094": 20, "276000": 26, "277431": 19, "28": [9, 15, 18, 19, 20, 23, 25, 26], "280": 19, "28000": 21, "280429": 17, "28095129": 15, "282": 18, "282227": 15, "282414": 15, "28882003e": 22, "289": 22, "29": [15, 16, 18, 19, 20, 25, 26], "291515": 19, "291860": 17, "29309268": 15, "294704": 18, "298": 19, "299": [18, 19, 26], "299805": [15, 25], "2d": [6, 10], "2h": 19, "2nd": [16, 18], "3": [1, 3, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28], "30": [15, 16, 18, 20, 25, 26], "300": [19, 22, 26], "3000": 26, "301326": 20, "3024": 21, "303": 20, "303050": 18, "304": [18, 19, 20, 26], "3048": 20, "304e": 21, "305": 18, "3050": 20, "30500940561586": 19, "305244": [15, 25], "305555": 18, "307": 20, "307403": 19, "308": 18, "30t20": [15, 25], "30t21": [15, 25], "31": [15, 16, 20, 21, 25], "31005859375": 20, "3112593": 21, "3128662109375": 20, "312988": 20, "3133544921875": 20, "314670": 18, "3152e": 20, "315714": 18, "32": [16, 18, 19, 20, 21, 25, 26], "32000": 26, "320126": 19, "321267": 25, "323807": 18, "32438792": 15, "324629": 17, "32471004e": 25, "327": 22, "32870": 20, "32914": [15, 20, 25], "32919": [15, 25], "33": [16, 18, 19, 20, 21, 22, 23, 25], "33000": 26, "332303": 18, "334617": 19, "335356": 18, "337": 22, "3385": 21, "339233": 19, "339283": 19, "339812": 18, "34": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "3403": 21, "341": [18, 19, 26], "3415291": 16, "342": 18, "344": 22, "3448e": 22, "345": [18, 19, 26], "346": 18, "347855": 15, "35": [19, 20, 26], "350": [18, 19, 26], "35000": 26, "35093": 20, "353": 19, "3548200": 15, "355": [18, 23], "355914": 18, "35692180": 15, "36": [15, 20, 22, 25, 26], "3600865": 16, "361": 23, "362547": 18, "364": 18, "3646276": 15, "365": [18, 19, 24], "365058": 19, "367220": 18, "367342": 17, "37": [15, 16, 20, 21, 25], "370": 23, "370117": 20, "37122852e": 22, "37500": 20, "376e": 21, "377601": 20, "38": [16, 18, 19, 20, 25, 26], "381412": 19, "38438438438": 18, "3896953": 16, "39": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "3900": 16, "395211": 17, "3980": 16, "3989423": 15, "399": 19, "39963939": 15, "39990234375": 20, "3d": 6, "3e9": 5, "3f": 15, "3mb": 9, "3rd": 8, "4": [5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "40": [15, 20], "4000": 20, "403": 26, "4050": 16, "40959498": 15, "41": [9, 15, 16, 20, 21], "410693": 19, "411319": 25, "411873": 20, "4120": [16, 20], "4145": 20, "415": 18, "4156": [16, 20], "416": 19, "4160": 16, "418660": 18, "41883308": 18, "4195": [16, 20], "41972464e": 22, "4199": 16, "42": [16, 17, 20], "420": [20, 25, 26], "4200": [16, 20], "421": 20, "422": [20, 26], "4224": 16, "423": [19, 20], "4230": 20, "4232": 20, "4236": 20, "4237": 16, "4238": 20, "424": 20, "425": 20, "426": 20, "427": 20, "428": 20, "4281": 20, "4282": 16, "4286": 20, "429": 20, "43": [9, 15, 18, 20], "430": 20, "43017632e": 22, "4323": 16, "4329": 20, "43293095e": 18, "434304": 19, "43443443443": 18, "434474": 18, "434642": 18, "435564": 19, "43643643643": 18, "436e": 21, "4374": 20, "439895": 18, "44": [20, 26], "440035779171833": 26, "441827": 17, "4422": 15, "4423": [15, 25], "4424": 25, "4425": 15, "4429469": 20, "44455": 16, "44498": [15, 16, 25], "44762": 20, "44797": 20, "44798": 20, "44799": 20, "44824": 20, "44824_20230324t060430": 20, "44825": 20, "44826": 20, "44827": 20, "45": 20, "450": 20, "4500": 16, "4501953125": 19, "450570": 18, "4527": 20, "453119": 20, "458586": 18, "45905387e": 22, "459153": 19, "4594": 15, "4595": [15, 25], "4596": 25, "46": [16, 18, 20], "463379": 20, "46402431e": 18, "465": 18, "465417": 20, "467": 19, "47": [15, 18, 20, 21, 25], "47100427179566": [15, 25], "47140008e": 22, "475": [18, 19], "478747": 18, "47981834e": 18, "48": [15, 18, 19, 20, 22, 26], "480": 20, "4800": 20, "480dldposx": 20, "481932": 19, "4830": 21, "485667": 19, "486378": 18, "486647": 19, "489": 26, "49": [15, 16, 18, 19, 20, 23, 25, 26], "492": 22, "4949999999994": 18, "495093": 21, "496e": 21, "499": 13, "4f": [15, 16, 21, 25], "4kb": 20, "4q": 20, "5": [5, 6, 8, 9, 10, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "50": [6, 17, 18, 19, 20, 21, 26], "500": [13, 15, 18, 19, 20, 26], "502": 22, "50320000e": 22, "503229": 18, "50330198e": 18, "504707": 17, "5092127": 16, "51": 20, "5100": 15, "511322": 17, "511570": 19, "512": 26, "512794": 20, "51330000e": 18, "516": 22, "516961": 18, "5189696": 16, "52": [18, 19, 20, 21, 26], "521457": 25, "521746": 18, "524": 21, "52672958e": 18, "52960000e": 22, "53": 20, "531": 22, "536": 20, "5361e": 18, "54": [9, 16, 20, 26], "54080000e": 18, "5409951": 18, "54154154155": 18, "545": [18, 19], "54654654654": 18, "55": [19, 20], "555409": 18, "5565754": 18, "556e": 21, "557313": 17, "55960000e": 22, "55975950e": 18, "562": 20, "562181": 19, "562988": 15, "563147": 15, "56439197e": 18, "56525760": 16, "56768800": 16, "570": [18, 19], "57050000e": 18, "5727e": 20, "5729": 20, "5730": 20, "5773": 15, "5774": 15, "579421": 19, "58": [15, 21], "580659": 18, "581494": 18, "581719": 18, "583193": 19, "586": [18, 19], "588": 19, "589": 18, "58960000e": 22, "58964": 21, "59": 16, "59620132": 21, "596553": 19, "596579": 19, "59838033e": 18, "5e": [16, 20], "6": [6, 8, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "60": [15, 16, 21, 25], "600": [18, 19, 20, 26], "6000": 26, "600505": 19, "60130000e": 18, "602051": [15, 25], "602693": 18, "6029": [15, 20, 25], "6052": 21, "6066": 21, "6073e": 18, "6088": 21, "60986862": 15, "61": [20, 21], "611223": 19, "612466": 18, "61261261262": 18, "6158341": 18, "6170": [15, 25], "6176e": 22, "6187": [15, 25], "6196": 21, "619950": 19, "62": [16, 18, 19, 20, 21, 22, 26], "62080000e": 22, "62162162163": 18, "625329": 18, "626889": 18, "6286e": 20, "628e": 21, "6315": [18, 19], "6316": [18, 19, 21, 24], "6317": [18, 19, 24], "6318": [18, 19], "63430000e": 18, "63564813e": 18, "6369728": 9, "6372e": 21, "6376": 21, "6380": 21, "64": [15, 25], "6400": [15, 18, 19], "64000": [18, 22], "640991": 19, "64228939": 18, "6448": 21, "645986": 20, "64624": 22, "64638": 18, "647661": 15, "647747": 19, "64864": 22, "64913": 18, "6496": 21, "65": 21, "650": [15, 17, 20], "6505e": 16, "6508": 21, "651": 25, "65140": 22, "65188": [18, 22], "65320000e": 22, "653482": 18, "65386": 18, "653969": 18, "65416": 22, "6542": 21, "654642": 18, "65474": 18, "65500": 22, "655405": 18, "6568": 21, "65683": 18, "657": 25, "65704": 22, "65764": 22, "65782": 18, "658": 15, "6580": 21, "65991": 18, "66": 24, "660": [18, 19], "66000": [22, 24], "66004": 22, "66088": 22, "66100": [18, 23], "66101": 18, "661627": 19, "6618227": 20, "66200": 18, "662226": 15, "66266266267": 18, "66300": 23, "66310": 18, "66316": 22, "663175": 18, "664": [18, 19], "6640": 21, "66436": 22, "66442": 18, "66449": [18, 19], "66454": [18, 24], "66455": [19, 24], "666": 19, "66600": 24, "66605": 24, "6664": 21, "66651": 18, "66652": 22, "666617": 17, "667": 18, "66730000e": 18, "66794": 18, "66820": 22, "669": 15, "67": 20, "670": [18, 25], "6700": 21, "67000": [18, 24], "67003": 18, "67012": 22, "671": [15, 18, 19, 24], "67180": 22, "67190": 18, "672": 25, "67203319e": 18, "6736": 21, "67384": 22, "67388": 18, "67575": 18, "675760": 15, "676810": 18, "6772": 21, "677563e": [15, 25], "67780": 22, "67795": 18, "6784": 21, "678591": 18, "679395e": 20, "67993": 18, "68": 26, "681": 15, "682": 25, "68213": 18, "682181": 20, "6832": 21, "684": 25, "68432": [18, 19], "684410678887588e": 26, "68458": 19, "68459": 18, "685": 15, "6852091": 15, "686": 15, "68664": 18, "687": 25, "68800000e": 22, "688e": 21, "6892": 21, "690": 20, "691": 18, "69148": 18, "692": [19, 24], "696": [9, 18, 20], "6964": 21, "697": [19, 20], "6kv_kmodem4": [19, 26], "6mb": 9, "7": [6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "70": [16, 18, 22, 26], "700": [21, 26], "7004554": 22, "70083": 18, "70084": [18, 19], "700983e": 21, "701": 18, "70100": 18, "70101": [18, 19, 24], "701801": 20, "702": 19, "702321": 18, "7024": 21, "70360000e": 18, "70683038e": 18, "707": 19, "708": 18, "709329": 18, "7096": 21, "71": [9, 16, 18], "710659": 18, "711": 18, "712": [18, 19, 24], "713": 18, "714": 19, "715553": 19, "71571571572": 18, "716318": 18, "717": 17, "717146": 18, "717439": 18, "72": [15, 25], "723638": 19, "72411": 18, "72412": 19, "72421": 18, "72422": 19, "72520000e": 22, "72627": [18, 19], "72632": [18, 19], "72794": [18, 19], "72801": 19, "72802": 18, "729393": 18, "729496": 20, "729931": 19, "730": [18, 26], "73025": [18, 19, 24], "73026": [18, 19, 24], "7348e": 18, "735": 26, "73899": [18, 19], "73902": [18, 19], "73990000e": 18, "73g": 9, "73gb": 9, "741": [18, 19], "743789": 20, "745": 20, "748776": 19, "75": [15, 20, 26], "750": [21, 26], "75000": 18, "7502612": 18, "750341": 15, "750488": 15, "752860": 18, "756": 21, "75614": [18, 19, 24], "75615": [18, 24], "759985": 19, "760": [18, 19], "76000": 22, "760e": 21, "761": [18, 24], "762199": [15, 25], "76360000e": 22, "764000": 15, "764160": 15, "76937760": 15, "77": [16, 22], "774218": 19, "775377": 20, "77654127": 18, "78": [15, 25], "780": 20, "78060000e": 18, "781": 20, "781471": 18, "782089": 17, "782470": 18, "78524092": 18, "791": [18, 19], "793457": 20, "7937937938": 18, "79487877": 18, "795054": 18, "798391": 17, "7998131": 20, "799887": 19, "8": [8, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "80": [19, 22, 26], "800": [19, 20, 21], "8000": 21, "8038038038": 18, "80482246": 16, "8058058058": 18, "806374": 19, "809632": 24, "80966772": 16, "8096677238144319": [15, 25], "81": [16, 20], "810302": 18, "816654": 18, "817": [18, 19], "817170": 18, "818": [18, 19, 24], "8182": 20, "82": 26, "820e": 21, "82130000e": 18, "822": [18, 19], "822100": 18, "82609228": 15, "8280": 20, "828692": 19, "830": 17, "832955": 18, "832977": 20, "833222": 18, "833415": 18, "836": 19, "837": 18, "837527": 20, "837700": 20, "838": 19, "839": 18, "84": [15, 20, 25], "846": 19, "847": 18, "85": 20, "850": 21, "851156": 18, "854": 20, "857178": 18, "858299": [15, 25], "86": [15, 18], "866420": 18, "866497": 19, "86750000e": 18, "87": [16, 18, 20], "871333": 19, "872978": 18, "873516": 19, "875": 17, "87500": 20, "87633072": 18, "878412": 24, "88": [18, 19, 26], "880404": 24, "8810": 20, "887": 15, "887719": 18, "888": 25, "890": 20, "891": 20, "891136": 18, "892": 20, "892e": 21, "893": 20, "894": [15, 20], "895": [20, 25], "895476": 18, "895896": 19, "896": 20, "897": 20, "8976": 20, "8977797": 15, "898": 20, "8982": 20, "898249": 19, "899": 20, "8990": 20, "8999938964844": 20, "8e": 18, "9": [1, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "900": [20, 25], "9000": 18, "90000": 18, "9002e": 16, "901931": 18, "902969": 19, "9058e": 20, "908764": 17, "913942": 18, "9148": 21, "917303": 18, "917947": 17, "919639": 18, "92": 15, "920": [18, 26], "9200134277344": 20, "922kb": 20, "924102": 19, "9255": 20, "935535": 18, "9364844": 15, "936917": 18, "9375": 20, "938": 20, "940002": 20, "94000244140625": 20, "941775": 19, "942188": 19, "947": 20, "947018": 19, "951": 21, "95113635": 18, "952637": 20, "953776": 18, "954266": 19, "956391": 18, "957": 21, "957393": 19, "958883": 18, "96": [18, 19, 26], "962": 21, "9636feecb79bb32b828b1a9804269573256d7696": 19, "967367": 19, "96875": [15, 25], "97": [15, 22], "970": 18, "971": [19, 24], "972107": 19, "972561": 18, "972665": 17, "977862": 18, "979260": 18, "98": [15, 25], "98000": 17, "984": [18, 19], "984490": 17, "9848e": 22, "985325": 17, "985352": 20, "988557": 18, "988670": 15, "9886e": 20, "989998": [15, 25], "99": 18, "9902e": 21, "99171918": 18, "993118286132812": 20, "995221": 25, "995356": [15, 25], "995886": 15, "995903": [15, 25], "996094": 15, "9964": 20, "996565": 17, "997304": 19, "9974": 18, "9985": 22, "998651": 15, "9988": 18, "99905": 19, "999065": 20, "9992": 16, "9993": 22, "99931647456264949": 19, "9995": 16, "9996": 21, "9997": [16, 18], "9998": [16, 22], "999836": 18, "9999": 16, "99995": 17, "99996": 17, "99997": 17, "99998": 17, "99999": 17, "A": [1, 3, 5, 6, 7, 8, 13, 17, 20, 26], "And": 16, "As": [15, 25], "At": [1, 3], "Be": 5, "By": [9, 10], "For": [6, 8, 10, 13, 15, 16, 18, 20, 21, 22, 23, 25, 26], "If": [1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 24, 25, 26, 28], "In": [5, 6, 8, 17, 18, 19, 20, 21, 22, 25, 26], "It": [0, 3, 6, 13, 20, 24, 26], "Its": [6, 8], "NOT": [8, 20, 21], "No": 19, "Not": [6, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "On": [3, 28], "One": [6, 18], "Or": 9, "The": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26], "Then": [18, 25], "These": [7, 9, 18, 19, 24, 26], "To": [1, 3, 5, 6, 15, 16, 18, 20, 21, 24], "With": [18, 20], "_": [16, 18, 19, 23, 24], "_0": 15, "_1": 22, "__init__": 17, "__name__": 1, "_attr": 12, "_bin": [18, 22], "_build": 3, "_hl": 13, "_normalization_histogram": [18, 22], "_offset": 10, "a0": 25, "a1": 25, "a2": 25, "a_n": 6, "aa0": 26, "abc": 13, "abil": 9, "about": [0, 9, 18, 20, 21], "abov": [5, 8, 18, 20, 24, 26], "absent": 24, "absolut": [6, 8, 18, 26], "absorb": 19, "abstract": 1, "acceler": 0, "accept": 8, "access": [3, 5, 8, 12, 13, 15, 16, 20, 21, 25], "accessor": [6, 8, 13], "accord": [6, 18], "accordingli": 15, "account": [16, 18, 20], "achiev": [18, 22], "acquir": 25, "acquisit": [8, 13, 15, 20], "across": 13, "action": 3, "activ": [1, 3, 6, 28], "actual": [6, 25], "ad": [6, 7, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "adc": [6, 18, 19, 22, 23, 24, 26], "adc_bin": 26, "adc_column": 6, "adc_rang": [6, 18, 19, 26], "add": [1, 6, 8, 9, 10, 12, 13, 14, 22, 24, 25, 29], "add_attribut": 8, "add_colorbar": 20, "add_delay_offset": [8, 15, 16, 20, 21, 25], "add_energy_offset": [8, 15, 16, 20, 25], "add_featur": 6, "add_jitt": [8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "add_offset": 6, "add_rang": 6, "add_time_stamped_data": [8, 10, 22], "addit": [6, 7, 8, 10, 11, 12, 13, 25, 26], "addition": [3, 20, 25], "address": 19, "adjust": [6, 8, 18, 19, 22, 24], "adjust_energy_correct": [6, 8, 18], "adjust_rang": 6, "administr": 26, "adopt": 6, "advanc": 0, "affili": 19, "affin": [8, 18], "after": [5, 6, 9, 10, 18, 20, 24, 25], "afterward": 21, "ag": 13, "again": [20, 21, 24], "against": 1, "aggreg": 13, "ahead": 6, "akaik": [15, 16, 18, 20, 21, 22], "algorithm": [6, 8, 18, 23, 26], "alia": 13, "alias": [8, 13, 26], "alias_dict": [8, 12], "alias_kei": 13, "align": [6, 8, 15, 16, 18, 19, 22, 24, 25, 29], "align_dld_sector": [6, 8, 15, 16, 20, 25], "all": [1, 5, 6, 8, 9, 10, 11, 13, 18, 20, 21, 24, 25, 26, 28], "allow": [3, 5, 6, 9, 10, 20, 21, 25, 26], "allusersprofil": [7, 26], "along": [5, 6, 8, 18, 20, 24, 26], "alongsid": 13, "alpha": 20, "alreadi": [6, 9, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "also": [1, 3, 5, 6, 7, 8, 9, 10, 15, 16, 18, 20, 21, 22, 24, 25, 26], "altern": [6, 7, 8, 16, 18, 24, 26], "amalgam": 13, "among": 6, "amount": [6, 8, 20, 24], "amp": [8, 10, 24], "amplitud": [5, 6, 8, 10, 15, 18, 24, 26], "amplitude2": [6, 18], "an": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 26, 28], "analog": [6, 26], "analysi": 0, "analysis_data": 9, "analyt": 18, "analyz": [19, 20], "angl": [0, 6, 8, 18, 19, 22, 23], "ani": [5, 7, 8, 9, 12, 13, 14, 15, 18, 21, 24, 26], "annoi": 20, "annot": 6, "anoth": 9, "anyth": [8, 20], "apertur": [19, 26], "aperture_config": 26, "api": [5, 8, 12, 26], "append": [6, 8, 14, 18, 19, 21], "append_delay_axi": [6, 8], "append_energy_axi": [6, 8, 15, 16, 18, 19, 20, 21, 22, 25], "append_k_axi": [6, 8], "append_tof_ns_axi": [6, 8, 20, 21], "appli": [5, 6, 8, 10, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "applic": [6, 8, 10, 26], "apply_correct": [6, 8], "apply_dfield": [6, 18, 19, 22, 23], "apply_energy_correct": [6, 8, 18, 19, 22], "apply_filt": 10, "apply_jitt": [8, 10, 20], "apply_momentum_calibr": [8, 18, 19, 22, 23], "apply_momentum_correct": [8, 18, 19, 22, 23], "apply_offset_from_column": 6, "apply_ufunc": 25, "approach": [5, 25], "appropri": 3, "approv": 1, "approx": 26, "approxim": [6, 8, 16, 18, 26], "ar": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "arang": [18, 21, 22], "archiv": [8, 13, 22, 26], "archiver_channel": [8, 13, 22], "archiver_url": [13, 26], "area": 6, "arg": 8, "argument": [5, 6, 7, 8, 10, 11, 12, 13, 20], "aris": 20, "around": [6, 8, 18, 22, 26], "arp": 27, "arrai": [5, 6, 8, 12, 13, 16, 18, 20, 22, 23, 25], "arriv": [15, 26], "arrival_tim": 26, "arrow": 20, "artefact": 25, "artifact": [20, 24], "asap3": [15, 16, 20, 25, 26], "ascal": [6, 23], "assembl": 6, "assert": [9, 15, 16, 20, 21, 25], "asserterror": 8, "assign": [15, 16, 18, 19, 20, 21, 22, 23, 25], "associ": [6, 13], "assum": [1, 6, 12, 18], "assumpt": 10, "astral": [1, 3], "asymmetr": 6, "attach": [18, 22], "attempt": 14, "attr": [12, 20], "attribut": [1, 6, 8, 12, 13, 18, 20, 25, 26], "attributeerror": [5, 12], "au": 29, "au_mica": [9, 21], "au_mica_sxp": 9, "aug": 6, "augment": [6, 13], "author": 13, "auto": [3, 8, 13, 18], "auto_detect": [8, 18], "autodetect": 18, "automat": [3, 12, 13], "autoreload": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "auxiliari": [13, 26], "avail": [5, 6, 8, 9, 13, 20], "available_channel": 13, "available_run": 13, "averag": 26, "average_pow": 19, "avoid": 20, "awar": 5, "ax": [5, 6, 8, 10, 12, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26], "axi": [5, 6, 8, 11, 12, 18, 19, 22, 23, 24, 26, 29], "axis_dict": 12, "b": [1, 3, 6, 8, 15, 16, 20, 22, 25, 26], "back": 13, "backend": [6, 8, 11], "background": [0, 21, 24, 26, 29], "backward": 10, "backward_fill_lazi": 10, "bam": [20, 25, 26, 27], "band": [15, 19, 22, 25, 27], "bar": [5, 8, 26], "base": [1, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 19, 22, 23, 26], "base_dictionari": 7, "base_fold": 13, "baseload": [1, 6], "basic": 0, "bayesian": [15, 16, 18, 20, 21, 22], "bda": 26, "beam": [15, 16, 19, 26], "beamlin": [1, 26], "beamtim": [13, 15, 16, 20, 21, 25, 26], "beamtime_dir": [15, 16, 20, 21, 25, 26], "beamtime_id": [13, 15, 16, 25, 26], "beamtimeid": 26, "becam": 15, "becaus": [5, 17], "becom": 13, "been": [3, 8, 12, 16, 18], "befor": [1, 5, 6, 8, 10, 15, 20, 24, 26], "begin": 24, "behav": [5, 8], "behavior": [5, 9, 14], "behind": [0, 24], "being": [6, 8, 10, 18, 20], "below": [1, 5, 7, 20, 21, 26, 28], "berlin": [13, 19], "best": [12, 15, 18, 22, 25], "best_fit": 15, "better": [20, 21, 26], "between": [3, 5, 6, 8, 10, 13, 15, 16, 20, 21, 24, 25, 26], "bg": [15, 16, 20, 25], "bgd": 25, "bgd_blur": 25, "bia": [6, 8, 18, 20, 26, 29], "bias": [6, 8, 16, 18, 21, 22], "bias_kei": [6, 8, 26], "bias_voltag": [6, 8, 18, 19, 21, 22], "biasseri": 21, "billauer": 6, "bin": [0, 1, 3, 4, 6, 8, 11, 13, 24, 26, 27, 28, 29], "bin_and_load_momentum_calibr": [8, 18, 19, 22, 23], "bin_cent": 5, "bin_centers_to_bin_edg": 5, "bin_data": 6, "bin_datafram": [5, 6, 8, 17], "bin_edg": 5, "bin_edges_to_bin_cent": 5, "bin_partit": [5, 17], "bin_rang": 6, "binari": 20, "binax": 17, "bind": [6, 8, 18], "binned_data": [8, 16, 20, 21], "binrang": 17, "binsearch": 5, "binwidth": 6, "bisect": 5, "bit": [13, 26], "bit_mask": 13, "bitwis": 13, "bla": [5, 8, 26], "blur": 25, "bokeh": [6, 8, 11], "bool": [5, 6, 7, 8, 9, 10, 11, 13], "both": [6, 8, 9, 13, 14, 20, 21, 25, 26], "bound": 10, "boundari": 6, "branch": [1, 3], "brief": 1, "brillouin": [6, 18], "brillouin_zone_cent": 18, "broad": 15, "broken": [1, 26], "buffer": 13, "buffer_file_handl": 13, "buffer_path": [15, 16, 20, 21, 25], "bug": 1, "build": 3, "built": 3, "bunch": 15, "bunch_first_index": 26, "bvec": 6, "bx": 15, "byte": [13, 15], "bz": [8, 18, 26], "c": [12, 15, 16, 18, 20, 21, 22, 26], "c_center": 6, "c_convers": 6, "c_det": 6, "c_start": 6, "c_step": 6, "ca_in_channel": 26, "ca_siz": 26, "calc_geometric_dist": 6, "calc_inverse_dfield": 6, "calc_symmetry_scor": 6, "calcul": [5, 6, 8, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26], "caldir": [18, 22], "calib_typ": [6, 25], "calibr": [0, 4, 8, 19, 24, 26, 27, 29], "calibrate_delay_axi": [8, 18, 19], "calibrate_energy_axi": [8, 16, 18, 20, 21, 22], "calibrate_momentum_ax": [8, 18, 23], "calibration_data": 9, "calibration_method": [8, 26], "call": [5, 17, 20], "callabl": 10, "can": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28], "cancel": 3, "candid": 6, "cannot": [7, 13, 18], "care": [10, 16], "cartesian": 6, "carv": [19, 22, 26], "case": [5, 6, 8, 14, 20, 25], "caus": 5, "ccw": 6, "cd": [3, 28], "cdeform": 6, "cdeform_field": [6, 8], "cdeformfield": 6, "cell": [18, 20, 21], "center": [5, 6, 8, 15, 18, 20, 25, 26], "center_pixel": [6, 8, 26], "centr": 15, "central": 18, "centroid": 6, "certain": 6, "ch6": 26, "chang": [1, 6, 8, 10, 20, 21, 26, 28], "channel": [8, 12, 13, 15, 18, 19, 20, 23, 24, 26, 29], "channel_dict": 13, "channelalia": 26, "charg": 18, "check": [1, 3, 5, 6, 13, 21, 24], "checkout": 1, "chemical_formula": 19, "chessi": 29, "chi": [15, 16, 18, 20, 21, 22], "choos": [3, 6, 8, 18, 26], "chosen": 5, "circl": 6, "circular": 6, "class": [1, 6, 8, 9, 13, 14, 18, 19, 20, 22], "clean": [20, 21], "cleanup": 29, "cleanup_oldest_scan": 13, "clear": [1, 21], "clearli": [15, 24], "cleav": 19, "click": [3, 18], "clock": 15, "clone": [1, 3, 28], "close": [6, 24], "closest": 6, "cm": 6, "cm2": 19, "cm2palett": 6, "cmap": [6, 15, 16, 25], "cmap_nam": 6, "co": 6, "code": [1, 5, 6, 13], "coeff": 6, "coeffici": [6, 25], "col": [6, 8, 10, 17, 23, 24, 26], "collabor": 1, "collect": [0, 6, 8, 13, 18, 19, 20, 21, 22, 23, 26], "collect_metadata": [8, 13, 19, 20, 21], "color": [6, 16, 20, 25], "color_clip": [6, 26], "colormap": 6, "cols_jitt": 10, "column": [5, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "column_index": 6, "column_nam": 10, "com": [1, 3, 9, 28], "combin": [5, 8, 13, 26], "come": [9, 19, 20], "command": [1, 9], "commit": 1, "common": [18, 20], "commun": 1, "comp": 26, "compar": [13, 20, 21, 26], "comparison": 25, "compat": 12, "compens": [20, 26], "complet": [7, 9, 12, 13, 15, 16, 20, 21, 25], "complete_dictionari": 7, "composit": 6, "comput": [5, 8, 10, 13, 15, 16, 21, 23, 24, 25, 26, 29], "compute_kwd": [5, 13], "compute_length": 10, "concat": 21, "concaten": 13, "concatenate_channel": 13, "concept": 0, "concis": 1, "concurr": 3, "conda": [17, 28], "condit": 25, "config": [0, 1, 3, 4, 6, 8, 9, 13, 18, 19, 22, 23, 24, 26, 29], "config_dict": 7, "config_fil": [15, 16, 20, 21, 25], "config_overrid": [15, 16, 20, 21, 25], "config_path": 7, "config_v1": [7, 26], "configur": [3, 7, 9, 12, 13, 15, 16, 18, 19, 20, 21, 24, 25, 27], "confirm": [3, 13], "conflict": 3, "congruent": 5, "consecut": 10, "consid": [6, 12, 20], "consist": [10, 26], "constant": [6, 8, 15, 16, 20, 21, 25], "constrain": [6, 15, 16, 20, 25], "constrained_layout": [17, 18, 21, 22], "construct": [6, 13], "contain": [5, 6, 7, 8, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 26], "content": [3, 7, 13], "continu": [9, 22, 24], "contrast": [25, 26], "contribut": 2, "contributed_definit": 19, "control": 14, "conveni": 20, "convers": [6, 13, 20, 21, 25, 26, 27], "convert": [5, 6, 8, 12, 13, 19, 20, 21, 24, 26], "coord": [6, 12, 17], "coordin": [6, 8, 12, 18, 19, 20, 26], "coordinate_transform": 6, "coordtyp": 6, "copi": [3, 8, 9, 13, 22, 26], "copy_tool": 26, "copytool": 13, "core": [0, 4, 5, 7, 10, 13, 14, 15, 20, 21, 26, 27, 29], "correct": [0, 8, 12, 19, 22, 26, 27, 29], "corrected_delai": 26, "corrected_i": [6, 26], "corrected_tof": [6, 26], "corrected_x": [6, 26], "correction_funct": 6, "correction_typ": [6, 8, 26], "correctli": 1, "corrector": 8, "correl": [16, 18, 20, 21, 22, 27], "correspond": [5, 6, 8, 10, 12, 13, 18, 19, 24, 25, 26], "could": 15, "count": [5, 11, 13, 18, 20, 21, 22], "countrat": 13, "countslong_nam": 20, "countsmetadata": 20, "coupl": 21, "cover": [1, 6, 8, 10], "cp": 3, "cpp": 20, "cpu": [5, 8, 17], "cpy": 8, "creat": [1, 3, 7, 9, 13, 18, 19, 22, 23, 24, 28], "create_buffer_fil": 13, "create_dataframe_per_channel": 13, "create_dataframe_per_electron": 13, "create_dataframe_per_fil": 13, "create_dataframe_per_puls": 13, "create_dataframe_per_train": 13, "create_multi_index_per_electron": 13, "create_multi_index_per_puls": 13, "create_numpy_array_per_channel": 13, "created_bi": 20, "creation": [3, 13, 25], "creation_d": [15, 20, 25], "crit": [15, 16, 18, 20, 21, 22], "critic": 20, "cross": [6, 27], "crosshair": 6, "crosshair_radii": 6, "crosshair_thick": 6, "cryo_temperatur": 26, "cryotemperatur": [15, 16, 20, 25, 26], "crystal": 19, "cstart": [6, 26], "cstep": [6, 26], "csv": 13, "ct": 15, "ctime": 13, "cube": 6, "curl": [1, 3], "current": [6, 7, 8, 9, 10, 13, 15, 16, 18, 20, 21, 25, 26], "curv": [6, 8, 18, 26], "custom": 6, "cutoff": 26, "cw": 6, "d": [5, 6, 8, 15, 16, 18, 20, 21, 22, 25, 26], "dak": 17, "daostarfind": 18, "daq": [13, 26], "dash": [16, 25], "dask": [0, 5, 6, 8, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26], "data": [0, 1, 3, 4, 5, 6, 8, 9, 10, 12, 14, 26, 27, 29], "data_fil": [6, 8, 18, 22], "data_nam": 9, "data_parquet_dir": 13, "data_path": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "data_raw_dir": 13, "dataarrai": [5, 6, 8, 12, 20, 21], "dataarraydldposi": 20, "dataconvert": [12, 19], "datafil": [6, 8, 18], "dataformat": 13, "datafram": [0, 4, 5, 6, 8, 13, 15, 16, 18, 19, 22, 23, 24, 25, 26, 29], "dataframe_electron": 13, "dataframe_puls": 13, "dataset": [0, 3, 4, 6, 8, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "dataset_kei": [13, 26], "datastream": 0, "datatyp": 26, "date": 1, "datetim": 25, "dbc2": 26, "dct": 11, "dd": 13, "ddf": [8, 13, 17], "de": [19, 26], "deal": 19, "debug": [13, 20], "decod": 13, "decreas": [6, 8, 18], "default": [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "default_config": [7, 26], "defin": [0, 5, 6, 8, 9, 13, 16, 19, 20, 21, 23, 25, 26], "define_featur": [8, 18, 22, 23], "definit": [5, 8, 12, 26], "deform": [6, 8, 18, 19, 22, 23], "delai": [8, 13, 19, 26, 29], "delay_column": 6, "delay_mm": 6, "delay_rang": [6, 8, 18, 19], "delay_range_mm": 6, "delay_start": 20, "delay_stop": 20, "delaycalibr": [6, 8], "delaystag": [15, 16, 21, 25, 26, 29], "delet": [9, 10, 13, 20, 21], "delta": 6, "demonstr": [0, 23, 27], "depend": [1, 3, 8, 13, 16, 18, 27, 28], "deploi": 3, "deploy": 3, "deriv": [6, 24], "describ": [5, 6, 8, 12, 23], "descript": [1, 13, 19], "design": [3, 6], "desir": 13, "dest": [13, 26], "dest_column": [8, 10, 22], "destin": [6, 8, 10, 13], "detail": [6, 7, 8, 24], "detect": [6, 8, 13, 18, 20], "detector": [6, 13, 18, 20, 25, 26], "detector_coordinates_2_k_coordin": 6, "detector_rang": [6, 26], "deterior": 24, "determin": [6, 8, 13, 15, 16, 18, 20, 21, 25], "dev": [1, 28], "develop": [0, 27], "deviat": [6, 16, 18], "df": [5, 6, 10, 13, 17], "df_backup": 24, "df_partit": [8, 18, 19, 22, 23, 24], "dfield": 6, "dfop": [6, 10], "dfpid": [8, 18, 20, 21, 22], "dgroup": 26, "diag": 26, "diagnost": [0, 4, 6, 8, 13, 26], "diamet": [6, 18, 26], "dict": [5, 6, 7, 8, 9, 11, 12, 13, 14], "dictionar": 6, "dictionari": [5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 20, 21, 25, 26], "dictmerg": 6, "differ": [0, 3, 6, 7, 8, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26], "differenti": 6, "difficult": 5, "digit": [6, 20, 21, 24, 25, 26], "dim": [12, 17, 21], "dimens": [5, 6, 8, 10, 12, 18, 24], "dimension": [0, 5, 8, 10, 12, 13, 20], "dir": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "direct": [6, 8, 15, 16, 20, 25, 26], "directli": [6, 8, 15, 16, 17, 18, 20, 21, 22, 25, 26], "directori": [1, 3, 7, 9, 13, 15, 16, 20, 21, 25, 26], "disabl": [17, 26], "discov": 6, "discuss": [19, 24], "disk": 13, "dispers": 6, "displac": 6, "displai": [6, 8, 26], "dispos": 26, "dist_metr": 6, "distanc": [6, 8, 16, 18, 23, 24, 26], "distinct": 18, "distinguish": 13, "distort": [6, 8, 19, 22, 26, 27], "distribut": [6, 10, 24, 25, 28], "dither": 24, "divid": [3, 25], "divis": 25, "dld": [20, 21, 25], "dld1": 26, "dld_time": 26, "dldaux": 26, "dldposi": [15, 16, 20, 21, 25, 26], "dldposx": [15, 16, 20, 21, 25, 26], "dldposxpandasindexpandasindex": 20, "dldposypandasindexpandasindex": 20, "dldsectorid": [13, 15, 16, 20, 25, 26], "dldtime": [20, 21, 26], "dldtimebins": [15, 16, 20, 25, 26], "dldtimestep": [13, 15, 20, 21, 25, 26], "do": [3, 6, 8, 20, 21, 23, 25, 28], "doc": [1, 3, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "document": [1, 2, 9], "doe": [6, 9, 12, 13, 17, 20], "doesn": 9, "domin": 20, "don": [3, 8, 18, 25], "done": [6, 15, 16, 20, 21, 25, 28], "dortmund": 20, "doubl": 6, "down": 3, "download": [3, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "draft": 3, "drift": [6, 15], "drive": [8, 13, 18, 22], "drop": [10, 13], "drop_column": 10, "dtype": [20, 26], "dummi": 13, "dup": 6, "duplic": [6, 14, 25], "duplicate_polici": 14, "duplicateentryerror": 14, "dure": [3, 6, 13, 20, 25], "dynam": [3, 18, 19], "e": [1, 3, 5, 6, 8, 11, 15, 16, 18, 19, 20, 24, 26, 28], "e0": [6, 15, 16, 18, 20, 21, 22, 25, 26], "each": [5, 6, 8, 10, 11, 13, 16, 17, 18, 20, 25, 26], "easi": [5, 8, 9, 12], "easier": 20, "ec": 16, "edc": [6, 18, 22, 25], "edg": [5, 8, 11], "edit": [1, 3, 28], "ef": 18, "effect": [18, 20, 21, 22], "either": [6, 8, 18, 20, 22, 23, 28], "elaps": [13, 18], "electron": [6, 8, 13, 19, 20, 21], "electron_flash1_user3_stream_2_run44762_file1_20230321t113927": 20, "electronid": [13, 15, 16, 20, 25, 29], "element": [5, 6, 8, 12], "elimin": 25, "eln_data": 8, "els": [15, 16, 20, 21, 25], "email": 19, "empti": [6, 7, 13], "encod": [13, 26], "encoder_posit": 26, "end": [0, 1, 5, 6, 8, 13, 20, 24, 26], "endstat": 8, "energi": [8, 12, 17, 19, 22, 26, 27, 29], "energy_c": [15, 25], "energy_calibr": 25, "energy_column": 6, "energy_offset": 6, "energy_resolut": 19, "energy_scal": [6, 8, 15, 16, 18, 20, 21, 22, 25, 26], "energycal_2019_01_08": 9, "energycal_2020_07_20": 9, "energycalfold": 18, "energycalibr": [6, 8], "engin": 26, "enhanc": 25, "enough": [10, 24], "ensur": [0, 1], "entir": [10, 13, 24, 29], "entri": [3, 5, 6, 8, 13, 14, 18, 19, 23, 24, 26], "entry_titl": 19, "env": [7, 13], "environ": [1, 3, 7, 13, 28], "epic": [8, 13, 22, 26], "epics_pv": 26, "equal": [6, 23, 26], "equat": 6, "equiscal": [6, 8, 18, 23], "equival": [6, 18, 20, 23], "eref": 18, "error": [3, 5, 7, 9, 13, 14, 20], "essenti": 18, "estim": 6, "etc": [6, 7, 13, 18, 26, 28], "european": [0, 29], "ev": [6, 16, 20, 26], "eval": [15, 16, 18, 20, 21, 22], "evalu": [0, 20], "even": [23, 26], "evenli": 13, "event": [0, 3, 6, 8, 13, 17, 21, 22, 24, 26, 29], "eventid": 26, "everi": [3, 20, 26], "evolut": 21, "exact": 24, "exactli": 24, "exampl": [1, 5, 6, 8, 17, 18, 19, 20, 22, 23, 25, 28], "example_config": 26, "example_dset_info": 9, "example_dset_nam": 9, "example_subdir": 9, "exceed": 5, "except": [13, 14], "exclud": 13, "execut": [3, 9], "exfel": 21, "exist": [6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "existing_data_path": 9, "exp": [21, 26], "expand_dim": 16, "expect": 6, "experi": [5, 26], "experiment": 19, "experiment_summari": 19, "experiment_titl": 19, "explan": 14, "explicitli": 20, "explod": 13, "expr": 17, "express": [6, 13], "extend": 9, "extens": [8, 13], "extent": [6, 19], "extern": [8, 13, 27], "extr": [19, 26], "extra": [6, 8, 20], "extract": [6, 8, 9, 13, 18, 20, 21, 22, 26], "extract_bia": 6, "extract_delay_stage_paramet": 6, "extractor_curr": 26, "extractor_voltag": 26, "extractorcurr": [15, 16, 20, 25, 26], "extractorvoltag": [15, 16, 20, 25, 26], "f": [6, 15, 16, 20, 21, 22, 25, 26], "f1": 26, "f_end": 13, "f_start": 13, "f_step": 13, "fa_hor_channel": 26, "fa_in_channel": 26, "fa_siz": 26, "factor": [6, 24, 26], "faddr": [8, 12], "fail": 13, "fair": 0, "fairmat": 19, "fake": 27, "fals": [3, 5, 6, 7, 8, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "faradayweg": 19, "fast": [5, 8, 26], "fast_dtw": 8, "fastdtw": [6, 26], "fastdtw_radiu": [8, 26], "faster": [5, 17], "featrang": 6, "featur": [0, 1, 5, 6, 8, 9, 16, 18, 20, 21, 22, 26], "feature_extract": [6, 8], "feature_point": 26, "feature_select": [6, 8], "feature_typ": 6, "feedback": 1, "feel": 28, "fel": 15, "fermi": [6, 18], "fetch": [8, 9, 13], "few": [1, 21], "fhi": [13, 19, 22], "fid": 13, "field": [6, 8, 18, 19, 22, 23, 25, 26], "field_aperture_i": 20, "field_aperture_x": 20, "fig": [15, 16, 17, 18, 20, 21, 22, 25], "figsiz": [6, 11, 15, 16, 17, 18, 20, 21, 22, 25], "figur": [6, 11, 15, 16, 20, 21, 22, 23, 24, 25], "file": [1, 3, 5, 6, 7, 8, 9, 12, 13, 15, 18, 22, 23, 24, 25, 27, 29], "file_path": 13, "file_sort": 13, "file_statist": 20, "filemetadata": 13, "filenam": [6, 8, 9, 13, 20, 26], "filenotfounderror": [7, 13], "fill": [6, 10, 13, 19, 20, 21, 24, 26], "filter": [8, 10, 23], "filter_column": [8, 21], "filter_timed_by_electron": [13, 20], "final": [18, 26], "find": [5, 6, 8, 26, 29], "find_bias_peak": [8, 16, 18, 20, 21, 22], "find_correspond": 6, "find_nearest": 6, "find_peak": 16, "fine": 25, "fir": 13, "first": [6, 7, 8, 13, 15, 17, 18, 20, 21, 24, 25, 26], "first_event_time_stamp_kei": [13, 26], "firsteventtimestamp": [13, 26], "fit": [6, 15, 16, 18, 20, 21, 22, 25], "fit_energy_calibr": 6, "fit_funct": 25, "fit_report": 15, "fix": [1, 6, 10, 18, 20, 21], "fixed_cent": 6, "fl0": 26, "fl1": 26, "fl1user1": 26, "fl1user2": 26, "fl1user3": [15, 16, 20, 25, 26], "fl2photdiag_pbd2_gmd_data": 26, "fl2user1": 26, "fl2user2": 26, "flag": [6, 8, 13], "flash": [0, 13, 16, 27, 29], "flash1_user1_stream_2": 26, "flash1_user2_stream_2": 26, "flash1_user3_stream_2": 26, "flash2_user1_stream_2": 26, "flash2_user2_stream_2": 26, "flash_example_config": [15, 16, 20, 25], "flashload": 20, "flat": 25, "flexibl": 5, "flight": [6, 8, 13, 18, 26, 29], "flip": [6, 8, 15, 16, 20, 25, 26], "flip_delay_axi": [6, 8, 15, 16, 20, 25], "flip_time_axi": 26, "float": [5, 6, 8, 10, 11, 13, 20], "float32": [15, 16, 20, 25, 26], "float64": [15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "float64420": 20, "flow": 8, "fluctuat": [22, 26], "fluenc": 19, "fmc0": 26, "fo": [18, 21], "fold": [18, 23], "folder": [7, 8, 9, 13, 16, 18, 19, 20, 22, 23, 24, 26], "folder_config": [7, 15, 16, 25, 26], "follow": [1, 3, 5, 6, 8, 12, 18, 19, 20, 22, 23, 26], "fontsiz": [15, 25], "forc": 13, "force_copi": 13, "force_recr": [13, 20], "fork": 1, "form": [6, 8, 10, 18], "format": [0, 1, 6, 7, 8, 11, 12, 13, 15, 20, 21, 24, 26], "format_vers": 20, "formula": 6, "forward": [10, 13, 26], "forward_fill_iter": 26, "forward_fill_lazi": 10, "found": [6, 7, 8, 12, 13, 18, 19, 20, 23, 24], "four": 24, "fov": 20, "frame": [0, 8], "free": [3, 6, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28], "frequenc": 19, "fritz": 19, "from": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 22, 23, 24, 26, 29], "from_panda": 17, "ftype": 13, "full": [12, 13, 18], "fulli": [7, 9], "function": [0, 1, 6, 7, 8, 10, 11, 13, 15, 16, 17, 18, 20, 21, 22, 24, 26], "further": [18, 26], "futur": [3, 13, 17], "futurewarn": 17, "fwhm": [15, 18, 26], "g": [1, 3, 6, 8, 11, 15, 16, 18, 20, 24, 25, 26], "gamma": [6, 18, 22, 23, 26], "gamma2": [6, 18], "gamma_k": 23, "gamma_m": 23, "gap": 24, "gather_calibration_metadata": 6, "gather_correction_metadata": 6, "gather_fil": 13, "gather_metadata": 13, "gauss": 25, "gauss_mod": 15, "gaussian": [6, 8, 15, 18, 25, 26], "gaussian_filt": 25, "gaussianmodel": 15, "gave": 24, "gb": 3, "gbyte": [13, 16, 18, 19, 20, 21, 22, 23, 24, 25], "gd_w110": [9, 20], "ge": 6, "gener": [1, 3, 6, 8, 13, 15, 16, 18, 21, 22, 24, 25, 26, 27, 29], "generate_inverse_dfield": 6, "generate_splinewarp": [8, 18, 22, 23], "geometr": [6, 18], "get": [2, 13, 18, 19, 22, 23, 24, 29], "get_archiver_data": 13, "get_attribut": 13, "get_channel": 13, "get_count_r": [13, 18, 22], "get_datasets_and_alias": 13, "get_elapsed_tim": [13, 18], "get_files_from_run_id": 13, "get_load": 13, "get_metadata": 13, "get_names_of_all_load": 13, "get_normalization_histogram": 8, "get_parquet_metadata": 13, "get_start_and_end_tim": 13, "get_stat": 13, "get_target_dir": 13, "getdata": 26, "getmtim": 22, "getter": 8, "gid": [13, 26], "git": [1, 3, 28], "github": [1, 3, 19, 28], "github_token": 3, "give": [1, 9, 14, 15, 16, 17, 20, 21, 26], "given": [5, 6, 7, 8, 9, 10, 13, 19, 20, 26], "glob": [13, 22], "gmd": 26, "gmd_data_gmd_data": 26, "gmdbda": [15, 16, 20, 25, 26], "go": 3, "good": [6, 8, 21], "gpf": [15, 16, 20, 21, 25, 26], "graph": [6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "grid": [6, 8, 11, 26], "grid_histogram": [8, 11], "griddata": 6, "group": [3, 13, 26], "group_nam": 13, "groupnam": 13, "gt": [16, 18, 19, 20, 21, 22, 23, 24], "guess": 12, "gui": [8, 18, 23], "guid": 1, "guidelin": 2, "h": 26, "h5": [8, 13, 18, 20, 22, 26], "h5_file": 13, "h5_path": 13, "h5file": 13, "h5filenam": 13, "h5group": 13, "h5py": [13, 22], "h5web": 19, "ha": [3, 5, 6, 8, 9, 10, 13, 16, 20, 21, 26], "haber": 19, "half": [18, 24, 26], "hand": 26, "handl": [0, 11, 13], "handler": 14, "happen": 5, "happi": 25, "have": [1, 3, 6, 8, 10, 12, 16, 18, 20, 21, 24, 25, 26, 28], "hdf": [15, 16, 20, 25], "hdf5": [6, 8, 12, 13, 26], "hdf5_to_arrai": 13, "hdf5_to_datafram": 13, "hdf5_to_timed_arrai": 13, "hdf5_to_timed_datafram": 13, "head": [15, 18, 20, 21, 24, 25], "height": [15, 16], "help": [10, 16, 20, 24, 28], "helper": 13, "henc": 15, "here": [3, 5, 6, 15, 16, 18, 20, 21, 25, 26], "hex": 6, "hexagon": [18, 23], "hextof": [0, 8, 13, 16, 27, 29], "hierarch": [7, 26], "high": [8, 18, 25, 26], "highest": [5, 6], "highlight": 6, "hinder": 6, "hint": 20, "hist": [5, 8], "hist_mod": [5, 8, 17, 26], "histkwd": [8, 11], "histogram": [5, 8, 11, 15, 16, 22, 25, 26, 29], "histogramdd": 5, "histval": 11, "hit": [20, 21], "home": [7, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "homographi": 6, "hook": 1, "hope": 1, "hor": 26, "horizont": [6, 11], "hostedtoolcach": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "how": [0, 2, 5, 6, 8, 19, 20, 21, 23], "howev": [20, 21], "html": [3, 6, 19], "http": [1, 3, 6, 9, 15, 16, 19, 25, 26, 28], "hubbard": 22, "hyper": 6, "hypercub": 5, "hypervolum": 6, "hz": 13, "i": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "id": [3, 6, 8, 13, 26, 29], "id_1_trace_1": 6, "id_1_trace_2": 6, "id_2_trace_1": 6, "id_2_trace_2": 6, "idea": [3, 21], "ideal": [8, 19, 24], "ident": [13, 25], "identifi": [8, 13, 18], "ignor": [9, 12, 13, 20], "ignore_zip": 9, "igor": 20, "il": 6, "imag": [6, 8, 18, 24, 25], "imagej": 12, "imkwd": 6, "implement": [1, 6, 8, 9, 13, 17, 24, 26], "import": [9, 17, 18, 19, 22, 23, 24, 29], "importantli": 24, "impos": [16, 20], "impress": 20, "improv": [5, 17, 20, 25], "imshow": [6, 17], "incident_energi": 19, "incident_energy_spread": 19, "incident_polar": 19, "incident_wavelength": 19, "includ": [1, 3, 6, 8, 10, 11, 12, 13, 15, 18, 19, 20, 22, 26], "include_cent": [6, 8, 18, 22, 23, 26], "incommensur": 20, "increas": [6, 8, 18, 21], "increment": 13, "index": [5, 6, 10, 13, 20, 26], "index_kei": 26, "indic": 8, "individu": [8, 13, 26], "inequival": 20, "inf": [8, 10], "infer": [6, 12, 18], "infer_oth": [6, 8, 18, 22], "influenc": 21, "info": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "inform": [0, 1, 6, 8, 9, 12, 13, 15, 20, 22, 24, 25, 26], "inherit": 13, "inhomogen": 20, "init": [15, 16, 18, 20, 21, 22], "initi": [6, 8, 10, 24, 26], "inplac": 10, "input": [5, 6, 8, 12, 13, 18, 26], "input_column": 13, "input_fil": [8, 12, 26], "insid": [13, 18], "insight": 20, "inspect": [18, 22, 25, 29], "instal": [0, 1, 3, 17], "instanc": [6, 8, 9, 11, 13, 22, 26, 29], "instead": [8, 12, 25], "institut": [19, 20], "instrument": [0, 13, 19, 26, 27, 29], "int": [5, 6, 8, 10, 11, 13, 20, 26], "int64": [15, 16, 20, 21, 25], "int8": [15, 16, 20, 25], "integ": [5, 6, 8, 20, 24], "integr": [6, 15, 25, 26], "intend": [5, 26, 28], "intens": [15, 20, 22, 24, 25, 26], "interact": [6, 8, 18, 20], "interest": [6, 13, 18, 20], "interfac": 1, "intermedi": [20, 26], "intern": 5, "interp_ord": 6, "interpol": [6, 8, 10], "interpret": 8, "interrupt": 9, "interv": [8, 10, 13], "intra": 15, "intrins": 24, "introduc": [0, 1, 25], "inv_dfield": 8, "invalid": [6, 13], "invers": [6, 8, 18, 19, 22, 23], "invert": [15, 16, 20, 25], "investig": 19, "involv": 6, "io": [0, 4, 19], "ipykernel": 28, "isel": 20, "isol": 18, "issu": [1, 3, 10, 24], "item": 7, "iter": [7, 10, 13, 20, 26], "its": [1, 8, 13, 15, 18, 25], "jgu": 20, "jitter": [5, 8, 10, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 29], "jitter_amp": [8, 26], "jitter_col": [8, 26], "jitter_column": 26, "jitter_typ": [10, 24], "job": [3, 26], "json": [7, 13, 19, 20, 26], "json_path": 9, "julian": 19, "jupyt": [1, 28], "jupyterlab": 19, "jupyterlab_h5web": 19, "just": [9, 20], "k": [6, 8, 18, 23, 26], "k_coord_a": [6, 8, 18, 23], "k_coord_b": [6, 8, 18, 23], "k_distanc": [6, 8, 18], "kc": 6, "keep": [6, 7, 8, 13, 14, 15, 16, 20, 25], "kei": [5, 6, 7, 8, 12, 13, 14, 26], "kernel": 28, "keyerror": [5, 13], "keyword": [5, 6, 8, 9, 10, 11, 12, 13, 20], "kinet": [6, 8, 15, 16, 18, 20, 21, 22, 25, 26], "kit": [6, 13], "know": 20, "known": [6, 16, 18, 24], "kr": 6, "ktof": [18, 19, 23, 24, 26], "kwarg": 9, "kwd": [6, 8, 10, 11, 12, 13], "kx": [6, 8, 18, 19, 22, 23, 26], "kx_scale": 26, "ky": [6, 8, 18, 19, 22, 23, 26], "ky_scal": 26, "l": 13, "lab": [8, 19, 28], "label": [6, 15, 16, 20, 24], "landmark": [6, 18, 19, 22, 23], "larg": [5, 24, 25], "larger": [6, 18], "laser": [15, 20, 26], "last": [5, 6, 8], "later": [18, 20, 21], "latest": [1, 3], "layer": [15, 16, 17, 18, 19, 20, 21, 22, 23, 25], "layout": [15, 16, 20, 25], "lazi": 0, "lead": 24, "lean": [5, 8], "least": [6, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "leastsq": [15, 16, 18, 20, 21, 22], "left": [5, 18, 20], "legaci": [5, 8], "legend": [6, 8, 11, 15, 16, 21, 24], "legend_loc": 6, "legkwd": [6, 8, 11], "len": [17, 18, 19, 23, 24, 26], "length": [10, 20, 23, 26], "lens_mod": 19, "lens_mode_config": 26, "less": 24, "let": [9, 20, 21, 24], "level": [6, 9, 13, 15, 21, 27, 29], "lib": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "librari": [7, 8, 29], "like": [1, 5, 12, 20], "likewis": 9, "limit": [5, 8, 18], "linalg": 6, "line": [6, 16, 18, 20, 21, 22, 24, 25], "line2d": [16, 18, 21, 22, 24], "linear": 19, "linekwd": 6, "linesegkwd": 6, "linestyl": [16, 25], "linewidth": [6, 20], "linspac": 17, "lint": 1, "linux": [7, 26, 28], "list": [5, 6, 8, 9, 10, 11, 13, 18, 20, 23, 26], "liter": 6, "ll": 20, "lmfit": [6, 8, 15, 16, 18, 20, 21, 22, 26], "lmkcenter": 6, "load": [6, 7, 8, 9, 12, 13, 25, 26, 29], "load_bias_seri": [8, 16, 18, 20, 21, 22], "load_config": [7, 20], "load_data": 6, "load_datasets_dict": 9, "load_dfield": 6, "load_ext": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "load_h5": 12, "load_h5_in_memori": 13, "load_parquet": 13, "load_tiff": 12, "loader": [0, 2, 4, 6, 8, 18, 22, 26], "loader_interfac": 13, "loader_nam": 13, "loc": [15, 18, 21, 22], "local": [1, 3, 6, 8, 13, 18, 19, 20, 21, 22, 26, 27, 28], "local_folder_config": [20, 21], "localdatastor": 26, "locat": [6, 7, 9, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "lock": 26, "loess": [6, 8], "log": 6, "long": 15, "long_nam": 20, "longer": 24, "look": [5, 6, 8, 9, 13, 15, 20, 21, 24, 25, 26], "lookahead": 6, "lorentz": 6, "lorentzian": [6, 8, 18, 26], "lorentzian_asymmetr": [6, 8, 18], "lose": 24, "loss": 24, "lot": [25, 26], "lower": [6, 10, 22], "lower_bound": [8, 10, 23], "lowerbound1": 6, "lowerbound2": 6, "lsqr": [6, 8, 18], "lssf": [1, 3], "lstsq": [6, 8, 18], "lt": [15, 16, 18, 19, 20, 21, 22, 23, 24], "m": [1, 13, 17, 23, 26, 28], "m1": [19, 26], "m1sb": 16, "m2": [19, 26], "m3": [19, 26], "machin": [1, 19, 24], "maco": 28, "macro": 13, "macrobunch": 13, "made": [1, 5, 8, 25], "mai": [6, 20, 25], "main": [1, 3, 6, 9, 13, 21], "main_dict": 6, "mainli": 20, "maintain": [0, 1, 2], "mainz": 20, "make": [1, 3, 5, 11, 15, 20, 25, 26, 28], "make_param": 15, "maklar": 19, "manag": 9, "mani": [10, 20], "manipul": [14, 24], "manner": 26, "manual": [3, 8, 12, 13, 18, 19, 23], "map": [6, 10, 13], "map_2d": 10, "map_columns_2d": 10, "map_coordin": 6, "map_partit": [6, 10], "mapkwd": 6, "mark": 18, "marker": 13, "mask": 13, "master": 15, "match": 6, "materi": 18, "matlab": 6, "matplotlib": [6, 8, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "matric": 6, "matrix": 6, "max": [10, 15, 16, 18, 19, 20, 21, 25], "max_valu": [8, 21], "maxima": [6, 16, 18, 20, 21], "maximum": [6, 8, 13, 18, 20], "maxwel": [15, 16, 20, 21, 25, 26], "mbid": 21, "mcpfront": 26, "md22": 26, "mean": [6, 8, 10, 15, 16, 18, 20, 21, 25], "meaningless": 13, "measur": [15, 18, 20, 21, 25], "mechan": 26, "member": 1, "memori": 13, "merg": [1, 6, 7, 14], "mesh": 6, "messag": [1, 14], "meta": [6, 13, 14, 18, 19], "meta_path": 20, "metadata": [0, 4, 6, 8, 12, 13, 20, 25, 26, 27], "metadata_config": 13, "metadataretriev": 13, "metahandl": [8, 14], "meter": 6, "method": [1, 5, 6, 8, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26], "meti": 13, "metric": 6, "mica": 29, "microbunch": [13, 20, 21], "microbunchid": 29, "microscop": 13, "middl": [8, 18], "might": [5, 6, 8, 18, 19, 20, 21, 22, 23], "millisecond": [13, 26], "mimic": 5, "min": [6, 16, 18, 20, 21], "min_valu": 8, "minima": 6, "minimum": [6, 8, 13], "mirror": [8, 13, 26], "mirrorutil": [13, 18, 22], "mismatch": 5, "miss": [6, 7, 8, 20], "mitig": 24, "mix": 24, "mj": 19, "mm": 6, "mm1sb": 16, "mm_to_p": 6, "mode": [1, 5, 6, 8, 12, 13, 26, 28], "model": [6, 7, 15], "modif": 26, "modul": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 26], "moment": [18, 19, 22, 23], "momentum": [8, 13, 19, 22, 25], "momentum_resolut": 19, "momentumcorrector": [6, 8], "monitor": [3, 15, 26], "monochrom": 26, "monochromat": 26, "monochromatorphotonenergi": [15, 16, 20, 25, 26], "monoton": 8, "more": [1, 10, 12, 20, 21, 24], "most": [3, 5, 13, 20, 26], "mostli": [6, 13, 26], "motor": [19, 26], "mous": 18, "movement": 9, "mpe": [6, 13, 18, 19, 20], "mpes_example_config": [18, 19, 22, 23, 24], "mpg": [19, 26], "ms_marker": 13, "ms_markers_group": 13, "ms_markers_kei": [13, 26], "msg": 17, "msmarker": [13, 26], "much": [5, 10, 15], "multi": [0, 21], "multi_index": 13, "multicolumn": 13, "multidetector": 13, "multidimension": [1, 5, 6, 13, 26], "multiindex": 13, "multipl": [6, 7, 10, 11, 17, 19, 20], "multiprocess": [5, 8], "multithread": 26, "must": [1, 8, 10, 18, 26], "mycopi": 13, "mymakedir": 13, "n": [5, 6, 8, 13, 17, 18, 20, 26], "n_core": [5, 8], "n_cpu": 8, "n_pt": 17, "name": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28], "nan": [10, 13, 21], "nanosecond": [6, 8, 20, 21, 26], "narrai": 6, "narrow": [8, 18], "natur": 24, "navig": [1, 3], "nbin": 17, "ncol": [8, 11], "nd": 15, "ndarrai": [5, 6, 8, 10, 11, 12, 13], "ndimag": [6, 25], "nearest": 6, "necessari": [1, 3, 26, 29], "need": [6, 8, 9, 12, 15, 18, 20, 21, 23, 25, 26], "neg": 6, "neighbor": [6, 24], "neither": [7, 13], "network": [8, 13, 18, 22], "never": [5, 17, 20], "nevertheless": 24, "new": [1, 3, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28], "new_cent": 6, "new_dataset": 9, "new_tof_column": 6, "new_x_column": [6, 10], "new_y_column": [6, 10], "newli": 20, "next": [6, 8, 18, 20, 21], "nexu": [0, 8, 12, 26, 27], "nfdi": 19, "nice": 14, "nicer": 15, "nir": 19, "nm": [16, 19], "nof": 25, "nois": [5, 8, 10, 24], "non": [23, 24], "none": [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 25], "nonlinear": [6, 18], "nor": [7, 13], "normal": [0, 5, 6, 7, 8, 10, 15, 16, 18, 20, 21, 22, 24, 26, 29], "normalization_histogram": 8, "normalize_ord": [8, 26], "normalize_span": [8, 26], "normalize_to_acquisition_tim": [8, 15, 16, 18, 20, 21, 22, 25], "normspec": 6, "notadirectoryerror": 13, "note": [3, 13, 24, 29], "notebook": [0, 1, 3, 8, 19, 20, 21, 26, 28], "notic": 24, "notimplementederror": [6, 12], "now": [9, 13, 15, 18, 20, 21, 24, 25, 28], "np": [5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23], "np_arrai": 13, "npartit": [15, 16, 17, 18, 19, 20, 21, 22, 23, 25], "nrang": 6, "ntask": 13, "ntrace": 6, "num": [18, 22], "num_column": 20, "num_cor": [8, 26], "num_row": 20, "num_row_group": 20, "numba": [0, 5, 8, 17, 26], "numba_bin": 5, "numba_histogramdd": 5, "number": [1, 5, 6, 8, 10, 11, 12, 13, 14, 17, 18, 20, 23, 24, 26], "numpi": [5, 6, 8, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 26], "nx": [8, 19, 20], "nxinstrument": 19, "nxmpe": [19, 26], "nxmpes_config": [19, 20, 26], "nxuser": 19, "o": [7, 9, 16, 20, 21, 22, 25], "object": [5, 6, 8, 9, 13, 14, 19, 20, 25], "obtain": [3, 6, 13, 16, 18, 20, 21, 25], "occur": [3, 13, 26], "off": [5, 13, 18], "offlin": [15, 16, 20, 25], "offset": [6, 8, 10, 15, 16, 18, 25, 26, 29], "offset_by_other_column": 10, "offset_column": 10, "often": 10, "old": 13, "oldest": 13, "omg": [19, 26], "omit": [6, 8], "onc": [1, 20, 28], "one": [3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26], "ones": [1, 6], "onli": [3, 5, 6, 8, 9, 10, 12, 13, 20, 21, 24, 25], "onto": 8, "ontop": [18, 24], "open": [1, 3, 8, 13, 18, 26], "opencomp": [1, 3, 20, 28], "openmp": 8, "oper": [0, 4, 24], "opposit": 13, "opt": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "optic": [15, 29], "optim": 6, "option": [1, 5, 6, 7, 8, 10, 11, 12, 13, 14, 20, 23, 25, 26], "orang": [16, 25], "order": [5, 6, 7, 8, 12, 13, 15, 16, 20, 25, 26], "org": [3, 9, 15, 16, 25], "organ": 13, "orient": 18, "origin": [1, 6, 8, 21, 24], "orthogon": 6, "orthorhomb": [6, 27], "osc": 26, "oscil": 24, "oserror": 13, "other": [6, 7, 8, 10, 13, 18, 20, 25, 26], "other_entri": 6, "otherwis": [5, 6, 10, 12, 14, 15, 16, 20, 21, 25], "our": [15, 20, 21, 25, 26], "out": [3, 6, 8, 13], "out1": 15, "out2": 15, "out5": 15, "out6": 15, "outlier": 20, "output": [6, 11, 12, 13, 19, 20], "output_column": 13, "outsid": [5, 8, 18], "over": [5, 6, 7, 8, 13, 15, 17, 21, 25], "overflow": 5, "overlap": [6, 15, 20, 25], "overrid": [6, 8, 15, 16, 20, 21, 25], "overview": 21, "overwrit": [7, 8, 10, 13, 14, 20, 26], "overwritten": [6, 26], "ownership": 13, "p": [1, 3, 6, 15, 16, 19, 20, 25, 26], "p004316": 21, "p1": 26, "p1_kei": [6, 26], "p1_valu": 6, "p1sb": 16, "p2": 26, "p2_kei": [6, 26], "p2_valu": 6, "p_rd": [19, 26], "packag": [0, 1, 3, 7, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "package_dir": 7, "page": 3, "pair": [8, 10, 12, 22], "pairwis": 6, "palett": 6, "panda": 13, "pandoc": 3, "panel": [6, 8], "parallel": [5, 6, 8, 26], "param": 13, "paramet": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 22, 23, 25, 26, 29], "parqu": 20, "parquet": [13, 20, 21, 26], "parquet_handl": 13, "parquet_path": 13, "pars": [13, 26], "pars1": 15, "pars2": 15, "pars5": 15, "pars6": 15, "parse_config": 7, "parse_h5_kei": 13, "parse_metadata": 13, "parser": 13, "part": [5, 17, 18], "particular": 6, "partit": [5, 8, 10, 20], "pass": [1, 5, 6, 7, 8, 10, 11, 13, 24, 26], "past": 10, "path": [1, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 26, 29], "path_to_remov": 9, "pathcorr": 6, "pathlib": [12, 15, 16, 18, 20, 21, 25], "pattern": [13, 25], "pbar": [5, 8, 26], "pbd": 26, "pbd2": 26, "pbk": 11, "pcent": [6, 18, 19, 22, 23], "pcolormesh": 6, "pd": [5, 6, 8, 10, 13, 17], "peak": [6, 8, 15, 18, 20, 21, 23, 25, 26], "peak_window": [6, 8, 26], "peakdet": 6, "peakdetect1d": 6, "peakdetect2d": 6, "peaksearch": 6, "per": [6, 8, 13, 20, 21, 24, 26], "per_electron": [13, 26], "per_fil": 26, "per_puls": [13, 26], "per_train": [13, 26], "perfect": 18, "perform": [5, 13, 18, 20, 22], "period": [6, 15], "permiss": 3, "pg": 26, "pg2": [15, 16, 20, 25, 26], "phi": [19, 26], "photoelectron": [0, 20], "photoemiss": [0, 1, 5], "photon": [16, 20, 26], "pi": [18, 20, 23], "pick": [6, 15, 16, 20, 21, 25], "picosecond": [6, 8], "pip": [1, 3, 17, 28], "pipelin": 27, "pixel": [6, 8, 26], "pkwindow": 6, "place": [7, 26], "plan": 17, "planck": 19, "plane": [6, 8, 18, 19, 22, 23], "plate": 6, "pleas": 1, "plot": [6, 8, 11, 15, 16, 17, 18, 21, 22, 23, 24, 25, 29], "plot_single_hist": 11, "plt": [15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "plu": 18, "po": 6, "point": [5, 6, 8, 13, 15, 16, 18, 20, 21, 22, 23, 26], "point_a": [6, 8, 18, 23], "point_b": [6, 8, 18, 23], "pointop": 6, "pol": 19, "polar": [19, 20], "poly_a": 6, "poly_energy_calibr": 6, "polynomi": [6, 8, 18], "popul": 13, "port": [6, 13], "pose": [8, 19, 22], "pose_adjust": [6, 8, 18, 19, 22, 23], "posi": [12, 17], "posit": [6, 8, 15, 18, 19, 21, 23, 25, 26], "possibl": [3, 6, 10, 15, 18], "possibli": [6, 7], "posx": [12, 17], "potenti": 18, "pouter_ord": [6, 18, 19, 22, 23], "power": 5, "pq": 13, "pr": 3, "pre": [1, 7, 8, 14, 18, 25], "pre_bin": 8, "preced": 13, "preciou": [20, 21], "precis": [15, 20], "precompil": 5, "prefer": 7, "prefix": [3, 13, 26], "prepar": 29, "preparation_d": 19, "preparation_descript": 19, "present": [5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "preserv": [7, 15, 16, 20, 25], "preserve_mean": [6, 8, 10, 15, 16, 20, 25], "press": 3, "pressureac": [19, 26], "prevent": 3, "preview": [8, 18, 19], "previou": [1, 10, 14, 18, 25, 29], "previous": [20, 21], "princip": [6, 19], "print": [6, 8, 9, 13, 15, 18, 20, 21], "prioriti": [5, 8, 13], "probabl": [20, 21, 25, 26], "probe": [6, 15, 19, 20, 25, 26], "problem": 24, "procedur": [6, 15], "process": [0, 1, 3, 6, 9, 13, 15, 16, 19, 20, 21, 25, 26], "processed_dir": [13, 20], "processor": [3, 8, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29], "produc": 24, "profil": [6, 29], "progress": [3, 5, 8, 26], "project": [1, 3], "proper": [20, 21], "properti": [6, 8, 9, 13, 14], "propos": [19, 20], "proven": 0, "provid": [1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 22, 26], "public": [15, 16, 20, 21, 25], "publish": 3, "pull": [2, 18, 22, 28], "puls": [13, 26], "pulse_dur": 19, "pulse_energi": 19, "pulseid": [13, 15, 16, 20, 25, 26, 29], "pulser": 26, "pulsersignadc": [15, 16, 20, 25, 26], "pump": [6, 15, 16, 19, 20, 25, 26], "pumpprobetim": 26, "purpos": [17, 18], "push": [1, 3], "put": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "pv": 26, "py": [13, 17], "pydant": 7, "pyenv": 28, "pynxtool": [8, 12, 19, 26], "pypi": [3, 28], "pyplot": [6, 8, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "pyproject": 3, "pytest": 1, "python": [1, 3, 7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "python3": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "quad": 11, "quadmesh": [18, 20, 21, 22, 23], "qualit": 8, "quantiti": 6, "quasi": [24, 26], "queri": [13, 17], "queu": 3, "quick": 20, "quit": [15, 21], "r": [3, 12, 15, 16, 17, 18, 22, 25], "r_center": 6, "r_convers": 6, "r_det": 6, "r_ok": [15, 16, 20, 21, 25], "r_start": 6, "r_step": 6, "radial": 26, "radii": 6, "radiu": [6, 8, 26], "rais": [5, 6, 7, 8, 12, 13, 14, 17], "ramp": 22, "randn": 17, "random": [11, 17, 24], "rang": [5, 6, 8, 11, 13, 15, 16, 19, 20, 21, 23, 24, 25, 26], "range_convert": 6, "rate": [13, 18, 21, 22], "rather": 8, "ratio": 23, "raw": [3, 13, 15, 16, 20, 21, 25, 26], "raw_dir": 13, "rbv": [19, 26], "rd": 26, "rdeform": 6, "rdeform_field": [6, 8], "re": [9, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "read": [3, 6, 7, 8, 12, 13, 15, 16, 18, 20, 21, 26, 29], "read_datafram": [8, 13], "read_delay_rang": 8, "read_env_var": 7, "reader": [8, 12, 13, 19, 20, 26], "readout": 25, "real": 9, "realist": 5, "realli": 17, "rearrang": 9, "rearrange_fil": 9, "reason": [15, 16, 18, 22], "rebas": 1, "recent": 3, "recombin": [5, 26], "record": [9, 15, 16, 21, 22, 25], "recreat": 13, "recurs": 14, "reduc": [15, 16, 18, 20, 21, 22], "reduct": [6, 8, 10, 15, 16, 20, 25], "ref": 26, "ref_energi": [6, 8, 16, 18, 20, 21, 22], "ref_id": [6, 8, 16, 18, 20, 21, 22], "refer": [1, 6, 8, 18, 26], "reference_calib": 16, "refid": 18, "regardless": [13, 20], "region": [6, 25], "regist": 1, "registr": 6, "registri": 1, "rel": [6, 23], "relat": [3, 6, 8, 16, 20, 21], "relationship": 6, "releas": 2, "relev": [15, 16, 20, 21, 25], "reli": 13, "remain": [8, 13, 22], "remov": [3, 13, 20, 21, 25, 26], "remove_invalid_fil": [13, 20], "remove_zip": 9, "renam": 10, "render": 6, "reorder": 6, "repeat": [13, 15], "replac": [6, 8, 13], "report": [7, 13, 26], "repositori": [1, 3, 28], "repres": [5, 8, 12, 13], "represent": [6, 14], "request": [2, 5, 13, 20, 26, 28], "requir": [3, 5, 6, 13, 18, 19, 28], "reread": 13, "rerun": 9, "res01": 24, "res02": 24, "res03": 24, "res11": 24, "res12": 24, "res13": 24, "res14": 24, "res15": 24, "res_1d": 16, "res_bam": 15, "res_chessi": 20, "res_corr": [15, 16, 25], "res_kx_ki": 25, "res_norm": 22, "res_ref": 16, "res_sub": 21, "res_t05": 20, "res_t10": 20, "reserv": [13, 26], "reset": [6, 8, 13], "reset_deform": 6, "reset_multi_index": 13, "resolut": [15, 24], "resolv": [0, 13, 15, 26, 27], "respect": [6, 13, 15, 18, 20, 22, 23, 26], "respons": 3, "restart": 9, "restor": 8, "result": [5, 6, 8, 13, 25, 29], "retain": 12, "retriev": [8, 13, 22, 26], "rettig": 13, "return": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 26], "return_edg": 5, "return_partit": 5, "reus": 18, "revers": 8, "review": 1, "rg": [18, 22], "right": [24, 25], "rise": 8, "rmsnois": 6, "robust": [15, 20, 21, 25], "role": 19, "room": 20, "root": [13, 16, 20, 21, 26], "root_dir": 9, "rotat": [6, 8, 18, 19, 22, 23, 26], "rotation_auto": 6, "rotation_symmetri": [8, 18, 22, 23, 26], "rotsym": 6, "rotvertexgener": 6, "routin": [0, 18, 26], "row": [6, 8, 10, 15, 17], "row_group": 13, "row_index": 6, "rst": 1, "rstart": [6, 26], "rstep": [6, 26], "rtype": 14, "run": [1, 3, 8, 10, 13, 15, 16, 18, 21, 25, 26, 29], "run44498": 15, "run_id": 13, "run_numb": [15, 16, 25], "runner": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "runs44824": 20, "runtimeerror": 5, "rv": 11, "rvbin": 11, "rvrang": 11, "rx": 15, "sa1": 26, "safetymargin": 13, "same": [8, 10, 14, 18, 19, 20, 26], "sampl": [5, 6, 8, 18, 19, 21, 23, 24, 25, 26, 29], "sample_histori": 19, "sample_temperatur": [22, 26], "samplebia": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "sampletemperatur": [15, 16, 20, 25, 26], "sase": [15, 20, 25, 26], "sav": [19, 26], "save": [7, 8, 12, 13, 15, 16, 18, 19, 26, 29], "save_config": 7, "save_delay_calibr": 8, "save_delay_offset": [8, 15, 20], "save_energy_calibr": [8, 16, 18, 20, 21], "save_energy_correct": [8, 18], "save_energy_offset": [8, 20], "save_env_var": 7, "save_momentum_calibr": [8, 18], "save_parquet": 13, "save_splinewarp": [8, 18], "save_transform": 8, "save_workflow_param": [8, 20], "savgol_filt": [6, 8], "saw": 20, "sb": 25, "sb_blur": 25, "sb_norm": 25, "scale": [6, 8, 10, 18, 20, 26], "scaling_auto": 6, "scan": [6, 8, 13, 18, 19, 22, 29], "scan0121_1": [9, 22], "scan049_1": 9, "scandir": [18, 19, 22, 23, 24], "scatter": [6, 16], "scatterkwd": 6, "schedul": 13, "schema": [13, 20], "scicat": [13, 20, 26], "scicat_token": [20, 26], "scicat_url": [20, 26], "scientificmetadata": 20, "scientist": 1, "scipi": [6, 8, 16, 25], "score": 6, "script": [6, 28], "sdiag": 26, "sdir": 13, "search": [5, 6, 7, 13], "search_pattern": 13, "sec": [18, 22], "second": [6, 8, 13, 15, 26], "section": [6, 26], "sector": [6, 8, 15, 16, 25, 26, 29], "sector_delai": [6, 8, 26], "sector_id": [6, 13, 26], "sector_id_column": [6, 13, 20], "sector_id_reserved_bit": [13, 20, 26], "sectorid": 13, "sed": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "sed_config": [7, 8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26], "sed_kernel": 28, "sedprocessor": [8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "see": [1, 3, 6, 8, 9, 13, 15, 20, 21, 24, 25, 26, 28], "seg": 6, "segment": 6, "sel": [15, 16, 20, 25], "select": [1, 3, 6, 8, 13, 18, 23, 26], "select_k_rang": 6, "select_slic": 6, "selector": [6, 13], "self": [6, 8], "sensit": 24, "separ": [6, 13, 20], "sequenc": [5, 6, 8, 10, 11, 12, 13], "sequenti": 21, "seri": [6, 8, 13, 20, 29], "serial": [13, 20], "serialized_s": 20, "set": [1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25], "set_titl": [15, 16, 25], "setup": [26, 29], "sever": [0, 25], "sh": [1, 3], "shall": [18, 26], "shape": [5, 6, 8, 13], "share": 20, "shift": [6, 8, 15, 16, 20, 21, 25], "ship": 26, "short": 15, "should": [1, 5, 6, 8, 9, 12, 13, 16, 19, 20, 24, 26], "show": [5, 6, 8, 15, 16, 18, 19, 20, 21, 22, 25], "show_legend": 6, "showcas": [17, 23], "shown": 24, "side": [15, 25, 27], "sideband": [15, 25], "sig_mov": 6, "sig_stil": 6, "sigma": [6, 15, 18, 26], "sigma_radiu": [18, 26], "sign": [6, 8, 10, 26], "signal": [6, 8, 16, 20], "signific": [5, 13, 15, 17], "significantli": 3, "similar": [5, 9, 10, 13, 25], "similarli": 24, "simpl": [5, 17, 20], "simpli": [17, 20], "simplify_binning_argu": 5, "simul": 17, "simultan": [10, 25], "sinc": 26, "singl": [0, 5, 6, 8, 11, 12, 13, 17, 19, 21, 23, 26], "single_event_data": 9, "sis8300": 26, "site": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "situat": [6, 24], "size": [5, 6, 10, 11, 13, 20, 24, 26], "skip": [3, 18, 19, 23, 24, 28], "skip_test": 5, "slice": [6, 8, 15, 16, 18, 20, 21, 22, 23, 25, 26], "slice_correct": 6, "slider": [6, 8], "slightli": 21, "slow": [3, 8], "slow_ax": 19, "small": [1, 17, 24], "smaller": [15, 24], "smallest": 10, "smooth": [6, 8, 26], "so": [3, 12, 16, 20, 26], "societi": 19, "solv": [6, 24], "some": [9, 13, 16, 20, 24, 25], "sometim": [20, 25], "somewher": 18, "soon": [20, 26], "sort": [12, 13], "sourc": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 26, 28], "sp": [18, 19, 20, 21, 22, 23, 24], "sp_44455": 16, "sp_44498": [15, 16, 25], "space": [3, 6, 8, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "span": [6, 8], "spars": [6, 10], "spatial": 20, "spatial_resolut": 19, "spawn": [5, 8], "spec": [6, 13], "special": 26, "specif": [3, 6, 8, 9, 13, 15, 16, 20, 21, 25], "specifi": [5, 6, 8, 9, 10, 13, 18], "spectra": [6, 20, 21], "spectral": 6, "spectroscopi": [0, 1], "spectrum": [16, 29], "speed": [13, 20], "spent": 20, "spheric": [6, 8, 18], "sphinx": 3, "spline": [6, 8, 18, 19, 22, 26], "spline_warp_estim": [6, 8], "splinewarp": [8, 18], "split": [13, 26], "split_channel_bitwis": 13, "split_dld_time_from_sector_id": [13, 20], "split_sector_id_from_dld_tim": 26, "spot": 29, "sqrt": [18, 23], "squar": [6, 15, 16, 18, 20, 21, 22], "src": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "st": [15, 16, 25], "stack": [6, 8, 12], "stackaxi": 6, "stage": [6, 15, 20, 25, 26, 29], "stamp": [8, 10, 13, 23, 27], "standard": [6, 12, 18, 19], "start": [2, 5, 6, 8, 13, 18, 20, 26], "static": [6, 9, 26], "statist": [15, 16, 18, 20, 21, 22], "stdev": 10, "step": [0, 1, 3, 5, 6, 8, 13, 21, 24, 25, 26], "steparrai": 20, "stepsiz": 24, "still": [20, 26], "stoke": 19, "stop": [6, 9], "storag": [8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "store": [5, 6, 8, 9, 13, 16, 20, 21, 22, 25, 26, 27], "str": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 20, 22], "stream": [13, 26], "stream_0": 26, "stream_1": 26, "stream_2": 26, "stream_4": 26, "stream_name_prefix": 26, "string": [5, 7, 12, 13, 20], "structur": [13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "sub_channel": 26, "subchannel": 26, "subchannelalia": 26, "subclass": [1, 6], "subdir": [9, 18, 19, 22, 23, 24], "subfold": 9, "subfunct": 12, "submit": 28, "subplot": [15, 16, 17, 18, 20, 21, 22, 25], "subsequ": 26, "substanti": 24, "substitu": 8, "subtract": [6, 8, 10], "success": [1, 26], "successfulli": [9, 20, 21], "suffici": 6, "suffix": 10, "sum": [6, 13, 15, 16, 17, 18, 21, 22], "sum_n": 6, "support": [6, 7, 8, 10, 13], "supported_file_typ": 13, "suppress": [6, 20], "suppress_output": 6, "suptitl": [15, 16, 25], "sure": [3, 20, 26], "surround": 6, "sxp": [0, 13, 29], "sxp_example_config": 21, "sy": 17, "sym": 6, "symmetr": [6, 18], "symmetri": [6, 8, 18, 26, 27], "symscor": 6, "symtyp": 6, "sync": 26, "system": [6, 7, 13, 15, 16, 20, 21, 23, 25, 26], "system_config": [7, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "t": [3, 6, 8, 9, 12, 15, 18, 19, 20, 22, 23, 24, 25, 26], "t0": [6, 8, 18, 20, 21, 22, 25, 26, 27], "t0_kei": [6, 26], "t0_valu": 6, "t_b": 22, "t_n": 26, "ta": 6, "tab": 3, "tabl": 17, "tabular": 8, "tag": 3, "tail": 20, "take": [5, 7, 8, 9, 10, 13, 15, 18, 19, 20, 22, 23, 25], "taken": [6, 18, 24], "targcent": 6, "target": [6, 13], "target_column": 10, "tas2": [9, 22], "td": 26, "tell": 23, "temp": 22, "temp_rbv": [19, 26], "temperatur": 27, "temperature_data": 22, "tempor": 15, "term": [6, 15, 24], "terrain": [15, 16, 25], "terrain_r": 6, "test": [1, 9], "test_fid": 13, "text": [11, 15, 16, 25], "than": [8, 12, 24], "thei": [6, 7, 8, 20, 24, 26], "them": [6, 8, 9, 14, 18, 20, 21, 25, 26], "theme": 0, "therefor": [12, 20, 21], "thi": [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "thick": 6, "thin": [6, 18, 19, 22, 23], "thing": 20, "third": 25, "those": [10, 15, 20, 21, 25, 28], "though": 23, "thread": [5, 8, 13, 26], "threadpool_api": [5, 8, 26], "threadpool_limit": 8, "threads_per_work": [5, 8, 26], "three": 13, "through": [0, 1, 18], "throughout": 22, "tht": [19, 26], "thu": [20, 24, 25], "tif": 8, "tiff": [8, 12, 20], "tight": 20, "tight_layout": 20, "time": [0, 6, 8, 10, 12, 13, 15, 16, 17, 23, 24, 25, 26, 27, 29], "time0": 6, "time0_mm": 6, "time1": 26, "time_offset": 6, "time_stamp": [8, 10, 13, 22, 23], "time_stamp_alia": [8, 13], "time_stamp_column": [8, 10], "timed_datafram": 8, "timed_dataframe_unit_tim": 26, "timed_flash1_user3_stream_2_run44762_file1_20230321t113927": 20, "timestamp": [8, 10, 13, 15, 16, 20, 21, 22, 23, 25, 26], "timezon": 22, "timinginfo": 26, "titl": [6, 15, 25], "tm": [18, 19, 22, 26], "tmat": 6, "to_h5": 12, "to_nexu": 12, "to_tiff": 12, "todo": [19, 20], "tof": [6, 8, 13, 16, 18, 20, 21, 25, 26], "tof2ev": 6, "tof2evpoli": 6, "tof2n": 6, "tof_bin": [6, 26], "tof_binwidth": [6, 26], "tof_column": [6, 13, 20, 26], "tof_dist": 6, "tof_fermi": [6, 18, 26], "tof_n": [6, 8, 26], "tof_ns_column": [6, 8], "tof_voltag": 26, "tof_width": [6, 26], "tofvoltag": [15, 16, 20, 25, 26], "tog": 6, "togeth": 18, "toggl": 18, "token": [3, 13, 20, 26], "toml": 3, "too": [8, 18, 20, 24], "took": 26, "tool": [6, 8, 13, 18, 20, 23, 26], "tooltip": 11, "top": 6, "topic": 0, "total": [5, 15, 16, 17, 20, 21, 25], "toward": [6, 18], "tpswarp": 6, "tqdm": [5, 8], "trace": [6, 8, 18, 26], "traces_norm": 6, "track": [0, 5, 20], "trail": 14, "train": [13, 20, 29], "train_id": 13, "trainid": [13, 15, 16, 20, 21, 25], "transform": [5, 6, 8, 18], "transform_typ": 6, "translat": [6, 8, 18, 19, 22, 23], "transmiss": 20, "transpar": [13, 18, 22], "trarp": [0, 19, 22, 26], "tree": 13, "tremend": 13, "tri": [8, 12], "trigger": 3, "true": [5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "trx": [19, 26], "trxp": [25, 27], "trxpd": [0, 29], "try": [5, 9, 17, 19, 21, 24, 26], "trz": [19, 26], "ts_from": 13, "ts_to": 13, "tu": 20, "tube": 18, "tungsten": 25, "tupl": [5, 6, 8, 11, 13], "turn": 5, "tutori": [0, 3, 18, 19, 22, 23, 24, 27, 29], "twice": 10, "two": [3, 6, 8, 9, 10, 13, 18, 20, 23], "type": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 24, 26, 28], "typeerror": [5, 7, 8, 12], "typic": 26, "tzcyx": 12, "tzoffset": 22, "u": [20, 21, 24, 25], "ubid_offset": 26, "uca": 26, "udld": [19, 26], "ufa": 26, "uint16": [21, 26], "uint32": [5, 15, 16, 20, 25, 26], "uint64": [5, 21], "unbin": 26, "uncategoris": 26, "undefin": [6, 13], "under": [8, 14, 25], "underli": 8, "understand": [3, 21], "undo": 16, "unfortun": 25, "uniform": [5, 6, 8, 10, 24], "unimpl": 5, "union": 6, "unit": [8, 20, 26], "unix": 13, "unmodifi": 8, "unreport": [15, 16, 18, 20, 21, 22], "up": [1, 3, 6, 13, 15, 16, 24], "updat": [3, 6, 13], "update_deform": 6, "upload": 3, "upper": 6, "upper_bound": [8, 10, 23], "upperbound1": 6, "upperbound2": 6, "url": [9, 13, 26], "us": [0, 1, 3, 6, 8, 10, 12, 13, 17, 19, 20, 21, 23, 25, 26, 27, 28], "usag": [0, 13], "use_cent": [6, 8, 26], "use_copy_tool": 8, "use_correct": [8, 19], "use_exist": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "use_time_stamp": 8, "user": [1, 3, 5, 6, 7, 13, 17, 19, 22, 23, 26, 28], "user0": 19, "user_config": [7, 22, 23, 26], "user_path": 9, "usual": [5, 20], "util": [0, 5], "utim": 22, "uv": [1, 3], "v": [3, 15, 18, 19, 23, 24, 26, 29], "v0": 3, "val": [5, 6], "valenc": 19, "valid": [6, 7, 8, 13, 20], "valu": [5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 26, 29], "valueerror": [5, 6, 7, 8, 9, 12, 13], "var_nam": 7, "vari": [16, 18, 20, 21, 22], "variabl": [1, 7, 11, 13, 15, 16, 18, 20, 21, 22], "variat": [20, 26], "variou": [13, 26], "vector": [6, 19, 23], "venv": [1, 3, 28], "verbos": [6, 7, 8, 13, 15, 16, 18, 21, 22, 23, 25], "veri": [5, 24, 25], "verifi": [7, 24], "verify_config": 7, "version": [1, 3, 6, 13, 17, 20, 25, 27], "versu": 22, "vert": 6, "vertex": 6, "vertic": [6, 11], "via": 18, "view": [3, 6, 8, 20], "view_even_histogram": 20, "view_event_histogram": [8, 18, 20, 21, 22], "violet": 16, "virtual": [1, 3, 28], "visibl": [15, 25], "visit": 3, "visual": [6, 19, 25, 26, 29], "vital": 26, "vline": [16, 25], "volt": 6, "voltag": [6, 8, 18, 22, 26], "volum": [5, 6], "voxel": 24, "w": [8, 12, 16, 25], "w110": [9, 15, 16, 25], "w4f": [15, 16, 29], "w4f5": 16, "w4f7": [16, 25], "w5p": 25, "w_4f_5": 25, "w_4f_5_blur": 25, "w_4f_5_norm": 25, "w_4f_7": 25, "w_4f_7_bgd": 25, "w_4f_7_bgd_blur": 25, "w_4f_7_blur": 25, "w_4f_7_norm": 25, "w_4f_7_nrm1": 25, "w_4f_7_nrm1_blur": 25, "w_4f_7_nrm2": 25, "w_4f_7_nrm2_blur": 25, "w_5p": 25, "w_5p_blur": 25, "w_5p_norm": 25, "wa": [5, 8, 18, 20, 21, 22], "wai": 24, "walk": 1, "wall": 17, "want": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "warn": [5, 6, 8, 12, 17, 18, 19, 20, 21, 23, 24], "warp": [6, 8, 18], "wave": 13, "wavelength": 20, "we": [0, 1, 9, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "web": 9, "weight": [6, 8, 10, 15, 16, 20, 25], "welcom": 1, "well": [1, 5, 6, 15, 18, 23, 24], "were": [13, 20, 21], "wesp": [13, 26], "wether": 13, "what": [20, 21], "when": [5, 6, 8, 9, 13, 14, 20], "where": [5, 6, 7, 8, 9, 13, 18, 20, 21, 24, 26], "whether": [1, 6, 8, 9, 10, 13, 18, 26], "which": [1, 5, 6, 8, 9, 10, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 26], "whichev": 6, "while": [13, 16, 20], "whole": [6, 8, 15, 20, 25], "whose": 6, "wide": 7, "widget": [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "width": [6, 8, 15, 18, 19, 22, 23, 26], "window": [6, 7, 26, 28], "wise": 6, "within": [6, 8, 13, 18, 22, 24], "withing": 15, "without": [15, 20], "work": [3, 6, 7, 8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "worker": 26, "workflow": [0, 2, 3, 6, 8, 23, 26], "workflow_dispatch": 3, "workhors": 20, "working_dist": 19, "would": [1, 3, 9, 17], "wrapper": 8, "write": [1, 3, 8, 12, 15, 16, 20, 21, 25], "writer": 8, "written": 6, "wrong": 5, "wse2": [9, 18, 19, 23, 24], "x": [6, 8, 10, 11, 12, 15, 16, 18, 19, 20, 22, 23, 24, 26], "x0": 25, "x1": 15, "x2": 15, "x27": 20, "x5": 15, "x6": 15, "x64": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "x_axi": 6, "x_center": [6, 26], "x_column": [6, 10], "x_width": [6, 26], "xarrai": [5, 8, 12, 20, 21, 25], "xaxi": 6, "xfel": [0, 29], "xgs600": [19, 26], "xlabel": 15, "xm": [18, 19, 22, 23, 26], "xpd": 29, "xr": [5, 6, 8, 12, 20, 21, 25], "xrng": 6, "xtran": [6, 8, 18, 19, 22, 23], "xuv": 19, "y": [6, 8, 10, 11, 12, 18, 19, 20, 22, 23, 24, 26], "y1": 15, "y2": 15, "y5": 15, "y6": 15, "y_axi": 6, "y_center": [6, 26], "y_column": [6, 10], "y_width": [6, 26], "yaml": [7, 8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "year": 26, "yet": [8, 21, 26], "ylabel": 15, "ym": [18, 19, 22, 23, 26], "yml": 3, "you": [0, 1, 3, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28], "your": [1, 15, 16, 20, 21, 24, 25, 28], "yournameload": 1, "yourusernam": 1, "ytran": [6, 8, 18, 19, 22, 23], "z": 12, "z1": 26, "z2": 26, "zenodo": [9, 15, 16, 20, 21, 22, 25, 27], "zero": [6, 15, 16, 20, 21, 25], "zfill": [18, 22], "zip": [9, 17], "zone": [6, 18], "zraw": 26, "\u00b5j": 19, "\u00b5m": 20}, "titles": ["SED documentation", "Contributing to sed", "Development", "How to Maintain", "API", "Binning", "Calibrator", "Config", "Core", "Dataset", "Dataframe Operations", "Diagnostics", "IO", "Data loader", "Metadata", "Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction", "Tutorial for trXPS for energy calibration using core level side-bands", "Binning demonstration on locally generated fake data", "Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo", "Binning with metadata generation, and storing into a NeXus file", "Tutorial for binning data from the HEXTOF instrument at FLASH", "Tutorial for binning data from the SXP instrument at the European XFEL", "Binning of temperature-dependent ARPES data using time-stamped external temperature data", "Distortion correction with orthorhombic symmetry", "Correct use of Jittering", "Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization", "Configuration", "User Guide", "Installation", "Workflows"], "titleterms": {"1": 18, "1a": 18, "1st": 18, "2": 18, "3": 18, "3a": 18, "4": 18, "5": 18, "abstract": 13, "ad": 9, "add": 20, "addit": 16, "advanc": 27, "align": 20, "along": 17, "api": [0, 4, 9], "append": 16, "appli": 15, "around": 16, "arp": [18, 22], "attribut": 9, "au": 21, "automat": 16, "ax": 23, "axi": [15, 16, 20, 21, 25], "background": 25, "bam": [15, 16], "band": [16, 23], "baseload": 13, "basic": 27, "berlin": 26, "bia": [16, 21], "bin": [5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25], "calibr": [6, 15, 16, 18, 20, 21, 22, 23, 25], "can": 16, "channel": 21, "check": 15, "chessi": 20, "cleanup": [20, 21], "commun": 0, "compar": 16, "comparison": 15, "comput": [17, 18, 19, 20, 22], "concept": 27, "config": [7, 15, 16, 20, 21, 25], "configur": 26, "contribut": [0, 1], "convers": 18, "core": [8, 16, 25], "correct": [6, 15, 16, 18, 20, 21, 23, 24, 25], "correl": 15, "cross": 15, "custom": 9, "dask": 17, "data": [13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "datafram": [10, 17, 20, 21], "dataset": 9, "datasetsmanag": 9, "default": [9, 26], "defin": [15, 17, 18, 22], "definit": 23, "delai": [6, 15, 16, 18, 20, 21, 25], "delaystag": 20, "demonstr": [17, 18], "depend": 22, "desi": 26, "develop": [1, 2, 28], "diagnost": 11, "distort": [18, 23], "distribut": 17, "dldtimestep": 16, "document": [0, 3], "effect": 15, "electronid": 21, "energi": [6, 15, 16, 18, 20, 21, 25], "entir": 20, "european": 21, "event": 20, "exampl": [0, 9, 26], "extern": 22, "extract": 16, "fake": 17, "featur": 23, "fhi": 26, "file": [16, 19, 20, 21, 26], "final": 19, "find": [16, 20, 21], "flash": [15, 20, 25, 26], "flashload": 13, "flight": [20, 21], "frame": 16, "from": [16, 20, 21, 25], "function": 5, "gener": [17, 19, 20, 23], "genericload": 13, "get": [1, 9, 15, 16, 20, 21, 25], "guid": [0, 27], "guidelin": 1, "helper": 5, "hextof": [15, 20, 25, 26], "histogram": [18, 20, 21], "how": 3, "id": [15, 21], "import": [15, 16, 20, 21, 25], "inspect": [20, 21], "instal": [27, 28], "instanc": 20, "instrument": [15, 20, 21, 25], "interfac": 13, "io": 12, "jitter": [20, 24], "json": 9, "level": [16, 25], "librari": [15, 16, 20, 21, 25], "load": [15, 16, 18, 19, 20, 21, 22, 23, 24], "loader": [1, 13], "local": 17, "main": 5, "maintain": 3, "metadata": [14, 19], "meti": 26, "mica": 21, "microbunchid": 21, "microscop": 26, "momentum": [6, 18, 23, 26], "mpe": 26, "mpesload": 13, "necessari": [15, 16, 20, 21, 25], "nexu": 19, "normal": 25, "note": 20, "now": 16, "number": 16, "o": 15, "offset": [20, 21], "oper": 10, "optic": 20, "option": 18, "orthorhomb": 23, "our": 16, "panda": 17, "paramet": [15, 16, 20, 21], "partit": 17, "path": [15, 16, 20, 21, 25], "peak": 16, "pipelin": 18, "plot": 20, "posit": 16, "prepar": [15, 16, 20, 21, 25], "previou": [16, 20, 21], "processor": 20, "profil": 20, "pull": 1, "puls": 15, "pulseid": 21, "rang": [17, 18, 22], "read": 25, "refer": 16, "releas": 3, "remov": 9, "request": 1, "resolv": 18, "result": 20, "roi": 16, "run": 20, "sampl": 20, "save": [20, 21], "sb": 16, "scan": 21, "sector": 20, "sed": [0, 1, 27], "see": 16, "seri": [16, 21], "set": [15, 26], "setup": [15, 16, 20, 21, 25], "side": 16, "some": [18, 22], "spectrum": [20, 21], "spline": 23, "spot": 20, "stage": [16, 21], "stamp": 22, "start": 1, "step": 18, "store": [15, 18, 19], "sxp": 21, "sxploader": 13, "symmetri": 23, "t0": [15, 16], "temperatur": 22, "those": 16, "time": [18, 20, 21, 22], "top": 23, "topic": 27, "train": [15, 21], "transform": 17, "trxp": [15, 16], "trxpd": 25, "tutori": [15, 16, 20, 21, 25], "us": [5, 9, 15, 16, 18, 22, 24], "user": [0, 9, 27], "util": 13, "v": 21, "valenc": 23, "valu": 20, "version": 28, "versu": 15, "visual": [16, 18, 20, 22], "volum": [18, 19, 22], "w": 15, "w4f": 25, "warp": 23, "we": [15, 16], "workflow": [1, 18, 20, 29], "xfel": 21, "xpd": 25, "zenodo": 18}}) \ No newline at end of file diff --git a/sed/latest/tutorial/10_hextof_workflow_trXPS_bam_correction.html b/sed/latest/tutorial/10_hextof_workflow_trXPS_bam_correction.html deleted file mode 100644 index f519422..0000000 --- a/sed/latest/tutorial/10_hextof_workflow_trXPS_bam_correction.html +++ /dev/null @@ -1,1389 +0,0 @@ - - - - - - - - - - - Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction#

-
-

Preparation#

-
-

Import necessary libraries#

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-
-from pathlib import Path
-import os
-
-from sed import SedProcessor
-from sed.dataset import dataset
-import numpy as np
-
-%matplotlib widget
-import matplotlib.pyplot as plt
-
-# For peak fitting
-from lmfit.models import GaussianModel
-
-
-
-
-
-

Get data paths#

-

If it is your beamtime, you can read the raw data and write to the processed directory. For the public data, you can not write to the processed directory.

-

The paths are such that if you are on Maxwell, it uses those. Otherwise, data is downloaded in the current directory from Zenodo: https://zenodo.org/records/12609441

-
-
[2]:
-
-
-
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
-if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
-    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
-    buffer_path = beamtime_dir + "/processed/tutorial/"
-else:
-    # data_path can be defined and used to store the data in a specific location
-    dataset.get("W110") # Put in Path to a storage of at least 10 Byte free space.
-    path = dataset.dir
-    buffer_path = path + "/processed/"
-
-
-
-
-
-
-
-
-INFO - Not downloading W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/W110".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/W110"
-INFO - W110 data is already present.
-
-
-
-
-

Config setup#

-

Here, we get the path to the config file and set up the relevant directories. This can also be done directly in the config file.

-
-
[3]:
-
-
-
# pick the default configuration file for hextof@FLASH
-config_file = Path('../src/sed/config/flash_example_config.yaml')
-assert config_file.exists()
-
-
-
-
-
[4]:
-
-
-
# here we setup a dictionary that will be used to override the path configuration
-config_override = {
-    "core": {
-        "beamtime_id": 11019101,
-        "paths": {
-            "raw": path,
-            "processed": buffer_path
-        },
-    },
-}
-
-
-
-
-
[5]:
-
-
-
energy_cal = {
-    "energy": {
-        "calibration": {
-            "E0": -132.47100427179566,
-            "creation_date": '2024-11-30T20:47:03.305244',
-            "d": 0.8096677238144319,
-            "energy_scale": "kinetic",
-            "t0": 4.0148196706891397e-07,
-        },
-        "offsets":{
-            "constant": 1,
-            "creation_date": '2024-11-30T21:17:07.762199',
-            "columns": {
-                "monochromatorPhotonEnergy": {
-                    "preserve_mean": True,
-                    "weight": -1,
-                },
-                "tofVoltage": {
-                    "preserve_mean": True,
-                    "weight": -1,
-                },
-            },
-        },
-    },
-}
-
-
-
-
-
-

We use the stored energy calibration parameters and load trXPS data set to define:#

-
    -
  • t0 position with respect to delay stage values;

  • -
  • correct accordingly delay stage offset

  • -
  • fit cross-correlation

  • -
  • apply BAM correction and see its effect on cross-correlation

  • -
-
-
[6]:
-
-
-
run_number = 44498
-sp_44498 = SedProcessor(runs=[run_number], config=config_override, folder_config=energy_cal, system_config=config_file, verbose=True)
-
-sp_44498.add_jitter()
-sp_44498.align_dld_sectors()
-sp_44498.append_energy_axis()
-sp_44498.add_energy_offset()
-
-
-
-
-
-
-
-
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 14 total.
-loading complete in  0.09 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-INFO - Aligning 8s sectors of dataframe
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 16 graph layers
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 11/30/2024, 20:47:03
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 31 graph layers
-INFO - Adding energy offset to dataframe:
-INFO - Using energy offset parameters generated on 11/30/2024, 21:17:07
-INFO - Energy offset parameters:
-   Constant: 1.0
-   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 64 graph layers
-
-
-

Check which channels are included in the dataframe

-
-
[7]:
-
-
-
sp_44498.dataframe.head()
-
-
-
-
-
[7]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergy...delayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorIDenergy
0162802283010650.764000894.7640004594.76416032919.0-6187.968751.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763-43.662226
1162802283011650.750341887.7503414595.75048832919.0-6187.968751.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205760-43.675760
2162802283050681.995886671.9958864422.99609432914.0-6170.156251.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205766-40.988670
3162802283051685.282414658.2824144425.28222732914.0-6170.156251.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763-41.028869
4162802283052669.563147686.5631474423.56298832914.0-6170.156251.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205765-40.998651
-

5 rows × 21 columns

-
-
-
-
-
-

Data w/o BAM correction#

-

First, we take a look at our sideband measurement before any corrections. The sidebands on the W4f core levels can be used as a measure of the pump and probe cross-correlation, and hence our temporal resolution. We plot the data delay stage position vs Energy data, normalized by acquisition time.

-
-
[8]:
-
-
-
axes = ['energy', 'delayStage']
-ranges = [[-37.5,-27.5], [1446.75,1449.15]]
-bins = [200,40]
-res = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[9]:
-
-
-
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-res.plot(robust=True, ax=ax[0], cmap='terrain')
-fig.suptitle(f"Run {run_number}: W 4f, side bands")
-ax[0].set_title('raw')
-bg = res.sel(delayStage=slice(1448.7,1449.1)).mean('delayStage')
-(res.sel(delayStage=slice(1446.8,1449.3))-bg).plot(robust=True, ax=ax[1])
-ax[1].set_title('difference')
-
-
-
-
-
[9]:
-
-
-
-
-Text(0.5, 1.0, 'difference')
-
-
-
-
-
-
-
-
-

Now we make fit to determine precise t\(_0\) position and cross-correlation using lmfit fit models

-
-
[10]:
-
-
-
Gauss_mod = GaussianModel()
-
-#first order sideband:
-x1=res['delayStage']
-y1=res.sel(energy=slice(-30.5,-29.5)).sum('energy')
-y1=y1-np.mean(y1.sel(delayStage=slice(1448.7,1449.1)))
-
-pars1 = Gauss_mod.make_params(amplitude=0.1, center=1447.8, sigma=0.02)
-out1 = Gauss_mod.fit(y1, pars1, x=x1)
-
-#second order sideband
-x2=res['delayStage']
-y2=res.sel(energy=slice(-29.5,-28.5)).sum('energy')
-y2=y2-np.mean(y2.sel(delayStage=slice(1448.7,1449.1)))
-
-pars2 = Gauss_mod.make_params(amplitude=0.1, center=1447.8, sigma=0.02)
-out2 = Gauss_mod.fit(y2, pars2, x=x2)
-
-plt.figure()
-plt.plot(x1,y1,'rx', label='$1^{st}$ order sideband')
-plt.plot(x1,out1.best_fit,'r', label="FWHM = {:.3f} ps".format(out1.values['fwhm']))
-plt.legend(loc="best")
-plt.title('run44498, W4f, sidebands comparison')
-plt.plot(x2,y2,'bx', label='$2^{nd}$ order sideband')
-plt.plot(x2,out2.best_fit,'b', label="FWHM = {:.3f} ps".format(out2.values['fwhm']))
-plt.legend(loc="best")
-plt.xlabel("delayStage [ps]")
-plt.ylabel("Intensity [cts/s]")
-plt.show()
-
-
-
-
-
-
-
-
-
-

As we see the sidebands are quite broad and one of the possible reasons for this could be long or short-term drifts (jitter) of the FEL arrival time with respect to e.g. optical laser or differences in the intra-bunch arrival time. To check and correct for this we can look at beam arrival monitor (BAM). The BAM gives a pulse-resolved measure of the FEL arrival time with respect to a master clock.

-
-
-

Check BAM versus pulse and train IDs#

-
-
[11]:
-
-
-
axes = ['trainId', 'pulseId', 'bam']
-ranges = [[1628022640,1628046700], [0,500], [-6400,100]]
-bins = [250, 100, 1000]
-res_bam = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-

As we can see, jitter between FEL and pump laser is quite significant withing a pulse train as well as over the whole measurement period.

-
-
[12]:
-
-
-

fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained') -res_bam.sel(bam=slice(-6400,-5100)).sum('trainId').plot(ax=ax[0],robust=True, cmap='terrain') -res_bam.sel(bam=slice(-6400,-5100)).sum('pulseId').plot(ax=ax[1],robust=True, cmap='terrain') -plt.show() -
-
-
-
-
-
-
-
-
-
-
-

Apply BAM correction#

-

To correct the SASE jitter, using information from the bam column and to calibrate the pump-probe delay axis, we need to shift the delay stage values to centre the pump-probe-time overlap time zero.

-
-
[13]:
-
-
-
sp_44498.add_delay_offset(
-    constant=-1448, # this is time zero position determined from side band fit
-    flip_delay_axis=True, # invert the direction of the delay axis
-    columns=['bam'], # use the bam to offset the values
-    weights=[-0.001], # bam is in fs, delay in ps
-    preserve_mean=True # preserve the mean of the delay axis to keep t0 position
-)
-
-
-
-
-
-
-
-
-INFO - Adding delay offset to dataframe:
-INFO - Delay offset parameters:
-   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
-   Constant: -1448
-   Flip delay axis: True
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 84 graph layers
-
-
-
-

bin in the corrected delay axis#

-
-
[14]:
-
-
-
axes = ['energy', 'delayStage']
-ranges = [[-37.5,-27.5], [-1.5,1.5]]
-bins = [200,60]
-res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[15]:
-
-
-
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-fig.suptitle(f"Run {run_number}: W 4f, side bands")
-res_corr.plot(robust=True, ax=ax[0], cmap='terrain')
-ax[0].set_title('raw')
-bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
-(res_corr-bg).plot(robust=True, ax=ax[1])
-ax[1].set_title('difference')
-
-
-
-
-
[15]:
-
-
-
-
-Text(0.5, 1.0, 'difference')
-
-
-
-
-
-
-
-
-

We clearly see an effect of BAM corrections - side bands are visible much nicer and width became smaller.

-
-
[16]:
-
-
-
sp_44498.save_delay_offsets()
-
-
-
-
-
-
-
-
-INFO - Saved delay offset parameters to "sed_config.yaml".
-
-
-

Now we can repeat fit procedure to determine true cross-correlation value.

-
-
[17]:
-
-
-
Gauss_mod = GaussianModel()
-
-#first order sideband:
-x5=res_corr['delayStage'].sel(delayStage=slice(-1.6,1.5))
-y5=res_corr.sel(energy=slice(-30.4,-29.5),delayStage=slice(-1.6,1.5)).sum('energy')
-y5=y5-np.mean(y5.sel(delayStage=slice(-1.4,-1.0)))
-
-pars5 = Gauss_mod.make_params(amplitude=0.1, center=0.0, sigma=0.02)
-out5 = Gauss_mod.fit(y5, pars5, x=x5)
-
-print(out5.fit_report())
-
-#second order sideband
-x6=res_corr['delayStage'].sel(delayStage=slice(-1.6,1.5))
-y6=res_corr.sel(energy=slice(-29.5,-27.5),delayStage=slice(-1.6,1.5)).sum('energy')
-y6=y6-np.mean(y6.sel(delayStage=slice(-1.4,-1.0)))
-
-pars6 = Gauss_mod.make_params(amplitude=0.1, center=0.0, sigma=0.02)
-out6 = Gauss_mod.fit(y6, pars6, x=x6)
-
-print(out6.fit_report())
-
-#comparison plot
-plt.figure()
-plt.plot(x5,y5,'rx', label='$1^{st}$ order sideband')
-plt.plot(x5,out5.best_fit,'r', label="FWHM = {:.3f} ps".format(out5.values['fwhm']))
-plt.legend(loc="best")
-plt.title('run44498, W4f, sidebands comparison')
-plt.plot(x6,y6,'bx', label='$2^{nd}$ order sideband')
-plt.plot(x6,out6.best_fit,'b', label="FWHM = {:.3f} ps".format(out6.values['fwhm']))
-plt.legend(loc="best")
-plt.xlabel("pump probe delay [ps]")
-plt.ylabel("Intensity [cts/s]")
-plt.show()
-
-
-
-
-
-
-
-
-[[Model]]
-    Model(gaussian)
-[[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 108
-    # data points      = 60
-    # variables        = 3
-    chi-square         = 2091.05692
-    reduced chi-square = 36.6852091
-    Akaike info crit   = 219.064821
-    Bayesian info crit = 225.347855
-    R-squared          = 0.76937760
-[[Variables]]
-    amplitude:  16.8977797 +/- 1.15914419 (6.86%) (init = 0.1)
-    center:     0.04413499 +/- 0.01091173 (24.72%) (init = 0)
-    sigma:      0.13775487 +/- 0.01091141 (7.92%) (init = 0.02)
-    fwhm:       0.32438792 +/- 0.02569442 (7.92%) == '2.3548200*sigma'
-    height:     48.9364844 +/- 3.35692180 (6.86%) == '0.3989423*amplitude/max(1e-15, sigma)'
-[[Correlations]] (unreported correlations are < 0.100)
-    C(amplitude, sigma) = +0.5773
-[[Model]]
-    Model(gaussian)
-[[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 109
-    # data points      = 60
-    # variables        = 3
-    chi-square         = 275.087260
-    reduced chi-square = 4.82609228
-    Akaike info crit   = 97.3646276
-    Bayesian info crit = 103.647661
-    R-squared          = 0.60986862
-[[Variables]]
-    amplitude:  4.40959498 +/- 0.39963939 (9.06%) (init = 0.1)
-    center:     0.02242043 +/- 0.01302554 (58.10%) (init = 0)
-    sigma:      0.12446500 +/- 0.01302544 (10.47%) (init = 0.02)
-    fwhm:       0.29309268 +/- 0.03067258 (10.47%) == '2.3548200*sigma'
-    height:     14.1338843 +/- 1.28095129 (9.06%) == '0.3989423*amplitude/max(1e-15, sigma)'
-[[Correlations]] (unreported correlations are < 0.100)
-    C(amplitude, sigma) = +0.5774
-
-
-
-
-
-
-
-
-
-
-
-

Comparison of the BAM correction effect#

-
-
[18]:
-
-
-
fig,ax=plt.subplots(2,2,figsize=(6,6),layout="constrained")
-
-plt.axes(ax[0,0])
-res.plot(cmap='terrain', robust=True)
-plt.title("W4f, no bam correction")
-
-plt.axes(ax[0,1])
-plt.plot(x1,y1,'rx',label='integrated intensity 1. order')
-plt.plot(x1,out1.best_fit,'r',label='1. order fit, FWHM = {:.3f} ps'.format(out1.values['fwhm']))
-plt.plot(x2,y2,'bx',label='integrated intensity 2. order')
-plt.plot(x2,out2.best_fit,'b',label='2. order fit, FWHM = {:.3f} ps'.format(out2.values['fwhm']))
-plt.legend(loc=1)
-plt.title("Sidebands without bam correction")
-
-plt.axes(ax[1,0])
-res_corr.sel(delayStage=slice(-1.6,1.5)).plot(robust=True,cmap='terrain')
-plt.title("W4f, with bam correction")
-
-plt.axes(ax[1,1])
-plt.plot(x5,y5,'rx',label='integrated intensity 1. order')
-plt.plot(x5,out5.best_fit,'r',label='1. order fit, FWHM = {:.3f} ps'.format(out5.values['fwhm']))
-plt.plot(x6,y6,'bx',label='integrated intensity 2. order')
-plt.plot(x6,out6.best_fit,'b',label='2. order fit, FWHM = {:.3f} ps'.format(out6.values['fwhm']))
-plt.legend(loc=1)
-plt.title("Sidebands with bam correction")
-
-fig.suptitle(f'Run {run_number}: Effect of BAM correction',fontsize='14')
-
-
-
-
-
[18]:
-
-
-
-
-Text(0.5, 0.98, 'Run 44498: Effect of BAM correction')
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html b/sed/latest/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html deleted file mode 100644 index 6dd715f..0000000 --- a/sed/latest/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html +++ /dev/null @@ -1,1318 +0,0 @@ - - - - - - - - - - - Tutorial for trXPS for energy calibration using core level side-bands — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Tutorial for trXPS for energy calibration using core level side-bands#

-
-

Preparation#

-
-

Import necessary libraries#

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-
-from pathlib import Path
-import os
-
-from sed import SedProcessor
-from sed.dataset import dataset
-import numpy as np
-
-%matplotlib widget
-import matplotlib.pyplot as plt
-
-### for automatic peak finding
-from scipy.signal import find_peaks
-
-
-
-
-
-

Get data paths#

-

If it is your beamtime, you can read the raw data and write to the processed directory. For the public data, you can not write to the processed directory.

-

The paths are such that if you are on Maxwell, it uses those. Otherwise, data is downloaded in the current directory from Zenodo: https://zenodo.org/records/12609441

-
-
[2]:
-
-
-
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
-if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
-    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
-    buffer_path = beamtime_dir + "/processed/tutorial/"
-else:
-    # data_path can be defined and used to store the data in a specific location
-    dataset.get("W110") # Put in Path to a storage of at least 10 GByte free space.
-    path = dataset.dir
-    buffer_path = path + "/processed/"
-
-
-
-
-
-
-
-
-INFO - Not downloading W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/W110".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/W110"
-INFO - W110 data is already present.
-
-
-
-
-

Config setup#

-

Here, we get the path to the config file and set up the relevant directories. This can also be done directly in the config file.

-
-
[3]:
-
-
-
# pick the default configuration file for hextof@FLASH
-config_file = Path('../src/sed/config/flash_example_config.yaml')
-assert config_file.exists()
-
-
-
-
-
[4]:
-
-
-
# here we setup a dictionary that will be used to override the path configuration
-config_override = {
-    "core": {
-        "beamtime_id": 11019101,
-        "paths": {
-            "raw": path,
-            "processed": buffer_path
-        },
-    },
-}
-
-
-
-
-
-
-

Reference calibration from a bias series#

-
-
[5]:
-
-
-
sp_44455 = SedProcessor(runs=[44455], config=config_override, system_config=config_file)
-sp_44455.add_jitter()
-sp_44455.align_dld_sectors()
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 6 total.
-loading complete in  0.08 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-INFO - Aligning 8s sectors of dataframe
-INFO - Dask DataFrame Structure:
-              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=6
-               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 16 graph layers
-
-
-
-

find calibration parameters#

-

We now will fit the tof-energy relation. This is done by finding the maxima of a peak in the tof spectrum, and then fitting the square root relation to obtain the calibration parameters.

-
-
[6]:
-
-
-
axes = ['sampleBias','dldTimeSteps']
-bins = [4, 250]
-ranges = [[77.5,81.5],  [4050,4500]]
-res = sp_44455.compute(bins=bins, axes=axes, ranges=ranges)
-sp_44455.load_bias_series(binned_data=res)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[7]:
-
-
-
ranges=(4120, 4200)
-ref_id=0
-sp_44455.find_bias_peaks(ranges=ranges, ref_id=ref_id, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Use feature ranges: [(4120.2, 4199.4), (4156.2, 4224.6), (4195.8, 4282.2), (4237.2, 4323.6)].
-INFO - Extracted energy features: [[4.1472e+03 1.0000e+00]
- [4.1850e+03 1.0000e+00]
- [4.2246e+03 1.0000e+00]
- [4.2678e+03 1.0000e+00]].
-
-
-
-
[8]:
-
-
-
sp_44455.calibrate_energy_axis(
-    ref_energy=-31.4,
-    method="lmfit",
-    energy_scale='kinetic',
-    d={'value':1.0,'min': .7, 'max':1.0, 'vary':True},
-    t0={'value':5e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
-    E0={'value': 0., 'min': -200, 'max': 100, 'vary': True},
-)
-
-
-
-
-
-
-
-
-INFO - [[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 46
-    # data points      = 4
-    # variables        = 3
-    chi-square         = 0.00151332
-    reduced chi-square = 0.00151332
-    Akaike info crit   = -25.5189696
-    Bayesian info crit = -27.3600865
-[[Variables]]
-    d:   0.80966772 +/- 1.56525760 (193.32%) (init = 1)
-    t0:  4.0148e-07 +/- 1.6505e-07 (41.11%) (init = 5e-07)
-    E0: -101.048293 +/- 12.5092127 (12.38%) (init = 0)
-[[Correlations]] (unreported correlations are < 0.100)
-    C(d, t0)  = -0.9999
-    C(d, E0)  = -0.9998
-    C(t0, E0) = +0.9995
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Now that we have the calibration parameters, we can generate the energy axis for each spectrum

-
-
[9]:
-
-
-
sp_44455.save_energy_calibration("reference_calib.yaml")
-
-
-
-
-
-
-
-
-INFO - Saved energy calibration parameters to "reference_calib.yaml".
-
-
-
-
-

Now we can use those parameters and load our trXPS data using the additional config file#

-

To obtain a correct energy axis, we offset the energy axis by the difference of photon energy between this run and the energy calibration runs

-
-
[10]:
-
-
-
run_number = 44498
-sp_44498 = SedProcessor(runs=[run_number], config=config_override, folder_config="reference_calib.yaml", system_config=config_file, verbose=True)
-sp_44498.add_jitter()
-sp_44498.append_energy_axis()
-sp_44498.add_energy_offset(
-    constant=1,
-    columns=['monochromatorPhotonEnergy','tofVoltage'],
-    weights=[-1,-1],
-    preserve_mean=[True, True],
-)
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/reference_calib.yaml]
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 14 total.
-loading complete in  0.08 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:08:29
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 29 graph layers
-INFO - Adding energy offset to dataframe:
-INFO - Energy offset parameters:
-   Column[monochromatorPhotonEnergy]: Weight=-1, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1, Preserve Mean: True, Reductions: None.
-   Constant: 1
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 62 graph layers
-
-
-

And bin an energy spectrum for reference

-
-
[11]:
-
-
-
axes = ['energy']
-ranges = [[-37.5,-27.5]]
-bins = [200]
-res_ref = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
-
-plt.figure()
-res_ref.plot()
-
-
-
-
-
-
-
-
-
-
-
[11]:
-
-
-
-
-[<matplotlib.lines.Line2D at 0x7f1ab0240340>]
-
-
-
-
-
-
-
-
-
-
-
-

Energy calibration using side-band peaks#

-
-

Visualize trXPS data bin in the dldTimeSteps and the corrected delay axis to prepare for energy calibration using SB#

-

We now prepare for an alternative energy calibration based on the side-bands of the time-dependent dataset. This is e.g. helpful if no bias series has been obtained.

-
-
[12]:
-
-
-
run_number = 44498
-sp_44498 = SedProcessor(runs=[run_number], config=config_override, system_config=config_file, verbose=True)
-sp_44498.add_jitter()
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 14 total.
-loading complete in  0.08 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-
-
-
-
-

We correct delay stage, t0 position and BAM (see previous tutorial)#

-
-
[13]:
-
-
-
sp_44498.add_delay_offset(
-    constant=-1448, # this is time zero position determined from side band fit
-    flip_delay_axis=True, # invert the direction of the delay axis
-    columns=['bam'], # use the bam to offset the values
-    weights=[-0.001], # bam is in fs, delay in ps
-    preserve_mean=True # preserve the mean of the delay axis to keep t0 position
-)
-
-
-
-
-
-
-
-
-INFO - Adding delay offset to dataframe:
-INFO - Delay offset parameters:
-   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
-   Constant: -1448
-   Flip delay axis: True
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=14
-                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 34 graph layers
-
-
-
-
[14]:
-
-
-
axes = ['dldTimeSteps', 'delayStage']
-ranges = [[3900,4200], [-1.5,1.5]]
-bins = [100,60]
-res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-
-fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-fig.suptitle(f"Run {run_number}: W 4f, side bands")
-res_corr.plot(ax=ax[0], cmap='terrain')
-ax[0].set_title('raw')
-bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
-(res_corr-bg).plot(ax=ax[1])
-ax[1].set_title('difference')
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[14]:
-
-
-
-
-Text(0.5, 1.0, 'difference')
-
-
-
-
-
-
-
-
-
-
-

Automatically extract number and position of peaks in the ROI around t0#

-
-
[15]:
-
-
-
# binned data
-roi = slice(3980, 4160)
-delay = slice(-0.5,0.5)
-data = res_corr.sel(dldTimeSteps = roi, delayStage=delay).sum('delayStage')
-distance = 7
-peaks, _ = find_peaks(data, height=None, distance=distance)
-
-p1SB = data[peaks]['dldTimeSteps'][0]
-W4f5 = data[peaks]['dldTimeSteps'][1]
-m1SB = data[peaks]['dldTimeSteps'][2]
-W4f7 = data[peaks]['dldTimeSteps'][3]
-mm1SB = data[peaks]['dldTimeSteps'][4]
-plt.figure()
-data.plot()
-plt.scatter(data[peaks]['dldTimeSteps'], data[peaks], c='r')#, "x")
-plt.vlines([p1SB-7,p1SB+7], 0, 150, color='violet', linestyles='dashed', label='$1^{st}$ order SB')
-plt.vlines([W4f5-7,W4f5+7], 0, 150, color='b', linestyles='dashed', label='W 4f 7/2')
-plt.vlines([m1SB-7,m1SB+7], 0, 150, color='g', linestyles='dashed', label='$-1^{st}$ order SB')
-plt.vlines([W4f7-7,W4f7+7], 0, 150, color='r', linestyles='dashed', label='W 4f 5/2')
-plt.vlines([mm1SB-7,mm1SB+7], 0, 150, color='orange', linestyles='dashed', label='$2nd -1^{st}$ order SB')
-plt.legend()
-plt.show()
-
-
-
-
-
-
-
-
-
-
-
-

find calibration parameters#

-

We now will fit the tof-energy relation. This is done using the maxima of a peak in the ToF spectrum and the known kinetic energy of those peaks (kinetic energy of e.g. W4f peaks (-31.4 and -33.6 eV) and their SB of different orders accounting energy of pump beam of 1030 nm = 1.2 eV. The calibration parameters are obtained by fitting the square root relation.

-
-
[16]:
-
-
-
### Kinetic energy of w4f peaks and their SB
-ref_energy = -30.2
-sp_44498.ec.biases = -1*np.array([-30.2,-31.4,-32.6,-33.6,-34.8])
-sp_44498.ec.peaks = np.expand_dims(data[peaks]['dldTimeSteps'].data,1)
-sp_44498.ec.tof = res_corr.dldTimeSteps.data
-
-sp_44498.calibrate_energy_axis(
-    ref_energy=ref_energy,
-    method="lmfit",
-    d={'value':1.0,'min': .8, 'max':1.0, 'vary':True},
-    t0={'value':5e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
-    E0={'value': -100., 'min': -200, 'max': 15, 'vary': True},
-)
-
-
-
-
-
-
-
-
-INFO - [[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 123
-    # data points      = 5
-    # variables        = 3
-    chi-square         = 0.04811488
-    reduced chi-square = 0.02405744
-    Akaike info crit   = -17.2180090
-    Bayesian info crit = -18.3896953
-[[Variables]]
-    d:   0.80482246 +/- 0.56768800 (70.54%) (init = 1)
-    t0:  4.0567e-07 +/- 2.9002e-07 (71.49%) (init = 5e-07)
-    E0: -59.1600349 +/- 29.3415291 (49.60%) (init = -100)
-[[Correlations]] (unreported correlations are < 0.100)
-    C(d, t0)  = -0.9999
-    C(d, E0)  = -0.9997
-    C(t0, E0) = +0.9992
-
-
-
-
-
-
-
-
-
-
-

Append energy axis into a data frame, bin and visualize data in the calibrated energy and corrected delay axis#

-

To get a correct energy axis, we undo the shifts imposed by the calibration function

-
-
[17]:
-
-
-
sp_44498.append_energy_axis()
-sp_44498.add_energy_offset(
-    constant=30.2,
-    columns=['monochromatorPhotonEnergy','tofVoltage','sampleBias'],
-    weights=[-1,-1,-1],
-    preserve_mean=[True, True,False],
-)
-
-
-
-
-
-
-
-
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:08:42
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 49 graph layers
-INFO - Adding energy offset to dataframe:
-INFO - Energy offset parameters:
-   Column[monochromatorPhotonEnergy]: Weight=-1, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1, Preserve Mean: True, Reductions: None.
-   Column[sampleBias]: Weight=-1, Preserve Mean: False, Reductions: None.
-   Constant: 30.2
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 87 graph layers
-
-
-
-
[18]:
-
-
-
axes = ['energy', 'delayStage']
-ranges = [[-37.5,-27.5], [-1.5,1.5]]
-bins = [200,60]
-res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-
-fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-fig.suptitle(f"Run {run_number}: W 4f, side bands")
-res_corr.plot(ax=ax[0], cmap='terrain')
-ax[0].set_title('raw')
-bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
-(res_corr-bg).plot(ax=ax[1])
-ax[1].set_title('difference')
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[18]:
-
-
-
-
-Text(0.5, 1.0, 'difference')
-
-
-
-
-
-
-
-
-
-
-
-

Compare to reference#

-

While this calibration methods gives a reasonable approximation to the energy axis, there are some deviations to the bias method, so it should be used with care

-
-
[19]:
-
-
-
axes = ['energy']
-ranges = [[-37.5,-27.5]]
-bins = [200]
-res_1D = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
-
-plt.figure()
-(res_ref/res_ref.max()).plot(label="bias series calibration")
-(res_1D/res_1D.max()).plot(label="side band calibration")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[19]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f1a8c96d420>
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/1_binning_fake_data.html b/sed/latest/tutorial/1_binning_fake_data.html deleted file mode 100644 index c65aace..0000000 --- a/sed/latest/tutorial/1_binning_fake_data.html +++ /dev/null @@ -1,921 +0,0 @@ - - - - - - - - - - - Binning demonstration on locally generated fake data — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Binning demonstration on locally generated fake data#

-

In this example, we generate a table with random data simulating a single event dataset. We showcase the binning method, first on a simple single table using the bin_partition method and then in the distributed method bin_dataframe, using daks dataframes. The first method is never really called directly, as it is simply the function called by the bin_dataframe on each partition of the dask dataframe.

-
-
[1]:
-
-
-
import dask
-import numpy as np
-import pandas as pd
-import dask.dataframe
-
-import matplotlib.pyplot as plt
-
-from sed.binning import bin_partition, bin_dataframe
-
-%matplotlib widget
-
-
-
-
-
-
-
-
-/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/dask/dataframe/__init__.py:42: FutureWarning:
-Dask dataframe query planning is disabled because dask-expr is not installed.
-
-You can install it with `pip install dask[dataframe]` or `conda install dask`.
-This will raise in a future version.
-
-  warnings.warn(msg, FutureWarning)
-
-
-
-

Generate Fake Data#

-
-
[2]:
-
-
-
n_pts = 100000
-cols = ["posx", "posy", "energy"]
-df = pd.DataFrame(np.random.randn(n_pts, len(cols)), columns=cols)
-df
-
-
-
-
-
[2]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
posxposyenergy
01.324629-0.5047070.241533
1-0.511322-0.2804290.367342
2-0.666617-0.984490-0.996565
30.395211-0.7820890.291860
4-1.1174830.7983910.441827
............
999951.2082090.1172952.005021
999961.2703482.156440-1.231543
999970.5573131.267318-0.199633
99998-1.1586181.908764-0.985325
999991.0940600.9179470.972665
-

100000 rows × 3 columns

-
-
-
-
-

Define the binning range#

-
-
[3]:
-
-
-
binAxes = ["posx", "posy", "energy"]
-nBins = [120, 120, 120]
-binRanges = [(-2, 2), (-2, 2), (-2, 2)]
-coords = {ax: np.linspace(r[0], r[1], n) for ax, r, n in zip(binAxes, binRanges, nBins)}
-
-
-
-
-
-

Compute the binning along the pandas dataframe#

-
-
[4]:
-
-
-
%%time
-res = bin_partition(
-    part=df,
-    bins=nBins,
-    axes=binAxes,
-    ranges=binRanges,
-    hist_mode="numba",
-)
-
-
-
-
-
-
-
-
-CPU times: user 1.15 s, sys: 24.9 ms, total: 1.18 s
-Wall time: 1.18 s
-
-
-
-
[5]:
-
-
-
fig, axs = plt.subplots(1, 3, figsize=(6, 1.875), constrained_layout=True)
-for i in range(3):
-    axs[i].imshow(res.sum(i))
-
-
-
-
-
-
-
-
-
-
-
-

Transform to dask dataframe#

-
-
[6]:
-
-
-
ddf = dask.dataframe.from_pandas(df, npartitions=50)
-ddf
-
-
-
-
-
[6]:
-
-
-
-
Dask DataFrame Structure:
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
posxposyenergy
npartitions=50
0float64float64float64
2000.........
............
98000.........
99999.........
-
-
Dask Name: from_pandas, 1 graph layer
-
-
-
-

Compute distributed binning on the partitioned dask dataframe#

-

In this example, the small dataset does not give significant improvement over the pandas implementation, at least using this number of partitions. A single partition would be faster (you can try…) but we use multiple for demonstration purposes.

-
-
[7]:
-
-
-
%%time
-res = bin_dataframe(
-    df=ddf,
-    bins=nBins,
-    axes=binAxes,
-    ranges=binRanges,
-    hist_mode="numba",
-)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-CPU times: user 650 ms, sys: 181 ms, total: 830 ms
-Wall time: 717 ms
-
-
-
-
[8]:
-
-
-
fig, axs = plt.subplots(1, 3, figsize=(6, 1.875), constrained_layout=True)
-for dim, ax in zip(binAxes, axs):
-    res.sum(dim).plot(ax=ax)
-
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html b/sed/latest/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html deleted file mode 100644 index b3b05f4..0000000 --- a/sed/latest/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html +++ /dev/null @@ -1,1651 +0,0 @@ - - - - - - - - - - - Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo#

-

In this example, we pull some time-resolved ARPES data from Zenodo, and load it into the sed package using functions of the mpes package. Then, we run a conversion pipeline on it, containing steps for visualizing the channels, correcting image distortions, calibrating the momentum space, correcting for energy distortions and calibrating the energy axis. Finally, the data are binned in calibrated axes. For performance reasons, best store the data on a locally attached storage (no network drive). -This can also be achieved transparently using the included MirrorUtil class.

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-import numpy as np
-import matplotlib.pyplot as plt
-import sed
-from sed.dataset import dataset
-
-%matplotlib widget
-
-
-
-
-

Load Data#

-
-
[2]:
-
-
-
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
-data_path = dataset.dir # This is the path to the data
-scandir, caldir = dataset.subdirs # scandir contains the data, caldir contains the calibration files
-
-
-
-
-
-
-
-
-INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
-INFO - WSe2 data is already present.
-
-
-
-
[3]:
-
-
-
# create sed processor using the config file:
-sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={}, verbose=True)
-
-
-
-
-
-
-
-
-INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
-
-
-
-
[4]:
-
-
-
# Apply jittering to X, Y, t, ADC columns.
-# Columns are defined in the config, or can be provided as list.
-sp.add_jitter()
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
-
-
-
-
[5]:
-
-
-
# Plot of the count rate through the scan
-rate, secs = sp.loader.get_count_rate(range(100))
-plt.plot(secs, rate)
-
-
-
-
-
[5]:
-
-
-
-
-[<matplotlib.lines.Line2D at 0x7f7b25f812d0>]
-
-
-
-
-
-
-
-
-
-
[6]:
-
-
-
# The time elapsed in the scan
-sp.loader.get_elapsed_time()
-
-
-
-
-
[6]:
-
-
-
-
-2588.4949999999994
-
-
-
-
[7]:
-
-
-
# Inspect data in dataframe Columns:
-# axes = ['X', 'Y', 't', 'ADC']
-# bins = [100, 100, 100, 100]
-# ranges = [(0, 1800), (0, 1800), (130000, 140000), (0, 9000)]
-# sp.view_event_histogram(dfpid=1, axes=axes, bins=bins, ranges=ranges)
-sp.view_event_histogram(dfpid=2)
-
-
-
-
-
-
-
-
-
-
-
-

Distortion correction and Momentum Calibration workflow#

-
-

Distortion correction#

-
-

1. step:#

-

Bin and load part of the dataframe in detector coordinates, and choose energy plane where high-symmetry points can well be identified. Either use the interactive tool, or pre-select the range:

-
-
[8]:
-
-
-
#sp.bin_and_load_momentum_calibration(df_partitions=20, plane=170)
-sp.bin_and_load_momentum_calibration(df_partitions=100, plane=33, width=10, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2. Step:#

-

Next, we select a number of features corresponding to the rotational symmetry of the material, plus the center. These can either be auto-detected (for well-isolated points), or provided as a list (these can be read-off the graph in the cell above). These are then symmetrized according to the rotational symmetry, and a spline-warping correction for the x/y coordinates is calculated, which corrects for any geometric distortions from the perfect n-fold rotational symmetry.

-
-
[9]:
-
-
-
#features = np.array([[203.2, 341.96], [299.16, 345.32], [350.25, 243.70], [304.38, 149.88], [199.52, 152.48], [154.28, 242.27], [248.29, 248.62]])
-#sp.define_features(features=features, rotation_symmetry=6, include_center=True, apply=True)
-# Manual selection: Use a GUI tool to select peaks:
-#sp.define_features(rotation_symmetry=6, include_center=True)
-# Autodetect: Uses the DAOStarFinder routine to locate maxima.
-# Parameters are:
-#   fwhm: Full-width at half maximum of peaks.
-#   sigma: Number of standard deviations above the mean value of the image peaks must have.
-#   sigma_radius: number of standard deviations around a peak that peaks are fitted
-sp.define_features(rotation_symmetry=6, auto_detect=True, include_center=True, fwhm=10, sigma=12, sigma_radius=4, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3. Step:#

-

Generate nonlinear correction using splinewarp algorithm. If no landmarks have been defined in previous step, default parameters from the config are used

-
-
[10]:
-
-
-
# Option whether a central point shall be fixed in the determination fo the correction
-sp.generate_splinewarp(include_center=True)
-
-
-
-
-
-
-
-
-INFO - Calculated thin spline correction based on the following landmarks:
-pouter_ord: [[203.0039765  342.99171918]
- [299.87633072 346.19427038]
- [350.95113635 244.77654127]
- [305.64228939 150.20244008]
- [199.5409951  152.78524092]
- [153.41883308 243.04327152]]
-pcent: (249.04108057657348, 249.1877259516608)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Optional (Step 3a):#

-

Save distortion correction parameters to configuration file in current data folder:

-
-
[11]:
-
-
-
# Save generated distortion correction parameters for later reuse
-sp.save_splinewarp()
-
-
-
-
-
-
-
-
-INFO - Saved momentum correction parameters to "sed_config.yaml".
-
-
-
-
-

4. Step:#

-

To adjust scaling, position and orientation of the corrected momentum space image, you can apply further affine transformations to the distortion correction field. Here, first a potential scaling is applied, next a translation, and finally a rotation around the center of the image (defined via the config). One can either use an interactive tool, or provide the adjusted values and apply them directly.

-
-
[12]:
-
-
-
#sp.pose_adjustment(xtrans=14, ytrans=18, angle=2)
-sp.pose_adjustment(xtrans=8, ytrans=7, angle=-4, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Applied translation with (xtrans=8.0, ytrans=7.0).
-INFO - Applied rotation with angle=-4.0.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5. Step:#

-

Finally, the momentum correction is applied to the dataframe, and corresponding meta data are stored

-
-
[13]:
-
-
-
sp.apply_momentum_correction()
-
-
-
-
-
-
-
-
-INFO - Adding corrected X/Y columns to dataframe:
-Calculating inverse deformation field, this might take a moment...
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym
-npartitions=100
-                 float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...
-Dask Name: apply_dfield, 206 graph layers
-
-
-
-
-
-

Momentum calibration workflow#

-
-

1. Step:#

-

First, the momentum scaling needs to be calibrated. Either, one can provide the coordinates of one point outside the center, and provide its distance to the Brillouin zone center (which is assumed to be located in the center of the image), one can specify two points on the image and their distance (where the 2nd point marks the BZ center),or one can provide absolute k-coordinates of two distinct momentum points.

-

If no points are provided, an interactive tool is created. Here, left mouse click selects the off-center point (brillouin_zone_centered=True) or toggle-selects the off-center and center point.

-
-
[14]:
-
-
-
k_distance = 2/np.sqrt(3)*np.pi/3.28 # k-distance of the K-point in a hexagonal Brillouin zone
-#sp.calibrate_momentum_axes(k_distance = k_distance)
-point_a = [308, 345]
-sp.calibrate_momentum_axes(point_a=point_a, k_distance = k_distance, apply=True)
-#point_b = [247, 249]
-#sp.calibrate_momentum_axes(point_a=point_a, point_b = point_b, k_coord_a = [.5, 1.1], k_coord_b = [0, 0], equiscale=False)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Optional (Step 1a):#

-

Save momentum calibration parameters to configuration file in current data folder:

-
-
[15]:
-
-
-
# Save generated momentum calibration parameters for later reuse
-sp.save_momentum_calibration()
-
-
-
-
-
-
-
-
-INFO - Saved momentum calibration parameters to sed_config.yaml
-
-
-
-
-

2. Step:#

-

Now, the distortion correction and momentum calibration needs to be applied to the dataframe.

-
-
[16]:
-
-
-
sp.apply_momentum_calibration()
-
-
-
-
-
-
-
-
-INFO - Adding kx/ky columns to dataframe:
-INFO - Using momentum calibration parameters generated on 03/05/2025, 23:10:39
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym       kx       ky
-npartitions=100
-                 float64  float64  float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 216 graph layers
-
-
-
-
-
-
-

Energy Correction and Calibration workflow#

-
-

Energy Correction (optional)#

-

The purpose of the energy correction is to correct for any momentum-dependent distortion of the energy axis, e.g. from geometric effects in the flight tube, or from space charge

-
-

1st step:#

-

Here, one can select the functional form to be used, and adjust its parameters. The binned data used for the momentum calibration is plotted around the Fermi energy (defined by tof_fermi), and the correction function is plotted ontop. Possible correction functions are: “spherical” (parameter: diameter), “Lorentzian” (parameter: gamma), “Gaussian” (parameter: sigma), and “Lorentzian_asymmetric” (parameters: gamma, amplitude2, gamma2).

-

One can either use an interactive alignment tool, or provide parameters directly.

-
-
[17]:
-
-
-
#sp.adjust_energy_correction(amplitude=2.5, center=(730, 730), gamma=920, tof_fermi = 66200)
-sp.adjust_energy_correction(amplitude=2.5, center=(730, 730), gamma=920, tof_fermi = 66200, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Optional (Step 1a):#

-

Save energy correction parameters to configuration file in current data folder:

-
-
[18]:
-
-
-
# Save generated energy correction parameters for later reuse
-sp.save_energy_correction()
-
-
-
-
-
-
-
-
-INFO - Saved energy correction parameters to sed_config.yaml
-
-
-
-
-

2. Step#

-

After adjustment, the energy correction is directly applied to the TOF axis.

-
-
[19]:
-
-
-
sp.apply_energy_correction()
-
-
-
-
-
-
-
-
-INFO - Applying energy correction to dataframe...
-INFO - Using energy correction parameters generated on 03/05/2025, 23:10:39
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym       kx       ky       tm
-npartitions=100
-                 float64  float64  float64  float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 230 graph layers
-
-
-
-
-
-

Energy calibration#

-

For calibrating the energy axis, a set of data taken at different bias voltages around the value where the measurement was taken is required.

-
-

1. Step:#

-

In a first step, the data are loaded, binned along the TOF dimension, and normalized. The used bias voltages can be either provided, or read from attributes in the source files if present.

-
-
[20]:
-
-
-
# Load energy calibration EDCs
-energycalfolder = caldir
-scans = np.arange(1,12)
-voltages = np.arange(12,23,1)
-files = [energycalfolder + r'/Scan' + str(num).zfill(3) + '_' + str(num+11) + '.h5' for num in scans]
-sp.load_bias_series(data_files=files, normalize=True, biases=voltages, ranges=[(64000, 75000)])
-
-
-
-
-
-
-
-
-WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2. Step:#

-

Next, the same peak or feature needs to be selected in each curve. For this, one needs to define “ranges” for each curve, within which the peak of interest is located. One can either provide these ranges manually, or provide one range for a “reference” curve, and infer the ranges for the other curves using a dynamic time warping algorithm.

-
-
[21]:
-
-
-
# Option 1 = specify the ranges containing a common feature (e.g an equivalent peak) for all bias scans
-# rg = [(129031.03103103103, 129621.62162162163), (129541.54154154155, 130142.14214214214), (130062.06206206206, 130662.66266266267), (130612.61261261262, 131213.21321321322), (131203.20320320321, 131803.8038038038), (131793.7937937938, 132384.38438438438), (132434.43443443443, 133045.04504504506), (133105.10510510512, 133715.71571571572), (133805.8058058058, 134436.43643643643), (134546.54654654654, 135197.1971971972)]
-# sp.find_bias_peaks(ranges=rg, infer_others=False)
-# Option 2 = specify the range for one curve and infer the others
-# This will open an interactive tool to select the correct ranges for the curves.
-# IMPORTANT: Don't choose the range too narrow about a peak, and choose a refid
-# somewhere in the middle or towards larger biases!
-rg = (66100, 67000)
-sp.find_bias_peaks(ranges=rg, ref_id=5, infer_others=True, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Use feature ranges: [(64638.0, 65386.0), (64913.0, 65683.0), (65188.0, 65991.0), (65474.0, 66310.0), (65782.0, 66651.0), (66101.0, 67003.0), (66442.0, 67388.0), (66794.0, 67795.0), (67190.0, 68213.0), (67575.0, 68664.0), (67993.0, 69148.0)].
-INFO - Extracted energy features: [[6.51330000e+04 9.43293095e-01]
- [6.54080000e+04 9.52672958e-01]
- [6.57050000e+04 9.47981834e-01]
- [6.60130000e+04 9.46402431e-01]
- [6.63430000e+04 9.50330198e-01]
- [6.66730000e+04 9.63564813e-01]
- [6.70360000e+04 9.59838033e-01]
- [6.73990000e+04 9.67203319e-01]
- [6.78060000e+04 9.55975950e-01]
- [6.82130000e+04 9.56439197e-01]
- [6.86750000e+04 9.70683038e-01]].
-
-
-
-
-

3. Step:#

-

Next, the detected peak positions and bias voltages are used to determine the calibration function. Essentially, the functional Energy(TOF) is being determined by either least-squares fitting of the functional form d2/(t-t0)2 via lmfit (method: “lmfit”), or by analytically obtaining a polynomial approximation (method: “lstsq” or “lsqr”). The parameter ref_energy is used to define the absolute energy position of the feature used for calibration in the calibrated energy -scale. energy_scale can be either “kinetic” (decreasing energy with increasing TOF), or “binding” (increasing energy with increasing TOF).

-

After calculating the calibration, all traces corrected with the calibration are plotted ontop of each other, and the calibration function (Energy(TOF)) together with the extracted features is being plotted.

-
-
[22]:
-
-
-
# Eref can be used to set the absolute energy (kinetic energy, E-EF, etc.) of the feature used for energy calibration (if known)
-Eref=-1.3
-# the lmfit method uses a fit of (d/(t-t0))**2 to determine the energy calibration
-# limits and starting values for the fitting parameters can be provided as dictionaries
-sp.calibrate_energy_axis(
-    ref_energy=Eref,
-    method="lmfit",
-    energy_scale='kinetic',
-    d={'value':1.0,'min': .7, 'max':1.2, 'vary':True},
-    t0={'value':8e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
-    E0={'value': 0., 'min': -100, 'max': 0, 'vary': True},
-)
-
-
-
-
-
-
-
-
-INFO - [[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 43
-    # data points      = 11
-    # variables        = 3
-    chi-square         = 0.00218781
-    reduced chi-square = 2.7348e-04
-    Akaike info crit   = -87.7502612
-    Bayesian info crit = -86.5565754
-[[Variables]]
-    d:   1.09544523 +/- 0.03646409 (3.33%) (init = 1)
-    t0:  7.6073e-07 +/- 7.5361e-09 (0.99%) (init = 8e-07)
-    E0: -46.6158341 +/- 0.79487877 (1.71%) (init = 0)
-[[Correlations]] (unreported correlations are < 0.100)
-    C(d, t0)  = -0.9997
-    C(d, E0)  = -0.9988
-    C(t0, E0) = +0.9974
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Optional (Step 3a):#

-

Save energy calibration parameters to configuration file in current data folder:

-
-
[23]:
-
-
-
# Save generated energy calibration parameters for later reuse
-sp.save_energy_calibration()
-
-
-
-
-
-
-
-
-INFO - Saved energy calibration parameters to "sed_config.yaml".
-
-
-
-
-

4. Step:#

-

Finally, the the energy axis is added to the dataframe. Here, the applied bias voltages of the measurement is taken into account to provide the correct energy offset. If the bias cannot be read from the file, it can be provided manually.

-
-
[24]:
-
-
-
sp.append_energy_axis(bias_voltage=16.8)
-
-
-
-
-
-
-
-
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:10:49
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym       kx       ky       tm   energy
-npartitions=100
-                 float64  float64  float64  float64  float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 243 graph layers
-
-
-
-
-
-
-

4. Delay calibration:#

-

The delay axis is calculated from the ADC input column based on the provided delay range. ALternatively, the delay scan range can also be extracted from attributes inside a source file, if present.

-
-
[25]:
-
-
-
sp.dataframe.head()
-
-
-
-
-
[25]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
XYtADCXmYmkxkytmenergy
0-0.418660-0.418660-0.418660-0.4186600.0000000.000000-2.060071-2.060071-48.653969-25.224036
1365.3625471002.36254770101.3625476317.362547355.6253291032.935535-1.1061470.71065970084.355914-9.315714
2761.209350818.20935075615.2093506316.209350791.752860839.6554050.0637140.19220775614.323807-16.717439
3691.895476970.89547666454.8954766316.895476713.580659984.782470-0.1459740.58149466449.215844-0.832955
4670.653482711.65348273025.6534826316.653482696.555409741.090835-0.191642-0.07218173025.260945-13.816654
-
-
-
-
[26]:
-
-
-
#from pathlib import Path
-#datafile = "file.h5"
-#print(datafile)
-#sp.calibrate_delay_axis(datafile=datafile)
-delay_range = (-500, 1500)
-sp.calibrate_delay_axis(delay_range=delay_range, preview=True)
-
-
-
-
-
-
-
-
-INFO - Adding delay column to dataframe:
-INFO - Append delay axis using delay_range = [-500, 1500] and adc_range = [475.0, 6400.0]
-INFO -              X            Y             t          ADC           Xm  \
-0     0.339812     0.339812      0.339812     0.339812   -15.458586
-1   364.795054  1001.795054  70100.795054  6316.795054   355.019408
-2   760.901931   817.901931  75614.901931  6315.901931   791.434474
-3   691.988557   970.988557  66454.988557  6316.988557   713.678591
-4   671.049513   712.049513  73026.049513  6317.049513   696.977862
-5   299.168125  1164.168125  68459.168125  6316.168125   282.219586
-6   570.872978   664.872978  73902.872978  6315.872978   589.521746
-7   822.043494   545.043494  72632.043494  6318.043494   847.503229
-8   817.626889   415.626889  72421.626889  6316.626889   837.022802
-9  1006.434642   667.434642  72802.434642  6317.434642  1039.919639
-
-            Ym        kx        ky            tm     energy        delay
-0    88.716318 -2.101537 -1.822100    -47.851156 -25.223831  -660.222848
-1  1032.439895 -1.107772  0.709329  70083.781471  -9.314670  1471.913942
-2   839.367220  0.062860  0.191434  75614.023721 -16.717146  1471.612466
-3   984.866420 -0.145711  0.581719  66449.305555  -0.833222  1471.979260
-4   741.450570 -0.190509 -0.071216  73025.663175 -13.817170  1471.999836
-5  1185.833415 -1.303050  1.120790  68432.654642  -5.972561  1471.702321
-6   701.332303 -0.478747 -0.178828  73899.953776 -14.887719  1471.602693
-7   586.676810  0.213258 -0.486378  72627.891136 -13.294704  1472.335356
-8   465.917303  0.185146 -0.810302  72411.958883 -13.001104  1471.857178
-9   708.956391  0.729393 -0.158378  72794.936917 -13.516961  1472.129837
-
-
-
-
-

5. Visualization of calibrated histograms#

-

With all calibrated axes present in the dataframe, we can visualize the corresponding histograms, and determine the respective binning ranges

-
-
[27]:
-
-
-
axes = ['kx', 'ky', 'energy', 'delay']
-ranges = [[-3, 3], [-3, 3], [-6, 2], [-600, 1600]]
-sp.view_event_histogram(dfpid=1, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
-

Define the binning ranges and compute calibrated data volume#

-
-
[28]:
-
-
-
axes = ['kx', 'ky', 'energy', 'delay']
-bins = [100, 100, 200, 50]
-ranges = [[-2, 2], [-2, 2], [-4, 2], [-600, 1600]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delay")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delay'...
-
-
-
-
-
-
-
-
-
-
-

Some visualization:#

-
-
[29]:
-
-
-
fig, axs = plt.subplots(4, 1, figsize=(6, 18), constrained_layout=True)
-res.loc[{'energy':slice(-.1, 0)}].sum(axis=(2,3)).T.plot(ax=axs[0])
-res.loc[{'kx':slice(-.8, -.5)}].sum(axis=(0,3)).T.plot(ax=axs[1])
-res.loc[{'ky':slice(-.2, .2)}].sum(axis=(1,3)).T.plot(ax=axs[2])
-res.loc[{'kx':slice(-.8, -.5), 'energy':slice(.5, 2)}].sum(axis=(0,1)).plot(ax=axs[3])
-
-
-
-
-
[29]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f7b7d13cbe0>
-
-
-
-
-
-
-
-
-
-
[30]:
-
-
-
fig, ax = plt.subplots(1,1)
-(sp._normalization_histogram*90000).plot(ax=ax)
-sp._binned.sum(axis=(0,1,2)).plot(ax=ax)
-plt.show()
-
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/3_metadata_collection_and_export_to_NeXus.html b/sed/latest/tutorial/3_metadata_collection_and_export_to_NeXus.html deleted file mode 100644 index 1e52729..0000000 --- a/sed/latest/tutorial/3_metadata_collection_and_export_to_NeXus.html +++ /dev/null @@ -1,1048 +0,0 @@ - - - - - - - - - - - Binning with metadata generation, and storing into a NeXus file — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Binning with metadata generation, and storing into a NeXus file#

-

In this example, we show how to bin the same data used for example 3, but using the values for correction/calibration parameters generated in the example notebook 3, which are locally saved in the file sed_config.yaml. These data and the corresponding (machine and processing) metadata are then stored to a NeXus file following the NXmpes NeXus standard -(https://fairmat-experimental.github.io/nexus-fairmat-proposal/9636feecb79bb32b828b1a9804269573256d7696/classes/contributed_definitions/NXmpes.html#nxmpes) using the ‘dataconverter’ of the pynxtools package (FAIRmat-NFDI/pynxtools).

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-
-import sed
-from sed.dataset import dataset
-
-%matplotlib widget
-
-
-
-
-

Load Data#

-
-
[2]:
-
-
-
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
-data_path = dataset.dir # This is the path to the data
-scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
-
-
-
-
-
-
-
-
-INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
-INFO - WSe2 data is already present.
-
-
-
-
[3]:
-
-
-
metadata = {}
-# manual Meta data. These should ideally come from an Electronic Lab Notebook.
-#General
-metadata['experiment_summary'] = 'WSe2 XUV NIR pump probe data.'
-metadata['entry_title'] = 'Valence Band Dynamics - 800 nm linear s-polarized pump, 0.6 mJ/cm2 absorbed fluence'
-metadata['experiment_title'] = 'Valence band dynamics of 2H-WSe2'
-
-#User
-# Fill general parameters of NXuser
-# TODO: discuss how to deal with multiple users?
-metadata['user0'] = {}
-metadata['user0']['name'] = 'Julian Maklar'
-metadata['user0']['role'] = 'Principal Investigator'
-metadata['user0']['affiliation'] = 'Fritz Haber Institute of the Max Planck Society'
-metadata['user0']['address'] = 'Faradayweg 4-6, 14195 Berlin'
-metadata['user0']['email'] = 'maklar@fhi-berlin.mpg.de'
-
-#NXinstrument
-metadata['instrument'] = {}
-metadata['instrument']['energy_resolution'] = 140.
-#analyzer
-metadata['instrument']['analyzer']={}
-metadata['instrument']['analyzer']['slow_axes'] = "delay" # the scanned axes
-metadata['instrument']['analyzer']['spatial_resolution'] = 10.
-metadata['instrument']['analyzer']['energy_resolution'] = 110.
-metadata['instrument']['analyzer']['momentum_resolution'] = 0.08
-metadata['instrument']['analyzer']['working_distance'] = 4.
-metadata['instrument']['analyzer']['lens_mode'] = "6kV_kmodem4.0_30VTOF.sav"
-
-#probe beam
-metadata['instrument']['beam']={}
-metadata['instrument']['beam']['probe']={}
-metadata['instrument']['beam']['probe']['incident_energy'] = 21.7
-metadata['instrument']['beam']['probe']['incident_energy_spread'] = 0.11
-metadata['instrument']['beam']['probe']['pulse_duration'] = 20.
-metadata['instrument']['beam']['probe']['frequency'] = 500.
-metadata['instrument']['beam']['probe']['incident_polarization'] = [1, 1, 0, 0] # p pol Stokes vector
-metadata['instrument']['beam']['probe']['extent'] = [80., 80.]
-#pump beam
-metadata['instrument']['beam']['pump']={}
-metadata['instrument']['beam']['pump']['incident_energy'] = 1.55
-metadata['instrument']['beam']['pump']['incident_energy_spread'] = 0.08
-metadata['instrument']['beam']['pump']['pulse_duration'] = 35.
-metadata['instrument']['beam']['pump']['frequency'] = 500.
-metadata['instrument']['beam']['pump']['incident_polarization'] = [1, -1, 0, 0] # s pol Stokes vector
-metadata['instrument']['beam']['pump']['incident_wavelength'] = 800.
-metadata['instrument']['beam']['pump']['average_power'] = 300.
-metadata['instrument']['beam']['pump']['pulse_energy'] = metadata['instrument']['beam']['pump']['average_power']/metadata['instrument']['beam']['pump']['frequency']#µJ
-metadata['instrument']['beam']['pump']['extent'] = [230., 265.]
-metadata['instrument']['beam']['pump']['fluence'] = 0.15
-
-#sample
-metadata['sample']={}
-metadata['sample']['preparation_date'] = '2019-01-13T10:00:00+00:00'
-metadata['sample']['preparation_description'] = 'Cleaved'
-metadata['sample']['sample_history'] = 'Cleaved'
-metadata['sample']['chemical_formula'] = 'WSe2'
-metadata['sample']['description'] = 'Sample'
-metadata['sample']['name'] = 'WSe2 Single Crystal'
-
-metadata['file'] = {}
-metadata['file']["trARPES:Carving:TEMP_RBV"] = 300.
-metadata['file']["trARPES:XGS600:PressureAC:P_RD"] = 5.e-11
-metadata['file']["KTOF:Lens:Extr:I"] = -0.12877
-metadata['file']["KTOF:Lens:UDLD:V"] = 399.99905
-metadata['file']["KTOF:Lens:Sample:V"] = 17.19976
-metadata['file']["KTOF:Apertures:m1.RBV"] = 3.729931
-metadata['file']["KTOF:Apertures:m2.RBV"] = -5.200078
-metadata['file']["KTOF:Apertures:m3.RBV"] = -11.000425
-
-# Sample motor positions
-metadata['file']['trARPES:Carving:TRX.RBV'] = 7.1900000000000004
-metadata['file']['trARPES:Carving:TRY.RBV'] = -6.1700200225439552
-metadata['file']['trARPES:Carving:TRZ.RBV'] = 33.4501953125
-metadata['file']['trARPES:Carving:THT.RBV'] = 423.30500940561586
-metadata['file']['trARPES:Carving:PHI.RBV'] = 0.99931647456264949
-metadata['file']['trARPES:Carving:OMG.RBV'] = 11.002500171914066
-
-
-
-
-
[4]:
-
-
-
# create sed processor using the config file, and collect the meta data from the files:
-sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={}, metadata=metadata, collect_metadata=True)
-
-
-
-
-
-
-
-
-INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
-
-
-
-
[5]:
-
-
-
# Apply jittering to X, Y, t, ADC columns.
-sp.add_jitter()
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
-
-
-
-
[6]:
-
-
-
# Calculate machine-coordinate data for pose adjustment
-sp.bin_and_load_momentum_calibration(df_partitions=10, plane=33, width=10, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[7]:
-
-
-
# Adjust pose alignment, using stored distortion correction
-sp.pose_adjustment(xtrans=8, ytrans=7, angle=-4, apply=True, use_correction=True)
-
-
-
-
-
-
-
-
-INFO - No landmarks defined, using momentum correction parameters generated on 03/05/2025, 23:10:32
-INFO - Calculated thin spline correction based on the following landmarks:
-pouter_ord: [[203.2  341.96]
- [299.16 345.32]
- [350.25 243.7 ]
- [304.38 149.88]
- [199.52 152.48]
- [154.28 242.27]]
-pcent: (248.29, 248.62)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Applied translation with (xtrans=8.0, ytrans=7.0).
-INFO - Applied rotation with angle=-4.0.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[8]:
-
-
-
# Apply stored momentum correction
-sp.apply_momentum_correction()
-
-
-
-
-
-
-
-
-INFO - Adding corrected X/Y columns to dataframe:
-Calculating inverse deformation field, this might take a moment...
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym
-npartitions=100
-                 float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...
-Dask Name: apply_dfield, 206 graph layers
-
-
-
-
[9]:
-
-
-
# Apply stored config momentum calibration
-sp.apply_momentum_calibration()
-
-
-
-
-
-
-
-
-INFO - Adding kx/ky columns to dataframe:
-INFO - Using momentum calibration parameters generated on 03/05/2025, 23:10:39
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym       kx       ky
-npartitions=100
-                 float64  float64  float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 216 graph layers
-
-
-
-
[10]:
-
-
-
# Apply stored config energy correction
-sp.apply_energy_correction()
-
-
-
-
-
-
-
-
-INFO - Applying energy correction to dataframe...
-INFO - Using energy correction parameters generated on 03/05/2025, 23:10:39
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym       kx       ky       tm
-npartitions=100
-                 float64  float64  float64  float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 230 graph layers
-
-
-
-
[11]:
-
-
-
# Apply stored config energy calibration
-sp.append_energy_axis(bias_voltage=16.8)
-
-
-
-
-
-
-
-
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:10:49
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC       Xm       Ym       kx       ky       tm   energy
-npartitions=100
-                 float64  float64  float64  float64  float64  float64  float64  float64  float64  float64
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 243 graph layers
-
-
-
-
[12]:
-
-
-
# Apply delay calibration
-delay_range = (-500, 1500)
-sp.calibrate_delay_axis(delay_range=delay_range, preview=True)
-
-
-
-
-
-
-
-
-INFO - Adding delay column to dataframe:
-INFO - Append delay axis using delay_range = [-500, 1500] and adc_range = [475.0, 6400.0]
-INFO -              X            Y             t          ADC           Xm  \
-0     0.051626     0.051626      0.051626     0.051626   -23.640991
-1   365.144652  1002.144652  70101.144652  6317.144652   353.661627
-2   760.898249   817.898249  75614.898249  6315.898249   791.895896
-3   692.122146   971.122146  66455.122146  6317.122146   714.435564
-4   671.339233   712.339233  73026.339233  6317.339233   697.262755
-5   298.924102  1163.924102  68458.924102  6315.924102   280.596553
-6   570.866497   664.866497  73902.866497  6315.866497   588.334617
-7   822.055127   545.055127  72632.055127  6318.055127   846.748776
-8   818.291515   416.291515  72422.291515  6317.291515   836.277431
-9  1005.967367   666.967367  72801.967367  6316.967367  1037.774218
-
-            Ym        kx        ky            tm     energy        delay
-0    96.997304 -2.123485 -1.799887    -48.156196  -8.260191  -660.320126
-1  1034.759985 -1.111415  0.715553  70084.135361   7.511570  1472.031950
-2   838.562181  0.064098  0.189275  75614.020127   0.223453  1471.611223
-3   984.009799 -0.143680  0.579421  66449.434304  15.954266  1472.024353
-4   741.873516 -0.189744 -0.070081  73025.957393   3.068771  1472.097632
-5  1187.459153 -1.307403  1.125150  68432.410693  10.828692  1471.619950
-6   702.596579 -0.481932 -0.175437  73899.947018   2.017107  1471.600505
-7   586.942188  0.211234 -0.485667  72627.902969   3.583193  1472.339283
-8   467.381412  0.183146 -0.806374  72412.647747   3.871333  1472.081524
-9   707.941775  0.723638 -0.161099  72794.486647   3.365058  1471.972107
-
-
-
-
-

Compute final data volume#

-
-
[13]:
-
-
-
axes = ['kx', 'ky', 'energy', 'delay']
-bins = [100, 100, 200, 50]
-ranges = [[-2, 2], [-2, 2], [-4, 2], [-600, 1600]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[14]:
-
-
-
# save to NXmpes NeXus (including standardized metadata)
-sp.save(data_path + "/binned.nxs")
-
-
-
-
-
-
-
-
-Using mpes reader to convert the given files:
-• ../src/sed/config/NXmpes_config.json
-The output file generated: /home/runner/work/sed/sed/docs/tutorial/datasets/WSe2/binned.nxs.
-
-
-
-
[15]:
-
-
-
# Visualization (requires JupyterLab)
-from jupyterlab_h5web import H5Web
-H5Web(data_path + "/binned.nxs")
-
-
-
-
-
[15]:
-
-
-
-
-<jupyterlab_h5web.widget.H5Web object>
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - -
- - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/4_hextof_workflow.html b/sed/latest/tutorial/4_hextof_workflow.html deleted file mode 100644 index 6fc3600..0000000 --- a/sed/latest/tutorial/4_hextof_workflow.html +++ /dev/null @@ -1,2931 +0,0 @@ - - - - - - - - - - - Tutorial for binning data from the HEXTOF instrument at FLASH — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - -
- - - - - - - - - - - -
- -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Tutorial for binning data from the HEXTOF instrument at FLASH#

-
-

Preparation#

-
-

Import necessary libraries#

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-from typing import List
-from pathlib import Path
-import os
-
-from sed import SedProcessor
-from sed.dataset import dataset
-import xarray as xr
-
-%matplotlib widget
-import matplotlib.pyplot as plt
-
-
-
-
-
-

Get data paths#

-

The paths are such that if you are on Maxwell, it uses those. Otherwise data is downloaded in current directory from Zenodo.

-

Generally, if it is your beamtime, you can both read the raw data and write to processed directory. However, for the public data, you can not write to processed directory.

-
-
[2]:
-
-
-
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
-if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
-    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
-    meta_path = beamtime_dir + "/shared"
-    buffer_path = "Gd_W110/processed/"
-else:
-    # data_path can be defined and used to store the data in a specific location
-    dataset.get("Gd_W110") # Put in Path to a storage of at least 10 GByte free space.
-    path = dataset.dir
-    meta_path = path
-    buffer_path = path + "/processed/"
-
-
-
-
-
-
-
-
-INFO - Not downloading Gd_W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/Gd_W110".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "Gd_W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/Gd_W110"
-INFO - Gd_W110 data is already present.
-
-
-
-
-

Config setup#

-

Here we get the path to the config file and setup the relevant directories. This can also be done directly in the config file.

-
-
[3]:
-
-
-
# pick the default configuration file for hextof@FLASH
-config_file = Path('../src/sed/config/flash_example_config.yaml')
-assert config_file.exists()
-
-
-
-

The path to the processed folder can also be defined as a keyword argument later.

-
-
[4]:
-
-
-
# here we setup a dictionary that will be used to override the path configuration
-config_override = {
-    "core": {
-        "paths": {
-            "raw": path,
-            "processed": buffer_path,
-        },
-    },
-}
-
-
-
-
-
-

cleanup previous config files#

-

In this notebook, we will show how calibration parameters can be generated. Therefore we want to clean the local directory of previously generated files.

-

WARNING running the cell below will delete the “sed_config.yaml” file in the local directory. If these contain precious calibration parameters, DO NOT RUN THIS CELL.

-
-
[5]:
-
-
-
local_folder_config = Path('./sed_config.yaml')
-if local_folder_config.exists():
-    os.remove(local_folder_config)
-    print(f'deleted local config file {local_folder_config}')
-assert not local_folder_config.exists()
-
-
-
-
-
-
-
-
-deleted local config file sed_config.yaml
-
-
-
-
-
-

Load a chessy sample run#

-

The common starting point at a FLASH beamtime. Look at the Chessy sample!

-
    -
  • run 44762: Chessy - FoV = 450 µm

  • -
-
-

Generate the Processor instance#

-

this cell generates an instance of the SedProcessor class. It will be our workhorse for the entire workflow.

-
-

Important note#

-

The following extra arguments are available for FlashLoader. None of which are necessary to give but helpful to know.

-
    -
  • force_recreate: Probably the most useful. In case the config is changed, this allows to reduce the raw h5 files to the the intermediate parquet format again. Otherwise, the schema between the saved dataframe and config differs.

  • -
  • debug: Setting this runs the reduction process in serial, so the errors are easier to find.

  • -
  • remove_invalid_files: Sometimes some critical channels defined in the config are missing in some raw files. Setting this will make sure to ignore such files.

  • -
  • filter_timed_by_electron: Defaults to True. When True, the timed dataframe will only contain data points where valid electron events were detected. When False, all timed data points are included regardless of electron detection (see OpenCOMPES/sed#307)

  • -
  • processed_dir: Location to save the reduced parquet files.

  • -
  • scicat_token: Token from your scicat account.

  • -
  • detector: ‘1Q’ and ‘4Q’ detector for example. Useful when there are separate raw files for each detector.

  • -
-
-
[6]:
-
-
-
sp = SedProcessor(runs=[44762], config=config_override, system_config=config_file, collect_metadata=False)
-# You can set collect_metadata=True if the scicat_url and scicat_token are defined
-
-
-
-
-
-
-
-
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 1 total.
-loading complete in  0.08 s
-
-
-
-
-
-

Add Jitter#

-

In order to avoid artifacts arising from incommensurate binning sizes with those imposed during data collection, e.g. by the detector, we jitter all the digital columns.

-
-
[7]:
-
-
-
sp.add_jitter()
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-
-
-
-
-

inspect the dataframe#

-

Looking at the dataframe can give quick insight about the columns loaded and the data available.

-
    -
  • sp.dataframe shows the structure of the dataframe without computing anything. Interesting here are the columns, and their type.

  • -
  • The sp.dataframe.head() function accesses the first 5 events in the dataframe, giving us a view of what the values of each column look like, without computing the whole thing. sp.dataframe.tail()does the same from the end.

  • -
  • sp.dataframe.compute() will compute the whole dataframe, and can take a while. We should avoid doing this.

  • -
-
-
[8]:
-
-
-
sp.dataframe
-
-
-
-
-
[8]:
-
-
-
-
Dask DataFrame Structure:
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorID
npartitions=1
uint32int64int64float64float64float64float32float32float64float32float32float32float32float32float32float32float32float32float32int8
............................................................
-
-
Dask Name: apply_jitter, 14 graph layers
-
-
-
[9]:
-
-
-
sp.dataframe.head()
-
-
-
-
-
[9]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorID
01646339970120781.275094690.2750943050.27509432914.08976.093751.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205767
11646339970121780.837700690.8377003048.83770032914.08976.093751.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205762
21646339970220562.411873231.4118735729.41187332914.08990.375001.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205763
31646339970221938.159477947.1594775730.15947732914.08990.375001.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205762
41646339970270536.301326854.3013261571.30132632914.08982.875001.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205760
-
-
-
-
-

Visualizing event histograms#

-

For getting a first impression of the data, and to determine binning ranges, the method sp.view_even_histogram() allows visualizing the events in one dataframe partition as histograms. Default axes and ranges are defined in the config, and show the dldPosX, dldPosY, and dldTimeStep columns:

-
-
[10]:
-
-
-
sp.view_event_histogram(dfpid=0)
-
-
-
-
-
-
-
-
-
-
-
-

Binning#

-

Here we define the parameters for binning the dataframe to an n-dimensional histogram, which we can then plot, analyze or save.

-

If you never saw this before, the type after : is a “hint” to what type the object to the left will have. We include them here to make sure you know what each variable should be.

-
a:int = 1 # a is an integer
-b:float = 1.0 # b is a float
-c:str = 1 # we hint c to be a string, but it is still an integer
-
-
-

This is totally optional, but can help you keep track of what you are doing.

-
-
[11]:
-
-
-
# the name of the axes on which we want to bin
-axes: List[str] = ['dldPosY', 'dldPosX']
-# the number of bins for each axis
-bins: List[int] = [480, 480]
-# for each axis, the range of values to consider
-ranges: List[List[int]] = [[420,900], [420,900]]
-# here we compute the histogram
-res_chessy: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
-

visualize the result#

-

here we plot the binned histogram. The result is an xarray, which gives us some convenient visualization and simple plotting tools.

-
-
[12]:
-
-
-
res_chessy
-
-
-
-
-
[12]:
-
-
-
-
- - - - - - - - - - - - - - -
<xarray.DataArray (dldPosY: 480, dldPosX: 480)> Size: 922kB
-array([[0., 0., 0., ..., 0., 0., 0.],
-       [0., 0., 0., ..., 0., 0., 0.],
-       [0., 0., 0., ..., 0., 0., 0.],
-       ...,
-       [0., 0., 0., ..., 0., 0., 0.],
-       [0., 0., 0., ..., 0., 0., 0.],
-       [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
-Coordinates:
-  * dldPosY  (dldPosY) float64 4kB 420.0 421.0 422.0 423.0 ... 897.0 898.0 899.0
-  * dldPosX  (dldPosX) float64 4kB 420.0 421.0 422.0 423.0 ... 897.0 898.0 899.0
-Attributes:
-    units:      counts
-    long_name:  photoelectron counts
-    metadata:   {'file_statistics': {'electron': {'0': {'created_by': 'parque...
-
-
-
[13]:
-
-
-
plt.figure()
-res_chessy.plot(robust=True) # robust is used to avoid outliers to dominate the color scale
-
-
-
-
-
[13]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f91041425f0>
-
-
-
-
-
-
-
-
-
-
-
-

Optical Spot Profile#

-

Here we load runs 44798 and 44799, which show the profile of the optical spot on the same spatial view as in our chessy run above. The two differ in transmission, being \(T=1.0\) and \(T=0.5\) respectively.

-
-
[14]:
-
-
-
sp = SedProcessor(runs=[44798], config=config_override, system_config=config_file, collect_metadata=False)
-sp.add_jitter()
-res_t05: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-sp = SedProcessor(runs=[44799], config=config_override, system_config=config_file, collect_metadata=False)
-sp.add_jitter()
-res_t10: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 1 total.
-loading complete in  0.06 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 2 total.
-loading complete in  0.07 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-
-
-
-
-
-
-
-
-
-
[15]:
-
-
-
fig,ax = plt.subplots(1,3,figsize=(6,2), layout='tight')
-res_chessy.plot(ax=ax[0], robust=True, add_colorbar=False)
-res_t05.plot(ax=ax[1], robust=True, add_colorbar=False)
-res_t10.plot(ax=ax[2], robust=True, add_colorbar=False)
-
-
-
-
-
[15]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f910428c670>
-
-
-
-
-
-
-
-
-

TODO: here we can add the evaluation of the spot size.

-
-
-

Energy Calibration#

-

We now load a bias series, where the sample bias was varied, effectively shifting the energy spectra. This allows us to calibrate the conversion between the digital values of the dld and the energy.

-
-
[16]:
-
-
-
sp = SedProcessor(runs=[44797], config=config_override, system_config=config_file, collect_metadata=False)
-sp.add_jitter()
-
-
-
-
-
-
-
-
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 5 total.
-loading complete in  0.07 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-
-
-

We can use the view_event_histogram() function also to e.g. visualize the events per microbunch along the train, or hit multiplicity per microbunch:

-
-
[17]:
-
-
-
sp.view_event_histogram(dfpid=0, axes=["pulseId", "electronId"], ranges=[[0, 600], [0,10]], bins=[100, 10])
-
-
-
-
-
-
-
-
-
-
-

sector alignment#

-

as usual first we jitter, but here we also align in time the 8 sectors of the dld. This is done by finding the time of the maximum of the signal in each sector, and then shifting the signal in each sector by the difference between the maximum time and the time of the maximum in each sector.

-

For better precision, the photon peak can be used to track the energy shift.

-
-
[18]:
-
-
-
sp.align_dld_sectors()
-
-
-
-
-
-
-
-
-INFO - Aligning 8s sectors of dataframe
-INFO - Dask DataFrame Structure:
-              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=5
-               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 16 graph layers
-
-
-
-
-

time-of-flight spectrum#

-

to compare with what we see on the measurement computer, we might want to plot the time-of-flight spectrum. This is done here.

-
-
[19]:
-
-
-
sp.append_tof_ns_axis()
-
-
-
-
-
-
-
-
-INFO - Adding time-of-flight column in nanoseconds to dataframe.
-INFO - Dask DataFrame Structure:
-              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime
-npartitions=5
-               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 22 graph layers
-
-
-

Now, to determine proper binning ranges, let’s have again a look at the event histograms:

-
-
[20]:
-
-
-
sp.view_event_histogram(dfpid=0, axes=["sampleBias", "dldTime"], ranges=[[27, 33], [650,1050]], bins=[50, 100])
-
-
-
-
-
-
-
-
-
-
-
[21]:
-
-
-
axes = ['sampleBias','dldTime']
-bins = [5, 250]
-ranges = [[28,33],  [650,800]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-

We binned not only in dldTime but also in sampleBias. This allows us to separate the spectra obtained at different bias values.

-
-
[22]:
-
-
-
plt.figure()
-res.plot.line(x='dldTime'); # the ; here is to suppress an annoying output
-
-
-
-
-
-
-
-
-
-
-
-

find calibration parameters#

-

We now will fit the tof-energy relation. This is done by finding the maxima of a peak in the tof spectrum, and then fitting the square root relation to obtain the calibration parameters.

-
-
[23]:
-
-
-
axes = ['sampleBias', 'dldTimeSteps']
-bins = [5, 500]
-ranges = [[28,33], [4000, 4800]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[24]:
-
-
-
sp.load_bias_series(binned_data=res)
-
-
-
-
-
-
-
-
-
-
-
[25]:
-
-
-
ranges=(4120, 4200)
-ref_id=0
-sp.find_bias_peaks(ranges=ranges, ref_id=ref_id, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Use feature ranges: [(4120.0, 4200.0), (4156.8, 4238.4), (4195.2, 4286.4), (4236.8, 4329.6), (4281.6, 4374.4)].
-INFO - Extracted energy features: [[4.1488e+03 1.0000e+00]
- [4.1872e+03 1.0000e+00]
- [4.2272e+03 1.0000e+00]
- [4.2704e+03 1.0000e+00]
- [4.3152e+03 1.0000e+00]].
-
-
-
-
[26]:
-
-
-
sp.calibrate_energy_axis(
-    ref_energy=-.55,
-    method="lmfit",
-    energy_scale='kinetic',
-    d={'value':1.0,'min': .2, 'max':1.0, 'vary':False},
-    t0={'value':5e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
-    E0={'value': 0., 'min': -100, 'max': 100, 'vary': True},
-)
-
-
-
-
-
-
-
-
-INFO - [[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 22
-    # data points      = 5
-    # variables        = 2
-    chi-square         = 1.9886e-04
-    reduced chi-square = 6.6286e-05
-    Akaike info crit   = -46.6618227
-    Bayesian info crit = -47.4429469
-[[Variables]]
-    d:   1 (fixed)
-    t0:  3.5727e-07 +/- 2.9058e-10 (0.08%) (init = 5e-07)
-    E0: -54.7998131 +/- 0.04277721 (0.08%) (init = 0)
-[[Correlations]] (unreported correlations are < 0.100)
-    C(t0, E0) = -0.9964
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

generate the energy axis#

-

Now that we have the calibration parameters, we can generate the energy axis for each spectrum

-
-
[27]:
-
-
-
sp.append_energy_axis()
-
-
-
-
-
-
-
-
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:17:42
-INFO - Dask DataFrame Structure:
-              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
-npartitions=5
-               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-Dask Name: assign, 37 graph layers
-
-
-

Lets have a look at the dataset, and the columns we added.

-
-
[28]:
-
-
-
sp.dataframe[['dldTime','dldTimeSteps','energy','dldSectorID']].head()
-
-
-
-
-
[28]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dldTimedldTimeStepsenergydldSectorID
0696.4531194230.952637-2.6459861
1696.7018014232.463379-2.6821810
2697.7753774238.985352-2.8375271
3697.7437894238.793457-2.8329774
4745.1936364527.051270-8.4654171
-
-
-
-
-

Bin in energy#

-

With the newly added column, we can now bin directly in energy

-
-
[29]:
-
-
-
axes: List[str] = ['sampleBias', 'energy']
-bins: List[int] = [5, 500]
-ranges: List[List[int]] = [[28,33], [-10,10]]
-res: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[30]:
-
-
-
plt.figure() # if you are using interactive plots, you'll need to generate a new figure explicitly every time.
-res.mean('sampleBias').plot.line(x='energy',linewidth=3)
-res.plot.line(x='energy',linewidth=1,alpha=.5);
-
-
-
-
-
-
-
-
-
-
-
-

correct offsets#

-

The energy axis is now correct, taking the sample bias of the measurement into account. Additionally, we can compensate the photon energy (monochromatorPhotonEnergy) and the tofVoltage.

-
-
[31]:
-
-
-
sp.add_energy_offset(
-    columns=['monochromatorPhotonEnergy','tofVoltage'],
-    weights=[-1,-1],
-    preserve_mean=[True, True],
-)
-
-
-
-
-
-
-
-
-INFO - Adding energy offset to dataframe:
-INFO - Energy offset parameters:
-   Column[monochromatorPhotonEnergy]: Weight=-1, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1, Preserve Mean: True, Reductions: None.
-INFO - Dask DataFrame Structure:
-              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
-npartitions=5
-               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-Dask Name: assign, 67 graph layers
-
-
-

Now we bin again and see the result

-
-
[32]:
-
-
-
axes = ['sampleBias', 'energy']
-bins = [5, 500]
-ranges = [[28,33], [-10,2]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[33]:
-
-
-
plt.figure()
-ax = plt.subplot(111)
-res.energy.attrs['unit'] = 'eV' # add units to the axes
-res.mean('sampleBias').plot.line(x='energy',linewidth=3, ax=ax)
-res.plot.line(x='energy',linewidth=1,alpha=.5,label='all',ax=ax);
-
-
-
-
-
-
-
-
-
-
-
-

save the calibration parameters#

-

The parameters we have found can be saved to a file, so that we can use them later. This means the calibration can be used for different runs.

-
-
[34]:
-
-
-
sp.save_energy_calibration()
-sp.save_energy_offset()
-
-
-
-
-
-
-
-
-INFO - Saved energy calibration parameters to "sed_config.yaml".
-INFO - Saved energy offset parameters to "sed_config.yaml".
-
-
-

A more general function, which saves parameters for all the calibrations performed. Use either the above or below function. They are equivalent (and overwrite each other)

-
-
[35]:
-
-
-
sp.save_workflow_params()
-
-
-
-
-
-
-
-
-INFO - Saved energy calibration parameters to "sed_config.yaml".
-INFO - Saved energy offset parameters to "sed_config.yaml".
-
-
-
-
-
-

Correct delay axis#

-

To calibrate the pump-probe delay axis, we need to shift the delay stage values to center the pump-probe-time overlap time zero. Also, we want to correct the SASE jitter, using information from the bam column.

-

Here we load multiple runs at once

-
-
[36]:
-
-
-
sp = SedProcessor(
-    runs=[44824,44825,44826,44827],
-    config=config_override,
-    system_config=config_file,
-    collect_metadata=False,
-)
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 62 total.
-loading complete in  0.32 s
-
-
-
-

Run the workflow from the config file#

-

as we have saved some calibration and correction parameters, we can now run the workflow from the config file. This is done by calling each of the correction functions, with no parameters. The functions will then load the parameters from the config file.

-
-
[37]:
-
-
-
sp.add_jitter()
-sp.align_dld_sectors()
-sp.append_energy_axis()
-sp.add_energy_offset()
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-INFO - Aligning 8s sectors of dataframe
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 16 graph layers
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:17:42
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 31 graph layers
-INFO - Adding energy offset to dataframe:
-INFO - Using energy offset parameters generated on 03/05/2025, 23:17:44
-INFO - Energy offset parameters:
-   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 61 graph layers
-
-
-
-
-

plot the delayStage values#

-
-
[38]:
-
-
-
axes = ['energy','delayStage']
-bins = [100,150]
-delay_start,delay_stop=1462.00,1464.85
-ranges = [[-5,2], [delay_start,delay_stop]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[39]:
-
-
-
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-res.plot(robust=True, ax=ax[0])
-bg = res.isel(delayStage=slice(0,10)).mean('delayStage')
-(res-bg).plot(robust=True, ax=ax[1])
-
-
-
-
-
[39]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f90d80eaad0>
-
-
-
-
-
-
-
-
-
-
[40]:
-
-
-
sp.add_delay_offset(
-    constant=-1463.7, # this is time zero
-    flip_delay_axis=True, # invert the direction of the delay axis
-    columns=['bam'], # use the bam to offset the values
-    weights=[-0.001], # bam is in fs, delay in ps
-    preserve_mean=True # preserve the mean of the delay axis
-)
-
-
-
-
-
-
-
-
-INFO - Adding delay offset to dataframe:
-INFO - Delay offset parameters:
-   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
-   Constant: -1463.7
-   Flip delay axis: True
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 81 graph layers
-
-
-
-
[41]:
-
-
-
sp.dataframe # This has generated too many layers, there is room for improvement!
-
-
-
-
-
[41]:
-
-
-
-
Dask DataFrame Structure:
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorIDenergy
npartitions=62
uint32int64int64float64float64float32float32float32float64float32float32float64float32float32float32float32float32float32float32int8float64
...............................................................
..................................................................
...............................................................
...............................................................
-
-
Dask Name: assign, 81 graph layers
-
-
-
-

bin in the corrected delay axis#

-
-
[42]:
-
-
-
axes = ['energy','delayStage']
-bins = [100,150]
-delay_start,delay_stop=1462.00,1464.85
-ranges = [[-3,2], [-1.1, 1.75]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[43]:
-
-
-
fig,ax = plt.subplots(1,2,figsize=(6,2.25))
-res.plot(robust=True, ax=ax[0])
-bg = res.sel(delayStage=slice(-1,-0.2)).mean('delayStage')
-(res-bg).plot(robust=True, ax=ax[1])
-fig.tight_layout()
-
-
-
-
-
-
-
-
-
-

You may note some intensity variation along the delay axis. This comes mainly from inhomogeneous speed of the delay stage, and thus inequivalent amounts of time spent on every delay point. This can be corrected for by normalizing the data to the acquisition time per delay point:

-
-
[44]:
-
-
-
res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-res.plot(robust=True, ax=ax[0])
-bg = res.sel(delayStage=slice(-1,-.2)).mean('delayStage')
-(res-bg).plot(robust=True, ax=ax[1])
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[44]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f90c7bceb90>
-
-
-
-
-
-
-
-
-
-
-

save parameters#

-

as before, we can save the parameters we just used in the config for the next run

-
-
[45]:
-
-
-
sp.save_delay_offsets()
-
-
-
-
-
-
-
-
-INFO - Saved delay offset parameters to "sed_config.yaml".
-
-
-
-
-
-

Run workflow entirely from config.#

-

Once all the calibrations are done, a new run can be loaded by simply calling all the calibration functions.

-
-
[46]:
-
-
-
from sed.core.config import load_config
-import numpy as np
-metadata = load_config(meta_path + "/44824_20230324T060430.json")
-
-# Fix metadata
-metadata["scientificMetadata"]["Laser"]["wavelength"]["value"] = float(metadata["scientificMetadata"]["Laser"]["wavelength"]["value"][:-2])
-metadata["scientificMetadata"]["Laser"]["energy"] = {"value": 1239.84/metadata["scientificMetadata"]["Laser"]["wavelength"]["value"], "unit": "eV"}
-metadata["scientificMetadata"]["Laser"]["polarization"] = [1, 1, 0, 0]
-metadata["scientificMetadata"]["Collection"]["field_aperture_x"] = float(metadata["scientificMetadata"]["Collection"]["field_aperture_x"])
-metadata["scientificMetadata"]["Collection"]["field_aperture_y"] = float(metadata["scientificMetadata"]["Collection"]["field_aperture_y"])
-metadata["pi"] = {"institute": "JGU Mainz"}
-metadata["proposer"] = {"institute": "TU Dortmund"}
-
-
-
-
-
[47]:
-
-
-
sp = SedProcessor(
-    runs=[44824,44825,44826,44827],
-    config=config_override,
-    system_config=config_file,
-    metadata = metadata,
-    collect_metadata=False,
-)
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 62 total.
-loading complete in  0.16 s
-
-
-
-
[48]:
-
-
-
sp.add_jitter()
-sp.align_dld_sectors()
-sp.append_tof_ns_axis()
-sp.append_energy_axis()
-sp.add_energy_offset()
-sp.add_delay_offset()
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-INFO - Aligning 8s sectors of dataframe
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 16 graph layers
-INFO - Adding time-of-flight column in nanoseconds to dataframe.
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 22 graph layers
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:17:42
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-Dask Name: assign, 37 graph layers
-INFO - Adding energy offset to dataframe:
-INFO - Using energy offset parameters generated on 03/05/2025, 23:17:44
-INFO - Energy offset parameters:
-   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-Dask Name: assign, 67 graph layers
-INFO - Adding delay offset to dataframe:
-INFO - Using delay offset parameters generated on 03/05/2025, 23:19:35
-INFO - Delay offset parameters:
-   Constant: -1463.7
-   Flip delay axis: True
-   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
-npartitions=62
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
-Dask Name: assign, 87 graph layers
-
-
-
-

Compute the results#

-
-
[49]:
-
-
-
axes = ['energy','delayStage']
-bins = [100,150]
-delay_start,delay_stop=1462.00,1464.85
-ranges = [[-5,2], [-1.1, 1.75]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[50]:
-
-
-
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-res.plot(robust=True, ax=ax[0])
-bg = res.sel(delayStage=slice(-1,-.2)).mean('delayStage')
-(res-bg).plot(robust=True, ax=ax[1])
-
-
-
-
-
[50]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f90d0993f70>
-
-
-
-
-
-
-
-
-
-
-
-

Save results#

-

binned data can now be saved as h5 or tiff. igor binaries soon to come if requested!

-
-
[51]:
-
-
-
sp.save('runs44824-27.h5')
-
-
-
-
-
-
-
-
-saving data to runs44824-27.h5
-Saved creation_date as string.
-Saved creation_date as string.
-Saved creation_date as string.
-Saving complete!
-
-
-
-
[52]:
-
-
-
sp.save('runs44824-27.tiff')
-
-
-
-
-
-
-
-
-Successfully saved runs44824-27.tiff
- Axes order: ['delayStage', 'energy', 'C', 'Y', 'X', 'S']
-
-
-
-
[53]:
-
-
-
sp.save("runs44824-27.nxs")
-
-
-
-
-
-
-
-
-Using mpes reader to convert the given files:
-• ../src/sed/config/NXmpes_config-HEXTOF.json
-The output file generated: runs44824-27.nxs.
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/6_binning_with_time-stamped_data.html b/sed/latest/tutorial/6_binning_with_time-stamped_data.html deleted file mode 100644 index 9a607be..0000000 --- a/sed/latest/tutorial/6_binning_with_time-stamped_data.html +++ /dev/null @@ -1,1224 +0,0 @@ - - - - - - - - - - - Binning of temperature-dependent ARPES data using time-stamped external temperature data — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Binning of temperature-dependent ARPES data using time-stamped external temperature data#

-

In this example, we pull some temperature-dependent ARPES data from Zenodo, which was recorded as a continuous temperature ramp. We then add the respective temperature information from the respective timestamp/temperature values to the dataframe, and bin the data as function of temperature For performance reasons, best store the data on a locally attached storage (no network drive). This can also be achieved transparently using the included MirrorUtil class.

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-import numpy as np
-import matplotlib.pyplot as plt
-import os
-import glob
-
-import sed
-from sed.dataset import dataset
-
-%matplotlib widget
-
-
-
-
-

Load Data#

-
-
[2]:
-
-
-
dataset.get("TaS2") # Put in Path to a storage of at least 20 GByte free space.
-data_path = dataset.dir
-scandir, caldir = dataset.subdirs # scandir contains the data, caldir contains the calibration files
-
-# correct timestamps if not correct timezone set
-tzoffset = os.path.getmtime(scandir + '/Scan0121_1.h5') - 1594998158.0
-if tzoffset:
-    for file in glob.glob(scandir +'/*.h5'):
-        os.utime(file, (os.path.getmtime(file)-tzoffset, os.path.getmtime(file)-tzoffset))
-
-
-
-
-
-
-
-
-INFO - Not downloading TaS2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/TaS2".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "TaS2": "/home/runner/work/sed/sed/docs/tutorial/datasets/TaS2"
-INFO - TaS2 data is already present.
-
-
-
-
[3]:
-
-
-
# create sed processor using the config file with time-stamps:
-sp = sed.SedProcessor(folder=scandir, user_config="../src/sed/config/mpes_example_config.yaml", system_config={}, time_stamps=True, verbose=True)
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - User config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-
-
-
-
[4]:
-
-
-
# Apply jittering to X, Y, t, ADC columns.
-sp.add_jitter()
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
-
-
-
-
[5]:
-
-
-
sp.bin_and_load_momentum_calibration(df_partitions=10, plane=33, width=3, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[6]:
-
-
-
features = np.array([[337., 242.], [289., 327.], [187., 344.], [137., 258.], [189., 161.], [289., 158.], [236.0, 250.0]])
-sp.define_features(features=features, rotation_symmetry=6, include_center=True, apply=True)
-sp.generate_splinewarp(include_center=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculated thin spline correction based on the following landmarks:
-pouter_ord: [[137. 258.]
- [187. 344.]
- [289. 327.]
- [337. 242.]
- [289. 158.]
- [189. 161.]]
-pcent: (236.0, 250.0)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[7]:
-
-
-
# Adjust pose alignment, using stored distortion correction
-sp.pose_adjustment(xtrans=15, ytrans=8, angle=-5, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Applied translation with (xtrans=15.0, ytrans=8.0).
-INFO - Applied rotation with angle=-5.0.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[8]:
-
-
-
# Apply stored momentum correction
-sp.apply_momentum_correction()
-
-
-
-
-
-
-
-
-INFO - Adding corrected X/Y columns to dataframe:
-Calculating inverse deformation field, this might take a moment...
-INFO - Dask DataFrame Structure:
-                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym
-npartitions=97
-                float64  float64  float64  float64    float64    float64  float64  float64
-                    ...      ...      ...      ...        ...        ...      ...      ...
-...                 ...      ...      ...      ...        ...        ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...
-Dask Name: apply_dfield, 492 graph layers
-
-
-
-
[9]:
-
-
-
# Apply stored config momentum calibration
-sp.apply_momentum_calibration()
-
-
-
-
-
-
-
-
-INFO - Adding kx/ky columns to dataframe:
-INFO - Dask DataFrame Structure:
-                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym       kx       ky
-npartitions=97
-                float64  float64  float64  float64    float64    float64  float64  float64  float64  float64
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
-...                 ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
-Dask Name: assign, 502 graph layers
-
-
-
-
[10]:
-
-
-
# Apply stored config energy correction
-sp.apply_energy_correction()
-
-
-
-
-
-
-
-
-INFO - Applying energy correction to dataframe...
-INFO - Dask DataFrame Structure:
-                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym       kx       ky       tm
-npartitions=97
-                float64  float64  float64  float64    float64    float64  float64  float64  float64  float64  float64
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
-...                 ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
-Dask Name: assign, 516 graph layers
-
-
-
-
[11]:
-
-
-
# Load energy calibration EDCs
-scans = np.arange(127,136)
-voltages = np.arange(21,12,-1)
-files = [caldir + r'/Scan' + str(num).zfill(4) + '_1.h5' for num in scans]
-sp.load_bias_series(data_files=files, normalize=True, biases=voltages, ranges=[(64000, 76000)])
-rg = (65500, 66000)
-sp.find_bias_peaks(ranges=rg, ref_id=5, infer_others=True, apply=True)
-sp.calibrate_energy_axis(ref_energy=-0.5, energy_scale="kinetic", method="lmfit")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Use feature ranges: [(67180.0, 67780.0), (66820.0, 67384.0), (66436.0, 67012.0), (66088.0, 66652.0), (65764.0, 66316.0), (65500.0, 66004.0), (65188.0, 65704.0), (64864.0, 65416.0), (64624.0, 65140.0)].
-INFO - Extracted energy features: [[6.76360000e+04 4.47140008e-01]
- [6.72520000e+04 4.41972464e-01]
- [6.68800000e+04 4.45905387e-01]
- [6.65320000e+04 4.43017632e-01]
- [6.62080000e+04 4.37122852e-01]
- [6.58960000e+04 4.28882003e-01]
- [6.55960000e+04 4.22135979e-01]
- [6.52960000e+04 4.13137674e-01]
- [6.50320000e+04 4.00443912e-01]].
-INFO - [[Fit Statistics]]
-    # fitting method   = leastsq
-    # function evals   = 163
-    # data points      = 9
-    # variables        = 3
-    chi-square         = 0.00179088
-    reduced chi-square = 2.9848e-04
-    Akaike info crit   = -70.7004554
-    Bayesian info crit = -70.1087817
-[[Variables]]
-    d:   1.09335629 +/- 0.06668048 (6.10%) (init = 1)
-    t0:  7.6176e-07 +/- 1.3448e-08 (1.77%) (init = 1e-06)
-    E0: -48.0855611 +/- 1.25773261 (2.62%) (init = -21)
-[[Correlations]] (unreported correlations are < 0.100)
-    C(d, t0)  = -0.9998
-    C(d, E0)  = -0.9993
-    C(t0, E0) = +0.9985
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[12]:
-
-
-
# Apply stored config energy calibration
-#sp.append_energy_axis(bias_voltage=17)
-sp.append_energy_axis()
-
-
-
-
-
-
-
-
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 03/05/2025, 23:27:36
-INFO - Dask DataFrame Structure:
-                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym       kx       ky       tm   energy
-npartitions=97
-                float64  float64  float64  float64    float64    float64  float64  float64  float64  float64  float64  float64
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
-...                 ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
-                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
-Dask Name: assign, 531 graph layers
-
-
-
-
[13]:
-
-
-
# add time-stamped temperature data
-# either, directly retrieve data from EPICS archiver instance (within FHI network),
-#sp.add_time_stamped_data(dest_column="T_B", archiver_channel="trARPES:Carving:TEMP-B")
-# or use externally provided timestamp/data pairs
-import h5py
-with h5py.File(f"{data_path}/temperature_data.h5", "r") as file:
-    data = file["temperatures"][()]
-    time_stamps = file["timestamps"][()]
-sp.add_time_stamped_data(dest_column="sample_temperature", time_stamps=time_stamps, data=data)
-
-
-
-
-
-
-
-
-INFO - add_time_stamped_data: Added time-stamped data as column sample_temperature.
-
-
-
-
[14]:
-
-
-
# inspect calibrated event histogram
-axes = ['kx', 'ky', 'energy', 'sample_temperature']
-ranges = [[-3, 3], [-3, 3], [-6, 2], [10, 300]]
-sp.view_event_histogram(dfpid=80, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
-

Define the binning ranges and compute calibrated data volume#

-
-
[15]:
-
-
-
axes = ['kx', 'ky', 'energy', 'sample_temperature']
-bins = [100, 100, 300, 100]
-ranges = [[-2, 2], [-2, 2], [-6, 2], [20, 270]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="sample_temperature")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'sample_temperature'...
-
-
-
-
-
-
-
-
-
-
-

Some visualization:#

-
-
[16]:
-
-
-
fig, axs = plt.subplots(4, 1, figsize=(4, 12), constrained_layout=True)
-res.loc[{'energy':slice(-.1, 0)}].sum(axis=(2,3)).T.plot(ax=axs[0])
-res.loc[{'kx':slice(-.2, .2)}].sum(axis=(0,3)).T.plot(ax=axs[1])
-res.loc[{'ky':slice(-.2, .2)}].sum(axis=(1,3)).T.plot(ax=axs[2])
-res.loc[{'kx':slice(-.2, .2), 'ky':slice(-.2, .2), 'energy':slice(-2, 0.2)}].sum(axis=(0,1)).plot(ax=axs[3])
-
-
-
-
-
[16]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f3788f29090>
-
-
-
-
-
-
-
-
-
-
[17]:
-
-
-
# Inspect effect of histogram normalization
-fig, ax = plt.subplots(1,1)
-(sp._normalization_histogram/sp._normalization_histogram.sum()).plot(ax=ax)
-(sp._binned.sum(axis=(0,1,2))/sp._binned.sum(axis=(0,1,2,3))).plot(ax=ax)
-plt.show()
-
-
-
-
-
-
-
-
-
-
-
[18]:
-
-
-
# Remaining fluctuations are an effect of the varying count rate throughout the scan
-plt.figure()
-rate, secs = sp.loader.get_count_rate()
-plt.plot(secs, rate)
-
-
-
-
-
[18]:
-
-
-
-
-[<matplotlib.lines.Line2D at 0x7f3788bf26b0>]
-
-
-
-
-
-
-
-
-
-
[19]:
-
-
-
# Normalize for intensity around the Gamma point
-res_norm = res.copy()
-res_norm = res_norm/res_norm.loc[{'kx':slice(-.3, .3), 'ky':slice(-.3, .3)}].sum(axis=(0,1,2))
-
-
-
-
-
[20]:
-
-
-
fig, axs = plt.subplots(4, 1, figsize=(4, 12), constrained_layout=True)
-res_norm.loc[{'energy':slice(-.1, 0)}].sum(axis=(2,3)).T.plot(ax=axs[0])
-res_norm.loc[{'kx':slice(-.2, .2)}].sum(axis=(0,3)).T.plot(ax=axs[1])
-res_norm.loc[{'ky':slice(-.2, .2)}].sum(axis=(1,3)).T.plot(ax=axs[2])
-res_norm.loc[{'kx':slice(-.2, .2), 'ky':slice(-.2, .2), 'energy':slice(-2, 0.5)}].sum(axis=(0,1)).plot(ax=axs[3])
-
-
-
-
-
[20]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7f3788b42380>
-
-
-
-
-
-
-
-
-
-
[21]:
-
-
-
# Lower Hubbard band intensity versus temperature
-plt.figure()
-res_norm.loc[{'kx':slice(-.2, .2), 'ky':slice(-.2, .2), 'energy':slice(-.6, 0.1)}].sum(axis=(0,1,2)).plot()
-
-
-
-
-
[21]:
-
-
-
-
-[<matplotlib.lines.Line2D at 0x7f378898f4c0>]
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - -
- - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/7_correcting_orthorhombic_symmetry.html b/sed/latest/tutorial/7_correcting_orthorhombic_symmetry.html deleted file mode 100644 index 8fdc653..0000000 --- a/sed/latest/tutorial/7_correcting_orthorhombic_symmetry.html +++ /dev/null @@ -1,937 +0,0 @@ - - - - - - - - - - - Distortion correction with orthorhombic symmetry — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Distortion correction with orthorhombic symmetry#

-

This example showcases how to use the distortion correction workflow with landmarks that are not at symmetry-equivalent positions, such as for orthorhombic systems with different in-plane axis parameters.

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-import numpy as np
-import matplotlib.pyplot as plt
-
-import sed
-from sed.dataset import dataset
-
-%matplotlib widget
-
-
-
-
-

Load Data#

-

For this example, we use the example data from WSe2. Even though the system is hexagonal, we will use it for demonstration.

-
-
[2]:
-
-
-
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
-data_path = dataset.dir # This is the path to the data
-scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
-
-
-
-
-
-
-
-
-INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
-INFO - WSe2 data is already present.
-
-
-
-
[3]:
-
-
-
# create sed processor using the config file with time-stamps:
-sp = sed.SedProcessor(folder=scandir, user_config="../src/sed/config/mpes_example_config.yaml", system_config={}, time_stamps=True, verbose=True)
-sp.add_jitter()
-
-
-
-
-
-
-
-
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - User config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
-INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
-
-
-

Get slice for momentum calibration

-
-
[4]:
-
-
-
sp.bin_and_load_momentum_calibration(df_partitions=100, plane=203, width=10, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Feature definition:#

-

We will describe the symmetry of the system with a 4-fold symmetry, and select two K points and two M points as symmetry points (as well as the Gamma point).

-
-
[5]:
-
-
-
features = np.array([[252., 355.], [361., 251.], [250., 144.], [156., 247.], [254., 247.]])
-sp.define_features(features=features, rotation_symmetry=4, include_center=True, apply=True)
-# Manual selection: Use a GUI tool to select peaks:
-# sp.define_features(rotation_symmetry=4, include_center=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Spline-warp generation:#

-

For the spline-warp generation, we need to tell the algorithm the difference in length of Gamma-K and Gamma-M. This we can do using the ascale parameter, which can either be a single number (the ratio), or a list of length rotation_symmetry defining the relative length of the respective vectors.

-
-
[6]:
-
-
-
gamma_m = np.pi/3.28
-gamma_k = 2/np.sqrt(3)*np.pi/3.28
-# Option 1: Ratio of the two distances:
-#sp.generate_splinewarp(include_center=True, ascale=gamma_k/gamma_m)
-# Option 2: List of distances:
-sp.generate_splinewarp(include_center=True, ascale=[gamma_m, gamma_k, gamma_m, gamma_k])
-
-
-
-
-
-
-
-
-INFO - Calculated thin spline correction based on the following landmarks:
-pouter_ord: [[252. 355.]
- [361. 251.]
- [250. 144.]
- [156. 247.]]
-pcent: (254.0, 247.0)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[7]:
-
-
-
sp.pose_adjustment(xtrans=4, ytrans=7, angle=1, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Applied translation with (xtrans=4.0, ytrans=7.0).
-INFO - Applied rotation with angle=1.0.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[8]:
-
-
-
sp.apply_momentum_correction()
-
-
-
-
-
-
-
-
-INFO - Adding corrected X/Y columns to dataframe:
-Calculating inverse deformation field, this might take a moment...
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC timeStamps       Xm       Ym
-npartitions=100
-                 float64  float64  float64  float64    float64  float64  float64
-                     ...      ...      ...      ...        ...      ...      ...
-...                  ...      ...      ...      ...        ...      ...      ...
-                     ...      ...      ...      ...        ...      ...      ...
-                     ...      ...      ...      ...        ...      ...      ...
-Dask Name: apply_dfield, 206 graph layers
-
-
-
-
-

Momentum calibration with orthorhombic axes#

-

For the momentum calibration using symmetry points with non-equal distances, the option equiscale can be used:

-
-
[9]:
-
-
-
point_a = [256, 155]
-point_b = [370, 256]
-sp.calibrate_momentum_axes(point_a=point_a, point_b=point_b, k_coord_a=[0, gamma_m], k_coord_b=[gamma_k, 0], equiscale=False, apply=True)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[10]:
-
-
-
sp.apply_momentum_calibration()
-
-
-
-
-
-
-
-
-INFO - Adding kx/ky columns to dataframe:
-INFO - Using momentum calibration parameters generated on 03/05/2025, 23:33:49
-INFO - Dask DataFrame Structure:
-                       X        Y        t      ADC timeStamps       Xm       Ym       kx       ky
-npartitions=100
-                 float64  float64  float64  float64    float64  float64  float64  float64  float64
-                     ...      ...      ...      ...        ...      ...      ...      ...      ...
-...                  ...      ...      ...      ...        ...      ...      ...      ...      ...
-                     ...      ...      ...      ...        ...      ...      ...      ...      ...
-                     ...      ...      ...      ...        ...      ...      ...      ...      ...
-Dask Name: assign, 216 graph layers
-
-
-
-
-

Bin the top of the valence band#

-
-
[11]:
-
-
-
axes = ['kx', 'ky']
-bins = [100, 100]
-ranges = [[-2, 2], [-2, 2]]
-res = sp.compute(bins=bins, axes=axes, ranges=ranges, filter=[{"col":"t", "lower_bound": 66100, "upper_bound": 66300}])
-plt.figure()
-res.T.plot()
-
-
-
-
-
-
-
-
-
-
-
[11]:
-
-
-
-
-<matplotlib.collections.QuadMesh at 0x7fab20eb5ba0>
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/8_jittering_tutorial.html b/sed/latest/tutorial/8_jittering_tutorial.html deleted file mode 100644 index 9e6577e..0000000 --- a/sed/latest/tutorial/8_jittering_tutorial.html +++ /dev/null @@ -1,1166 +0,0 @@ - - - - - - - - - - - Correct use of Jittering — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - - - -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Correct use of Jittering#

-

This tutorial discusses the background and correct use of the jittering/dithering method implemented in the package.

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-import matplotlib.pyplot as plt
-
-import sed
-from sed.dataset import dataset
-
-%matplotlib widget
-
-
-
-
-

Load Data#

-
-
[2]:
-
-
-
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
-data_path = dataset.dir # This is the path to the data
-scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
-
-
-
-
-
-
-
-
-INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
-INFO - WSe2 data is already present.
-
-
-
-
[3]:
-
-
-
# create sed processor using the config file:
-sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={})
-
-
-
-
-
-
-
-
-INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
-INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
-
-
-

After loading, the dataframe contains the four columns X, Y, t, ADC, which have all integer values. They originate from a time-to-digital converter, and correspond to digital “bins”.

-
-
[4]:
-
-
-
sp.dataframe.head()
-
-
-
-
-
[4]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
XYtADC
00.00.00.00.0
1365.01002.070101.06317.0
2761.0818.075615.06316.0
3692.0971.066455.06317.0
4671.0712.073026.06317.0
-
-
-

Let’s bin these data along the t dimension within a small range:

-
-
[5]:
-
-
-
axes = ['t']
-bins = [150]
-ranges = [[66000, 67000]]
-res01 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res01.plot()
-
-
-
-
-
-
-
-
-
-
-
[5]:
-
-
-
-
-[<matplotlib.lines.Line2D at 0x7f826f2ef970>]
-
-
-
-
-
-
-
-
-

We notice some oscillation ontop of the data. These are re-binning artifacts, originating from a non-integer number of machine-bins per bin, as we can verify by binning with a different number of steps:

-
-
[6]:
-
-
-
axes = ['t']
-bins = [100]
-ranges = [[66000, 67000]]
-res02 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res01.plot(label="6.66/bin")
-res02.plot(label="10/bin")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[6]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f826f3c7e20>
-
-
-
-
-
-
-
-
-

If we have a very detailed look, with step-sizes smaller than one, we see the digital nature of the original data behind this issue:

-
-
[7]:
-
-
-
axes = ['t']
-bins = [200]
-ranges = [[66600, 66605]]
-res11 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res11.plot()
-
-
-
-
-
-
-
-
-
-
-
[7]:
-
-
-
-
-[<matplotlib.lines.Line2D at 0x7f826f4997e0>]
-
-
-
-
-
-
-
-
-

To mitigate this problem, we can add some randomness to the data, and re-distribute events into the gaps in-between bins. This is also termed dithering and e.g. known from image manipulation. The important factor is to add the right amount and right type of random distribution, to end up at a quasi-continuous uniform distribution, but not lose information.

-

We can use the add_jitter function for this. We can pass it the columns to add jitter to, and the amplitude of a uniform jitter. Importantly, this step should be taken in the very beginning as first step before any dataframe operations are added.

-

Let’s try with a value of 0.2 for the amplitude:

-
-
[8]:
-
-
-
df_backup = sp.dataframe
-sp.add_jitter(cols=["t"], amps=[0.2])
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['t'].
-
-
-

We see that the t column is no longer integer-valued:

-
-
[9]:
-
-
-
sp.dataframe.head()
-
-
-
-
-
[9]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
XYtADC
00.00.00.0357970.0
1365.01002.070101.0268346317.0
2761.0818.075614.8804046316.0
3692.0971.066454.8096326317.0
4671.0712.073025.8784126317.0
-
-
-
-
[10]:
-
-
-
axes = ['t']
-bins = [200]
-ranges = [[66600, 66605]]
-res12 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res11.plot(label="not jittered")
-res12.plot(label="amplitude 0.2")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[10]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f826f2e3ee0>
-
-
-
-
-
-
-
-
-

This is clearly not enough jitter to close the gaps. The ideal (and default) amplitude is 0.5, which exactly fills the gaps:

-
-
[11]:
-
-
-
sp.dataframe = df_backup
-sp.add_jitter(cols=["t"], amps=[0.5])
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['t'].
-
-
-
-
[12]:
-
-
-
axes = ['t']
-bins = [200]
-ranges = [[66600, 66605]]
-res13 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res11.plot(label="not jittered")
-res12.plot(label="amplitude 0.2")
-res13.plot(label="amplitude 0.5")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[12]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f8270ff72b0>
-
-
-
-
-
-
-
-
-

This jittering fills the gaps, and produces a continuous uniform distribution. Let’s check again the longer-range binning that gave us the oscillations initially:

-
-
[13]:
-
-
-
axes = ['t']
-bins = [150]
-ranges = [[66000, 67000]]
-res03 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res01.plot(label="not jittered")
-res03.plot(label="jittered")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[13]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f8276bf0f70>
-
-
-
-
-
-
-
-
-

Now, the artifacts are absent, and similarly will they be in any dataframe columns derived from a column jittered in such a way. Note that this only applies to data present in digital (i.e. machine-binned) format, and not to data that are intrinsically continuous.

-

Also note that too large or not well-aligned jittering amplitudes will

-
    -
  • deteriorate your resolution along the jittered axis

  • -
  • will not solve the problem entirely:

  • -
-
-
[14]:
-
-
-
sp.dataframe = df_backup
-sp.add_jitter(cols=["t"], amps=[0.7])
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['t'].
-
-
-
-
[15]:
-
-
-
axes = ['t']
-bins = [200]
-ranges = [[66600, 66605]]
-res14 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res13.plot(label="Amplitude 0.5")
-res14.plot(label="Amplitude 0.7")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[15]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f826f287070>
-
-
-
-
-
-
-
-
-

If the step-size of digitization is different from 1, the corresponding stepsize (half the distance between digitized values) can be adjusted as shown above.

-

Also, alternatively also normally distributed noise can be added, which is less sensitive to the exact right amplitude, but will lead to mixing of neighboring voxels, and thus loss of resolution. Also, normally distributed noise is substantially more computation-intensive to generate. It can nevertheless be helpful in situations where e.g. the stepsize is non-uniform.

-
-
[16]:
-
-
-
sp.dataframe = df_backup
-sp.add_jitter(cols=["t"], amps=[0.7], jitter_type="normal")
-
-
-
-
-
-
-
-
-INFO - add_jitter: Added jitter to columns ['t'].
-
-
-
-
[17]:
-
-
-
axes = ['t']
-bins = [200]
-ranges = [[66600, 66605]]
-res15 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
-plt.figure()
-res14.plot(label="Uniform, Amplitude 0.7")
-res15.plot(label="Normal, Amplitude 0.7")
-plt.legend()
-
-
-
-
-
-
-
-
-
-
-
[17]:
-
-
-
-
-<matplotlib.legend.Legend at 0x7f826c984970>
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - -
- - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/latest/tutorial/9_hextof_workflow_trXPD.html b/sed/latest/tutorial/9_hextof_workflow_trXPD.html deleted file mode 100644 index 616a4e4..0000000 --- a/sed/latest/tutorial/9_hextof_workflow_trXPD.html +++ /dev/null @@ -1,1378 +0,0 @@ - - - - - - - - - - - Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization — SED 1.0.0a1.dev19+gf1bb527 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -
- -
- - - - - -
-
- - - - -
- - - - - - - - - - - -
- -
- - -
-
- -
-
- -
- -
- - -
- -
- - -
-
- - - - - -
- -
-

Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization#

-
-

Preparation#

-
-

Import necessary libraries#

-
-
[1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-
-from pathlib import Path
-import os
-
-from sed import SedProcessor
-from sed.dataset import dataset
-import xarray as xr
-
-%matplotlib widget
-import matplotlib.pyplot as plt
-from scipy.ndimage import gaussian_filter
-
-
-
-
-
-

Get data paths#

-

If it is your beamtime, you can access both read the raw data and write to processed directory. For the public data, you can not write to processed directory.

-

The paths are such that if you are on Maxwell, it uses those. Otherwise data is downloaded in current directory from Zenodo: https://zenodo.org/records/12609441

-
-
[2]:
-
-
-
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
-if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
-    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
-    buffer_path = beamtime_dir + "/processed/tutorial/"
-else:
-    # data_path can be defined and used to store the data in a specific location
-    dataset.get("W110") # Put in Path to a storage of at least 10 GByte free space.
-    path = dataset.dir
-    buffer_path = path + "/processed/"
-
-
-
-
-
-
-
-
-INFO - Not downloading W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/W110".
-Set 'use_existing' to False if you want to download to a new location.
-INFO - Using existing data path for "W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/W110"
-INFO - W110 data is already present.
-
-
-
-
-

Config setup#

-

Here we get the path to the config file and setup the relevant directories. This can also be done directly in the config file.

-
-
[3]:
-
-
-
# pick the default configuration file for hextof@FLASH
-config_file = Path('../src/sed/config/flash_example_config.yaml')
-assert config_file.exists()
-
-
-
-
-
[4]:
-
-
-
# here we setup a dictionary that will be used to override the path configuration
-config_override = {
-    "core": {
-        "beamtime_id": 11019101,
-        "paths": {
-            "raw": path,
-            "processed": buffer_path
-        },
-    },
-}
-
-
-
-
-
-

Prepare Energy Calibration#

-

Instead of making completely new energy calibration we can take existing values from the calibration made in the previous tutorial. This allows us to calibrate the conversion between the digital values of the dld and the energy.

-

For this we need to add all those parameters as a dictionary and use them during creation of the processor object.

-
-
[5]:
-
-
-
energy_cal = {
-    "energy": {
-        "calibration": {
-            "E0": -132.47100427179566,
-            "creation_date": '2024-11-30T20:47:03.305244',
-            "d": 0.8096677238144319,
-            "energy_scale": "kinetic",
-            "t0": 4.0148196706891397e-07,
-        },
-        "offsets":{
-            "constant": 1,
-            "creation_date": '2024-11-30T21:17:07.762199',
-            "columns": {
-                "monochromatorPhotonEnergy": {
-                    "preserve_mean": True,
-                    "weight": -1,
-                },
-                "tofVoltage": {
-                    "preserve_mean": True,
-                    "weight": -1,
-                },
-            },
-        },
-    },
-}
-
-
-
-
-
-
-

Read data#

-

Now we can use those parameters and load our trXPD data using additional config file

-
-
[6]:
-
-
-
run_number = 44498
-sp_44498 = SedProcessor(runs=[run_number], folder_config=energy_cal, config=config_override, system_config=config_file, verbose=True)
-sp_44498.add_jitter()
-
-
-
-
-
-
-
-
-INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
-INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
-INFO - Reading files: 0 new files of 14 total.
-loading complete in  0.15 s
-INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
-
-
-

We can inspect dataframe right after data readout

-
-
[7]:
-
-
-
sp_44498.dataframe.head()
-
-
-
-
-
[7]:
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorID
0162802283010651.191991895.1919914595.19199132919.0-6187.968751.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763
1162802283011651.411319888.4113194596.41131932919.0-6187.968751.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205760
2162802283050682.321267672.3212674423.32126732914.0-6170.156251.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205766
3162802283051684.995221657.9952214424.99522132914.0-6170.156251.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763
4162802283052670.038803687.0388034424.03880332914.0-6170.156251.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205765
-
-
-

Now we will do energy calibration, add energy offset, jittering and dld sectors alignment

-
-
[8]:
-
-
-
sp_44498.align_dld_sectors()
-sp_44498.append_energy_axis()
-sp_44498.add_energy_offset()
-
-
-
-
-
-
-
-
-INFO - Aligning 8s sectors of dataframe
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
-Dask Name: assign, 16 graph layers
-INFO - Adding energy column to dataframe:
-INFO - Using energy calibration parameters generated on 11/30/2024, 20:47:03
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 31 graph layers
-INFO - Adding energy offset to dataframe:
-INFO - Using energy offset parameters generated on 11/30/2024, 21:17:07
-INFO - Energy offset parameters:
-   Constant: 1.0
-   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 64 graph layers
-
-
-
-
[9]:
-
-
-
sp_44498.attributes.metadata['energy_calibration']
-
-
-
-
-
[9]:
-
-
-
-
-{'applied': True,
- 'calibration': {'creation_date': datetime.datetime(2024, 11, 30, 20, 47, 3, 305244),
-  'd': 0.8096677238144319,
-  't0': 4.0148196706891397e-07,
-  'E0': -132.47100427179566,
-  'energy_scale': 'kinetic',
-  'calib_type': 'fit',
-  'fit_function': '(a0/(x0-a1))**2 + a2',
-  'coefficients': array([ 8.09667724e-01,  4.01481967e-07, -1.32471004e+02]),
-  'axis': 0.0},
- 'tof': 0.0}
-
-
-

We can do the SASE jitter correction, using information from the bam column and do calibration of the pump-probe delay axis, we need to shift the delay stage values to center the pump-probe-time overlap time zero.

-
-
[10]:
-
-
-
sp_44498.add_delay_offset(
-    constant=-1448, # this is time zero position determined from side band fit
-    flip_delay_axis=True, # invert the direction of the delay axis
-    columns=['bam'], # use the bam to offset the values
-    weights=[-0.001], # bam is in fs, delay in ps
-    preserve_mean=True # preserve the mean of the delay axis to keep t0 position
-)
-
-
-
-
-
-
-
-
-INFO - Adding delay offset to dataframe:
-INFO - Delay offset parameters:
-   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
-   Constant: -1448
-   Flip delay axis: True
-INFO - Dask DataFrame Structure:
-               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
-npartitions=14
-                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
-Dask Name: assign, 84 graph layers
-
-
-
-

bin in the calibrated energy and corrected delay axis#

-

Visualize trXPS data

-
-
[11]:
-
-
-
axes = ['energy', 'delayStage']
-ranges = [[-37.5,-27.5], [-1.5,1.5]]
-bins = [200,60]
-res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-INFO - Calculate normalization histogram for axis 'delayStage'...
-
-
-
-
-
-
-
-
-
-
[12]:
-
-
-
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
-fig.suptitle(f"Run {run_number}: W 4f, side bands")
-res_corr.plot(robust=True, ax=ax[0], cmap='terrain')
-ax[0].set_title('raw')
-bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
-(res_corr-bg).plot(robust=True, ax=ax[1])
-ax[1].set_title('difference')
-
-
-
-
-
[12]:
-
-
-
-
-Text(0.5, 1.0, 'difference')
-
-
-
-
-
-
-
-
-
-
-
-

XPD from W4f core level#

-

Now we can bin not only in energy but also in both momentum directions to get XPD patterns of different core level line of tungsten.

-
-
[13]:
-
-
-
axes = ['energy', 'dldPosX', 'dldPosY']
-ranges = [[-38,-28], [420,900], [420,900]]
-bins = [100,240,240]
-res_kx_ky = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
-
-
-
-
-
-
-
-
-
-
-
[14]:
-
-
-
## EDC and integration region for XPD
-plt.figure()
-res_kx_ky.mean(('dldPosX', 'dldPosY')).plot()
-plt.vlines([-30.3,-29.9], 0, 2.4, color='r', linestyles='dashed')
-plt.vlines([-31.4,-31.2], 0, 2.4, color='orange', linestyles='dashed')
-plt.vlines([-33.6,-33.4], 0, 2.4, color='g', linestyles='dashed')
-plt.vlines([-37.0,-36.0], 0, 2.4, color='b', linestyles='dashed')
-plt.title('EDC and integration regions for XPD')
-plt.show()
-
-## XPD plots
-fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
-res_kx_ky.sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
-ax[0,0].set_title("XPD of $1^{st}$ order sidebands")
-res_kx_ky.sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
-ax[0,1].set_title("XPD of W4f 7/2 peak")
-res_kx_ky.sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
-ax[1,0].set_title("XPD of W4f 5/2 peak")
-res_kx_ky.sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
-ax[1,1].set_title("XPD of W5p 3/2 peak")
-
-
-
-
-
-
-
-
-
-
-
[14]:
-
-
-
-
-Text(0.5, 1.0, 'XPD of W5p 3/2 peak')
-
-
-
-
-
-
-
-
-

As we can see there is some structure visible, but it looks very similar to each other. We probably have to do some normalization to remove the detector structure/artefacts. The best option is to divide by a flat-field image. The flat-field image can be obtained from a sample that shows no structure under identical measurement conditions. Unfortunately, we don’t have such a flat-field image.

-

In this case, we can make a flat-field image from the actual dataset using several different approaches.

-

As a first option, we can integrate in energy over the whole region and use this image as a background. Additionally, we introduce the Gaussian Blur for comparison.

-
-
[15]:
-
-
-
## Background image
-bgd = res_kx_ky.mean(('energy'))
-
-## Apply Gaussian Blur to background image
-bgd_blur = xr.apply_ufunc(gaussian_filter, bgd, 15)
-
-fig,ax = plt.subplots(1,2,figsize=(6,2.7), layout='constrained')
-bgd.plot(robust=True, cmap='terrain', ax=ax[0])
-ax[0].set_title('Background image')
-bgd_blur.plot(cmap='terrain', ax=ax[1])
-ax[1].set_title('Gaussian Blur of background image')
-plt.show()
-
-
-
-
-
-
-
-
-
-
-
[16]:
-
-
-
## XPD normalized by background image
-fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
-(res_kx_ky/bgd).sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
-(res_kx_ky/bgd).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
-(res_kx_ky/bgd).sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
-(res_kx_ky/bgd).sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
-fig.suptitle(f'Run {run_number}: XPD patterns after background normalization',fontsize='11')
-
-## XPD normalized by Gaussian-blurred background image
-fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
-(res_kx_ky/bgd_blur).sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
-(res_kx_ky/bgd_blur).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
-(res_kx_ky/bgd_blur).sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
-(res_kx_ky/bgd_blur).sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
-fig.suptitle(f'Run {run_number}: XPD patterns after Gaussian-blurred background normalization',fontsize='11')
-
-## XPD normalized by Gaussian-blurred background image and blurred to improve contrast
-fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
-(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
-(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
-(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
-(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
-fig.suptitle(f'Run {run_number}: resulting Gaussian-blurred XPD patterns',fontsize='11')
-
-
-
-
-
[16]:
-
-
-
-
-Text(0.5, 0.98, 'Run 44498: resulting Gaussian-blurred XPD patterns')
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Sometimes, after this division, you may not be happy with intensity distribution. Thus, other option for background correction is to duplicate the XPD pattern, apply large Gaussian blurring that eliminates the fine structures in the XPD pattern. Then divide the XPD pattern by its blurred version. This process sometimes enhances the visibility of the fine structures a lot.

-
-
[17]:
-
-
-
## XPD normalized by Gaussian-blurred background image
-
-### Define integration regions for XPD
-SB = res_kx_ky.sel(energy=slice(-30.3,-29.9)).mean('energy')
-W_4f_7 = res_kx_ky.sel(energy=slice(-31.4,-31.2)).mean('energy')
-W_4f_5 = res_kx_ky.sel(energy=slice(-33.6,-33.4)).mean('energy')
-W_5p = res_kx_ky.sel(energy=slice(-37.0,-36.0)).mean('energy')
-
-### Make corresponding Gaussian Blur background
-SB_blur = xr.apply_ufunc(gaussian_filter, SB, 15)
-W_4f_7_blur = xr.apply_ufunc(gaussian_filter, W_4f_7, 15)
-W_4f_5_blur = xr.apply_ufunc(gaussian_filter, W_4f_5, 15)
-W_5p_blur = xr.apply_ufunc(gaussian_filter, W_5p, 15)
-
-### Visualize results
-fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
-(SB/SB_blur).plot(robust=True, ax=ax[0,0], cmap='terrain')
-(W_4f_7/W_4f_7_blur).plot(robust=True, ax=ax[0,1], cmap='terrain')
-(W_4f_5/W_4f_5_blur).plot(robust=True, ax=ax[1,0], cmap='terrain')
-(W_5p/W_5p_blur).plot(robust=True, ax=ax[1,1], cmap='terrain')
-fig.suptitle(f'Run {run_number}: XPD patterns after Gaussian Blur normalization',fontsize='11')
-
-### Apply Gaussian Blur to resulted images to improve contrast
-SB_norm = xr.apply_ufunc(gaussian_filter, SB/SB_blur, 1)
-W_4f_7_norm = xr.apply_ufunc(gaussian_filter, W_4f_7/W_4f_7_blur, 1)
-W_4f_5_norm = xr.apply_ufunc(gaussian_filter, W_4f_5/W_4f_5_blur, 1)
-W_5p_norm = xr.apply_ufunc(gaussian_filter, W_5p/W_5p_blur, 1)
-
-### Visualize results
-fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
-SB_norm.plot(robust=True, ax=ax[0,0], cmap='terrain')
-W_4f_7_norm.plot(robust=True, ax=ax[0,1], cmap='terrain')
-W_4f_5_norm.plot(robust=True, ax=ax[1,0], cmap='terrain')
-W_5p_norm.plot(robust=True, ax=ax[1,1], cmap='terrain')
-fig.suptitle(f'Run {run_number}: XPD patterns after Gauss Blur normalization',fontsize='11')
-
-
-
-
-
[17]:
-
-
-
-
-Text(0.5, 0.98, 'Run 44498: XPD patterns after Gauss Blur normalization')
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Third option for background normalization is to use the simultaneously acquired pre-core level region. As an example for W4f 7/2 peak, we define a region on the high energy side of it and integrate in energy to use as a background

-
-
[18]:
-
-
-
### Define peak and background region on the high energy side of the peak
-W_4f_7 = res_kx_ky.sel(energy=slice(-31.4,-31.2)).mean('energy')
-W_4f_7_bgd = res_kx_ky.sel(energy=slice(-32.0,-31.8)).mean('energy')
-
-### Make normalization by background, add Gaussian Blur to the resulting image
-W_4f_7_nrm1 = W_4f_7/(W_4f_7_bgd+W_4f_7_bgd.max()*0.00001)
-W_4f_7_nrm1_blur = xr.apply_ufunc(gaussian_filter, W_4f_7_nrm1, 1)
-
-### Add Gaussian Blur to the background image, normalize by it and add Gaussian Blur to the resulting image
-W_4f_7_bgd_blur = xr.apply_ufunc(gaussian_filter, W_4f_7_bgd, 15)
-W_4f_7_nrm2 = W_4f_7/W_4f_7_bgd_blur
-W_4f_7_nrm2_blur = xr.apply_ufunc(gaussian_filter, W_4f_7_nrm2, 1)
-
-### Visualize all steps
-fig,ax = plt.subplots(4,2,figsize=(6,8), layout='constrained')
-W_4f_7.plot(robust=True, ax=ax[0,0], cmap='terrain')
-W_4f_7_bgd.plot(robust=True, ax=ax[0,1], cmap='terrain')
-W_4f_7_nrm1.plot(robust=True, ax=ax[1,0], cmap='terrain')
-W_4f_7_nrm1_blur.plot(robust=True, ax=ax[1,1], cmap='terrain')
-W_4f_7_bgd_blur.plot(robust=True, ax=ax[2,0], cmap='terrain')
-W_4f_7_nrm2.plot(robust=True, ax=ax[2,1], cmap='terrain')
-W_4f_7_nrm2_blur.plot(robust=True, ax=ax[3,0], cmap='terrain')
-fig.suptitle(f'Run {run_number}: XPD patterns of W4f7/2 with pre-core level normalization',fontsize='11')
-
-
-
-
-
[18]:
-
-
-
-
-Text(0.5, 0.98, 'Run 44498: XPD patterns of W4f7/2 with pre-core level normalization')
-
-
-
-
-
-
-
-
-
-
[19]:
-
-
-
fig,ax = plt.subplots(1,3,figsize=(6,2), layout='constrained')
-(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0], cmap='terrain')
-W_4f_7_norm.plot(robust=True, ax=ax[1], cmap='terrain')
-W_4f_7_nrm2_blur.plot(robust=True, ax=ax[2], cmap='terrain')
-fig.suptitle(f'Run {run_number}: comparison of different normalizations\nof XPD pattern for W4f 7/2 peak with Gaussian Blur',fontsize='11')
-
-
-
-
-
[19]:
-
-
-
-
-Text(0.5, 0.98, 'Run 44498: comparison of different normalizations\nof XPD pattern for W4f 7/2 peak with Gaussian Blur')
-
-
-
-
-
-
-
-
-
-
[ ]:
-
-
-

-
-
-
-
-
- - -
- - - - - - - -
- - - - - - - -
-
- -
- -
-
-
- - - - - - - - \ No newline at end of file diff --git a/sed/stable b/sed/stable index be5bf2a..60453e6 120000 --- a/sed/stable +++ b/sed/stable @@ -1 +1 @@ -v0.4.1 \ No newline at end of file +v1.0.0 \ No newline at end of file diff --git a/sed/switcher.json b/sed/switcher.json index f8a8e48..6e8ea2d 100644 --- a/sed/switcher.json +++ b/sed/switcher.json @@ -1,13 +1,13 @@ [ { "name": "latest", - "version": "1.0.0a1.dev19+gf1bb527", - "url": "https://opencompes.github.io/docs/sed/latest" + "version": "1.0.0", + "url": "https://opencompes.github.io/docs/sed/v1.0.0" }, { "name": "stable", - "version": "0.4.1", - "url": "https://opencompes.github.io/docs/sed/v0.4.1", + "version": "1.0.0", + "url": "https://opencompes.github.io/docs/sed/v1.0.0", "preferred": "true" }, { diff --git a/sed/latest/_modules/index.html b/sed/v1.0.0/_modules/index.html similarity index 97% rename from sed/latest/_modules/index.html rename to sed/v1.0.0/_modules/index.html index 1ba289e..2c1e184 100644 --- a/sed/latest/_modules/index.html +++ b/sed/v1.0.0/_modules/index.html @@ -7,7 +7,7 @@ - Overview: module code — SED 1.0.0a1.dev19+gf1bb527 documentation + Overview: module code — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/binning/binning.html b/sed/v1.0.0/_modules/sed/binning/binning.html similarity index 99% rename from sed/latest/_modules/sed/binning/binning.html rename to sed/v1.0.0/_modules/sed/binning/binning.html index 26621a3..2a19fd4 100644 --- a/sed/latest/_modules/sed/binning/binning.html +++ b/sed/v1.0.0/_modules/sed/binning/binning.html @@ -7,7 +7,7 @@ - sed.binning.binning — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.binning.binning — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/binning/numba_bin.html b/sed/v1.0.0/_modules/sed/binning/numba_bin.html similarity index 99% rename from sed/latest/_modules/sed/binning/numba_bin.html rename to sed/v1.0.0/_modules/sed/binning/numba_bin.html index c18e81c..a07ed55 100644 --- a/sed/latest/_modules/sed/binning/numba_bin.html +++ b/sed/v1.0.0/_modules/sed/binning/numba_bin.html @@ -7,7 +7,7 @@ - sed.binning.numba_bin — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.binning.numba_bin — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/binning/utils.html b/sed/v1.0.0/_modules/sed/binning/utils.html similarity index 99% rename from sed/latest/_modules/sed/binning/utils.html rename to sed/v1.0.0/_modules/sed/binning/utils.html index 7f7d55b..f72ce88 100644 --- a/sed/latest/_modules/sed/binning/utils.html +++ b/sed/v1.0.0/_modules/sed/binning/utils.html @@ -7,7 +7,7 @@ - sed.binning.utils — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.binning.utils — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/calibrator/delay.html b/sed/v1.0.0/_modules/sed/calibrator/delay.html similarity index 99% rename from sed/latest/_modules/sed/calibrator/delay.html rename to sed/v1.0.0/_modules/sed/calibrator/delay.html index 51bc579..e5dca9c 100644 --- a/sed/latest/_modules/sed/calibrator/delay.html +++ b/sed/v1.0.0/_modules/sed/calibrator/delay.html @@ -7,7 +7,7 @@ - sed.calibrator.delay — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.calibrator.delay — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/calibrator/energy.html b/sed/v1.0.0/_modules/sed/calibrator/energy.html similarity index 99% rename from sed/latest/_modules/sed/calibrator/energy.html rename to sed/v1.0.0/_modules/sed/calibrator/energy.html index 40866be..c2baa15 100644 --- a/sed/latest/_modules/sed/calibrator/energy.html +++ b/sed/v1.0.0/_modules/sed/calibrator/energy.html @@ -7,7 +7,7 @@ - sed.calibrator.energy — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.calibrator.energy — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/calibrator/momentum.html b/sed/v1.0.0/_modules/sed/calibrator/momentum.html similarity index 99% rename from sed/latest/_modules/sed/calibrator/momentum.html rename to sed/v1.0.0/_modules/sed/calibrator/momentum.html index 4eb537a..77f6f6f 100644 --- a/sed/latest/_modules/sed/calibrator/momentum.html +++ b/sed/v1.0.0/_modules/sed/calibrator/momentum.html @@ -7,7 +7,7 @@ - sed.calibrator.momentum — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.calibrator.momentum — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/core/config.html b/sed/v1.0.0/_modules/sed/core/config.html similarity index 99% rename from sed/latest/_modules/sed/core/config.html rename to sed/v1.0.0/_modules/sed/core/config.html index dfcb681..06422e9 100644 --- a/sed/latest/_modules/sed/core/config.html +++ b/sed/v1.0.0/_modules/sed/core/config.html @@ -7,7 +7,7 @@ - sed.core.config — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.core.config — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/core/dfops.html b/sed/v1.0.0/_modules/sed/core/dfops.html similarity index 99% rename from sed/latest/_modules/sed/core/dfops.html rename to sed/v1.0.0/_modules/sed/core/dfops.html index fc2963f..485434e 100644 --- a/sed/latest/_modules/sed/core/dfops.html +++ b/sed/v1.0.0/_modules/sed/core/dfops.html @@ -7,7 +7,7 @@ - sed.core.dfops — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.core.dfops — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/core/metadata.html b/sed/v1.0.0/_modules/sed/core/metadata.html similarity index 99% rename from sed/latest/_modules/sed/core/metadata.html rename to sed/v1.0.0/_modules/sed/core/metadata.html index b5a446d..58d3b6f 100644 --- a/sed/latest/_modules/sed/core/metadata.html +++ b/sed/v1.0.0/_modules/sed/core/metadata.html @@ -7,7 +7,7 @@ - sed.core.metadata — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.core.metadata — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/core/processor.html b/sed/v1.0.0/_modules/sed/core/processor.html similarity index 99% rename from sed/latest/_modules/sed/core/processor.html rename to sed/v1.0.0/_modules/sed/core/processor.html index 881d1b7..48f6c8a 100644 --- a/sed/latest/_modules/sed/core/processor.html +++ b/sed/v1.0.0/_modules/sed/core/processor.html @@ -7,7 +7,7 @@ - sed.core.processor — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.core.processor — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/dataset/dataset.html b/sed/v1.0.0/_modules/sed/dataset/dataset.html similarity index 99% rename from sed/latest/_modules/sed/dataset/dataset.html rename to sed/v1.0.0/_modules/sed/dataset/dataset.html index 0bb8c44..e3879e1 100644 --- a/sed/latest/_modules/sed/dataset/dataset.html +++ b/sed/v1.0.0/_modules/sed/dataset/dataset.html @@ -7,7 +7,7 @@ - sed.dataset.dataset — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.dataset.dataset — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/diagnostics.html b/sed/v1.0.0/_modules/sed/diagnostics.html similarity index 99% rename from sed/latest/_modules/sed/diagnostics.html rename to sed/v1.0.0/_modules/sed/diagnostics.html index c4d5d12..fc8087a 100644 --- a/sed/latest/_modules/sed/diagnostics.html +++ b/sed/v1.0.0/_modules/sed/diagnostics.html @@ -7,7 +7,7 @@ - sed.diagnostics — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.diagnostics — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/io/hdf5.html b/sed/v1.0.0/_modules/sed/io/hdf5.html similarity index 99% rename from sed/latest/_modules/sed/io/hdf5.html rename to sed/v1.0.0/_modules/sed/io/hdf5.html index 637f513..6de0d4e 100644 --- a/sed/latest/_modules/sed/io/hdf5.html +++ b/sed/v1.0.0/_modules/sed/io/hdf5.html @@ -7,7 +7,7 @@ - sed.io.hdf5 — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.io.hdf5 — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/io/nexus.html b/sed/v1.0.0/_modules/sed/io/nexus.html similarity index 98% rename from sed/latest/_modules/sed/io/nexus.html rename to sed/v1.0.0/_modules/sed/io/nexus.html index 4606331..700068e 100644 --- a/sed/latest/_modules/sed/io/nexus.html +++ b/sed/v1.0.0/_modules/sed/io/nexus.html @@ -7,7 +7,7 @@ - sed.io.nexus — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.io.nexus — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/io/tiff.html b/sed/v1.0.0/_modules/sed/io/tiff.html similarity index 99% rename from sed/latest/_modules/sed/io/tiff.html rename to sed/v1.0.0/_modules/sed/io/tiff.html index b681e04..9e06afa 100644 --- a/sed/latest/_modules/sed/io/tiff.html +++ b/sed/v1.0.0/_modules/sed/io/tiff.html @@ -7,7 +7,7 @@ - sed.io.tiff — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.io.tiff — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/base/loader.html b/sed/v1.0.0/_modules/sed/loader/base/loader.html similarity index 99% rename from sed/latest/_modules/sed/loader/base/loader.html rename to sed/v1.0.0/_modules/sed/loader/base/loader.html index 259129a..860dc24 100644 --- a/sed/latest/_modules/sed/loader/base/loader.html +++ b/sed/v1.0.0/_modules/sed/loader/base/loader.html @@ -7,7 +7,7 @@ - sed.loader.base.loader — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.base.loader — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/flash/loader.html b/sed/v1.0.0/_modules/sed/loader/flash/loader.html similarity index 99% rename from sed/latest/_modules/sed/loader/flash/loader.html rename to sed/v1.0.0/_modules/sed/loader/flash/loader.html index f5eb647..7e26e9c 100644 --- a/sed/latest/_modules/sed/loader/flash/loader.html +++ b/sed/v1.0.0/_modules/sed/loader/flash/loader.html @@ -7,7 +7,7 @@ - sed.loader.flash.loader — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.flash.loader — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/flash/metadata.html b/sed/v1.0.0/_modules/sed/loader/flash/metadata.html similarity index 99% rename from sed/latest/_modules/sed/loader/flash/metadata.html rename to sed/v1.0.0/_modules/sed/loader/flash/metadata.html index 97eca70..0af5d78 100644 --- a/sed/latest/_modules/sed/loader/flash/metadata.html +++ b/sed/v1.0.0/_modules/sed/loader/flash/metadata.html @@ -7,7 +7,7 @@ - sed.loader.flash.metadata — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.flash.metadata — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/generic/loader.html b/sed/v1.0.0/_modules/sed/loader/generic/loader.html similarity index 99% rename from sed/latest/_modules/sed/loader/generic/loader.html rename to sed/v1.0.0/_modules/sed/loader/generic/loader.html index c4e6f01..798a54a 100644 --- a/sed/latest/_modules/sed/loader/generic/loader.html +++ b/sed/v1.0.0/_modules/sed/loader/generic/loader.html @@ -7,7 +7,7 @@ - sed.loader.generic.loader — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.generic.loader — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/loader_interface.html b/sed/v1.0.0/_modules/sed/loader/loader_interface.html similarity index 98% rename from sed/latest/_modules/sed/loader/loader_interface.html rename to sed/v1.0.0/_modules/sed/loader/loader_interface.html index 6de04f7..82ed0cb 100644 --- a/sed/latest/_modules/sed/loader/loader_interface.html +++ b/sed/v1.0.0/_modules/sed/loader/loader_interface.html @@ -7,7 +7,7 @@ - sed.loader.loader_interface — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.loader_interface — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/mirrorutil.html b/sed/v1.0.0/_modules/sed/loader/mirrorutil.html similarity index 99% rename from sed/latest/_modules/sed/loader/mirrorutil.html rename to sed/v1.0.0/_modules/sed/loader/mirrorutil.html index b557c3c..56be11c 100644 --- a/sed/latest/_modules/sed/loader/mirrorutil.html +++ b/sed/v1.0.0/_modules/sed/loader/mirrorutil.html @@ -7,7 +7,7 @@ - sed.loader.mirrorutil — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.mirrorutil — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/mpes/loader.html b/sed/v1.0.0/_modules/sed/loader/mpes/loader.html similarity index 99% rename from sed/latest/_modules/sed/loader/mpes/loader.html rename to sed/v1.0.0/_modules/sed/loader/mpes/loader.html index aa973d9..9a49c2b 100644 --- a/sed/latest/_modules/sed/loader/mpes/loader.html +++ b/sed/v1.0.0/_modules/sed/loader/mpes/loader.html @@ -7,7 +7,7 @@ - sed.loader.mpes.loader — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.mpes.loader — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/sxp/loader.html b/sed/v1.0.0/_modules/sed/loader/sxp/loader.html similarity index 99% rename from sed/latest/_modules/sed/loader/sxp/loader.html rename to sed/v1.0.0/_modules/sed/loader/sxp/loader.html index 68684ed..aa3c039 100644 --- a/sed/latest/_modules/sed/loader/sxp/loader.html +++ b/sed/v1.0.0/_modules/sed/loader/sxp/loader.html @@ -7,7 +7,7 @@ - sed.loader.sxp.loader — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.sxp.loader — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_modules/sed/loader/utils.html b/sed/v1.0.0/_modules/sed/loader/utils.html similarity index 99% rename from sed/latest/_modules/sed/loader/utils.html rename to sed/v1.0.0/_modules/sed/loader/utils.html index 8906464..2590b84 100644 --- a/sed/latest/_modules/sed/loader/utils.html +++ b/sed/v1.0.0/_modules/sed/loader/utils.html @@ -7,7 +7,7 @@ - sed.loader.utils — SED 1.0.0a1.dev19+gf1bb527 documentation + sed.loader.utils — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/_sources/index.md.txt b/sed/v1.0.0/_sources/index.md.txt similarity index 100% rename from sed/latest/_sources/index.md.txt rename to sed/v1.0.0/_sources/index.md.txt diff --git a/sed/latest/_sources/misc/contributing.rst.txt b/sed/v1.0.0/_sources/misc/contributing.rst.txt similarity index 100% rename from sed/latest/_sources/misc/contributing.rst.txt rename to sed/v1.0.0/_sources/misc/contributing.rst.txt diff --git a/sed/latest/_sources/misc/contribution.md.txt b/sed/v1.0.0/_sources/misc/contribution.md.txt similarity index 100% rename from sed/latest/_sources/misc/contribution.md.txt rename to sed/v1.0.0/_sources/misc/contribution.md.txt diff --git a/sed/latest/_sources/misc/maintain.rst.txt b/sed/v1.0.0/_sources/misc/maintain.rst.txt similarity index 100% rename from sed/latest/_sources/misc/maintain.rst.txt rename to sed/v1.0.0/_sources/misc/maintain.rst.txt diff --git a/sed/latest/_sources/sed/api.rst.txt b/sed/v1.0.0/_sources/sed/api.rst.txt similarity index 100% rename from sed/latest/_sources/sed/api.rst.txt rename to sed/v1.0.0/_sources/sed/api.rst.txt diff --git a/sed/latest/_sources/sed/binning.rst.txt b/sed/v1.0.0/_sources/sed/binning.rst.txt similarity index 100% rename from sed/latest/_sources/sed/binning.rst.txt rename to sed/v1.0.0/_sources/sed/binning.rst.txt diff --git a/sed/latest/_sources/sed/calibrator.rst.txt b/sed/v1.0.0/_sources/sed/calibrator.rst.txt similarity index 100% rename from sed/latest/_sources/sed/calibrator.rst.txt rename to sed/v1.0.0/_sources/sed/calibrator.rst.txt diff --git a/sed/latest/_sources/sed/config.rst.txt b/sed/v1.0.0/_sources/sed/config.rst.txt similarity index 100% rename from sed/latest/_sources/sed/config.rst.txt rename to sed/v1.0.0/_sources/sed/config.rst.txt diff --git a/sed/latest/_sources/sed/core.rst.txt b/sed/v1.0.0/_sources/sed/core.rst.txt similarity index 100% rename from sed/latest/_sources/sed/core.rst.txt rename to sed/v1.0.0/_sources/sed/core.rst.txt diff --git a/sed/latest/_sources/sed/dataset.rst.txt b/sed/v1.0.0/_sources/sed/dataset.rst.txt similarity index 100% rename from sed/latest/_sources/sed/dataset.rst.txt rename to sed/v1.0.0/_sources/sed/dataset.rst.txt diff --git a/sed/latest/_sources/sed/dfops.rst.txt b/sed/v1.0.0/_sources/sed/dfops.rst.txt similarity index 100% rename from sed/latest/_sources/sed/dfops.rst.txt rename to sed/v1.0.0/_sources/sed/dfops.rst.txt diff --git a/sed/latest/_sources/sed/diagnostic.rst.txt b/sed/v1.0.0/_sources/sed/diagnostic.rst.txt similarity index 100% rename from sed/latest/_sources/sed/diagnostic.rst.txt rename to sed/v1.0.0/_sources/sed/diagnostic.rst.txt diff --git a/sed/latest/_sources/sed/io.rst.txt b/sed/v1.0.0/_sources/sed/io.rst.txt similarity index 100% rename from sed/latest/_sources/sed/io.rst.txt rename to sed/v1.0.0/_sources/sed/io.rst.txt diff --git a/sed/latest/_sources/sed/loader.rst.txt b/sed/v1.0.0/_sources/sed/loader.rst.txt similarity index 100% rename from sed/latest/_sources/sed/loader.rst.txt rename to sed/v1.0.0/_sources/sed/loader.rst.txt diff --git a/sed/latest/_sources/sed/metadata.rst.txt b/sed/v1.0.0/_sources/sed/metadata.rst.txt similarity index 100% rename from sed/latest/_sources/sed/metadata.rst.txt rename to sed/v1.0.0/_sources/sed/metadata.rst.txt diff --git a/sed/latest/_sources/tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb.txt b/sed/v1.0.0/_sources/tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb.txt diff --git a/sed/latest/_sources/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb.txt b/sed/v1.0.0/_sources/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb.txt diff --git a/sed/latest/_sources/tutorial/1_binning_fake_data.ipynb.txt b/sed/v1.0.0/_sources/tutorial/1_binning_fake_data.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/1_binning_fake_data.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/1_binning_fake_data.ipynb.txt diff --git a/sed/latest/_sources/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb.txt b/sed/v1.0.0/_sources/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb.txt diff --git a/sed/latest/_sources/tutorial/3_metadata_collection_and_export_to_NeXus.ipynb.txt b/sed/v1.0.0/_sources/tutorial/3_metadata_collection_and_export_to_NeXus.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/3_metadata_collection_and_export_to_NeXus.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/3_metadata_collection_and_export_to_NeXus.ipynb.txt diff --git a/sed/latest/_sources/tutorial/4_hextof_workflow.ipynb.txt b/sed/v1.0.0/_sources/tutorial/4_hextof_workflow.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/4_hextof_workflow.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/4_hextof_workflow.ipynb.txt diff --git a/sed/latest/_sources/tutorial/5_sxp_workflow.ipynb.txt b/sed/v1.0.0/_sources/tutorial/5_sxp_workflow.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/5_sxp_workflow.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/5_sxp_workflow.ipynb.txt diff --git a/sed/latest/_sources/tutorial/6_binning_with_time-stamped_data.ipynb.txt b/sed/v1.0.0/_sources/tutorial/6_binning_with_time-stamped_data.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/6_binning_with_time-stamped_data.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/6_binning_with_time-stamped_data.ipynb.txt diff --git a/sed/latest/_sources/tutorial/7_correcting_orthorhombic_symmetry.ipynb.txt b/sed/v1.0.0/_sources/tutorial/7_correcting_orthorhombic_symmetry.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/7_correcting_orthorhombic_symmetry.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/7_correcting_orthorhombic_symmetry.ipynb.txt diff --git a/sed/latest/_sources/tutorial/8_jittering_tutorial.ipynb.txt b/sed/v1.0.0/_sources/tutorial/8_jittering_tutorial.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/8_jittering_tutorial.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/8_jittering_tutorial.ipynb.txt diff --git a/sed/latest/_sources/tutorial/9_hextof_workflow_trXPD.ipynb.txt b/sed/v1.0.0/_sources/tutorial/9_hextof_workflow_trXPD.ipynb.txt similarity index 100% rename from sed/latest/_sources/tutorial/9_hextof_workflow_trXPD.ipynb.txt rename to sed/v1.0.0/_sources/tutorial/9_hextof_workflow_trXPD.ipynb.txt diff --git a/sed/latest/_sources/user_guide/config.md.txt b/sed/v1.0.0/_sources/user_guide/config.md.txt similarity index 100% rename from sed/latest/_sources/user_guide/config.md.txt rename to sed/v1.0.0/_sources/user_guide/config.md.txt diff --git a/sed/latest/_sources/user_guide/index.md.txt b/sed/v1.0.0/_sources/user_guide/index.md.txt similarity index 100% rename from sed/latest/_sources/user_guide/index.md.txt rename to sed/v1.0.0/_sources/user_guide/index.md.txt diff --git a/sed/latest/_sources/user_guide/installation.md.txt b/sed/v1.0.0/_sources/user_guide/installation.md.txt similarity index 100% rename from sed/latest/_sources/user_guide/installation.md.txt rename to sed/v1.0.0/_sources/user_guide/installation.md.txt diff --git a/sed/latest/_sources/workflows/index.md.txt b/sed/v1.0.0/_sources/workflows/index.md.txt similarity index 100% rename from sed/latest/_sources/workflows/index.md.txt rename to sed/v1.0.0/_sources/workflows/index.md.txt diff --git a/sed/latest/_static/basic.css b/sed/v1.0.0/_static/basic.css similarity index 100% rename from sed/latest/_static/basic.css rename to sed/v1.0.0/_static/basic.css diff --git a/sed/latest/_static/doctools.js b/sed/v1.0.0/_static/doctools.js similarity index 100% rename from sed/latest/_static/doctools.js rename to sed/v1.0.0/_static/doctools.js diff --git a/sed/latest/_static/documentation_options.js b/sed/v1.0.0/_static/documentation_options.js similarity index 88% rename from sed/latest/_static/documentation_options.js rename to sed/v1.0.0/_static/documentation_options.js index 1cc336c..89435bb 100644 --- a/sed/latest/_static/documentation_options.js +++ b/sed/v1.0.0/_static/documentation_options.js @@ -1,5 +1,5 @@ const DOCUMENTATION_OPTIONS = { - VERSION: '1.0.0a1.dev19+gf1bb527', + VERSION: '1.0.0', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/sed/latest/_static/file.png b/sed/v1.0.0/_static/file.png similarity index 100% rename from sed/latest/_static/file.png rename to sed/v1.0.0/_static/file.png diff --git a/sed/latest/_static/language_data.js b/sed/v1.0.0/_static/language_data.js similarity index 100% rename from sed/latest/_static/language_data.js rename to sed/v1.0.0/_static/language_data.js diff --git a/sed/latest/_static/minus.png b/sed/v1.0.0/_static/minus.png similarity index 100% rename from sed/latest/_static/minus.png rename to sed/v1.0.0/_static/minus.png diff --git a/sed/latest/_static/nbsphinx-broken-thumbnail.svg b/sed/v1.0.0/_static/nbsphinx-broken-thumbnail.svg similarity index 100% rename from sed/latest/_static/nbsphinx-broken-thumbnail.svg rename to sed/v1.0.0/_static/nbsphinx-broken-thumbnail.svg diff --git a/sed/latest/_static/nbsphinx-code-cells.css b/sed/v1.0.0/_static/nbsphinx-code-cells.css similarity index 100% rename from sed/latest/_static/nbsphinx-code-cells.css rename to sed/v1.0.0/_static/nbsphinx-code-cells.css diff --git a/sed/latest/_static/nbsphinx-gallery.css b/sed/v1.0.0/_static/nbsphinx-gallery.css similarity index 100% rename from sed/latest/_static/nbsphinx-gallery.css rename to sed/v1.0.0/_static/nbsphinx-gallery.css diff --git a/sed/latest/_static/nbsphinx-no-thumbnail.svg b/sed/v1.0.0/_static/nbsphinx-no-thumbnail.svg similarity index 100% rename from sed/latest/_static/nbsphinx-no-thumbnail.svg rename to sed/v1.0.0/_static/nbsphinx-no-thumbnail.svg diff --git a/sed/latest/_static/plus.png b/sed/v1.0.0/_static/plus.png similarity index 100% rename from sed/latest/_static/plus.png rename to sed/v1.0.0/_static/plus.png diff --git a/sed/latest/_static/pygments.css b/sed/v1.0.0/_static/pygments.css similarity index 100% rename from sed/latest/_static/pygments.css rename to sed/v1.0.0/_static/pygments.css diff --git a/sed/latest/_static/scripts/bootstrap.js b/sed/v1.0.0/_static/scripts/bootstrap.js similarity index 100% rename from sed/latest/_static/scripts/bootstrap.js rename to sed/v1.0.0/_static/scripts/bootstrap.js diff --git a/sed/latest/_static/scripts/bootstrap.js.LICENSE.txt b/sed/v1.0.0/_static/scripts/bootstrap.js.LICENSE.txt similarity index 100% rename from sed/latest/_static/scripts/bootstrap.js.LICENSE.txt rename to sed/v1.0.0/_static/scripts/bootstrap.js.LICENSE.txt diff --git a/sed/latest/_static/scripts/bootstrap.js.map b/sed/v1.0.0/_static/scripts/bootstrap.js.map similarity index 100% rename from sed/latest/_static/scripts/bootstrap.js.map rename to sed/v1.0.0/_static/scripts/bootstrap.js.map diff --git a/sed/latest/_static/scripts/fontawesome.js b/sed/v1.0.0/_static/scripts/fontawesome.js similarity index 100% rename from sed/latest/_static/scripts/fontawesome.js rename to sed/v1.0.0/_static/scripts/fontawesome.js diff --git a/sed/latest/_static/scripts/fontawesome.js.LICENSE.txt b/sed/v1.0.0/_static/scripts/fontawesome.js.LICENSE.txt similarity index 100% rename from sed/latest/_static/scripts/fontawesome.js.LICENSE.txt rename to sed/v1.0.0/_static/scripts/fontawesome.js.LICENSE.txt diff --git a/sed/latest/_static/scripts/fontawesome.js.map b/sed/v1.0.0/_static/scripts/fontawesome.js.map similarity index 100% rename from sed/latest/_static/scripts/fontawesome.js.map rename to sed/v1.0.0/_static/scripts/fontawesome.js.map diff --git a/sed/latest/_static/scripts/pydata-sphinx-theme.js b/sed/v1.0.0/_static/scripts/pydata-sphinx-theme.js similarity index 100% rename from sed/latest/_static/scripts/pydata-sphinx-theme.js rename to sed/v1.0.0/_static/scripts/pydata-sphinx-theme.js diff --git a/sed/latest/_static/scripts/pydata-sphinx-theme.js.map b/sed/v1.0.0/_static/scripts/pydata-sphinx-theme.js.map similarity index 100% rename from sed/latest/_static/scripts/pydata-sphinx-theme.js.map rename to sed/v1.0.0/_static/scripts/pydata-sphinx-theme.js.map diff --git a/sed/latest/_static/searchtools.js b/sed/v1.0.0/_static/searchtools.js similarity index 100% rename from sed/latest/_static/searchtools.js rename to sed/v1.0.0/_static/searchtools.js diff --git a/sed/latest/_static/sphinx_highlight.js b/sed/v1.0.0/_static/sphinx_highlight.js similarity index 100% rename from sed/latest/_static/sphinx_highlight.js rename to sed/v1.0.0/_static/sphinx_highlight.js diff --git a/sed/latest/_static/styles/pydata-sphinx-theme.css b/sed/v1.0.0/_static/styles/pydata-sphinx-theme.css similarity index 100% rename from sed/latest/_static/styles/pydata-sphinx-theme.css rename to sed/v1.0.0/_static/styles/pydata-sphinx-theme.css diff --git a/sed/latest/_static/styles/pydata-sphinx-theme.css.map b/sed/v1.0.0/_static/styles/pydata-sphinx-theme.css.map similarity index 100% rename from sed/latest/_static/styles/pydata-sphinx-theme.css.map rename to sed/v1.0.0/_static/styles/pydata-sphinx-theme.css.map diff --git a/sed/latest/_static/styles/theme.css b/sed/v1.0.0/_static/styles/theme.css similarity index 100% rename from sed/latest/_static/styles/theme.css rename to sed/v1.0.0/_static/styles/theme.css diff --git a/sed/latest/_static/vendor/fontawesome/webfonts/fa-brands-400.ttf b/sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-brands-400.ttf similarity index 100% rename from sed/latest/_static/vendor/fontawesome/webfonts/fa-brands-400.ttf rename to sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-brands-400.ttf diff --git a/sed/latest/_static/vendor/fontawesome/webfonts/fa-brands-400.woff2 b/sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-brands-400.woff2 similarity index 100% rename from sed/latest/_static/vendor/fontawesome/webfonts/fa-brands-400.woff2 rename to sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-brands-400.woff2 diff --git a/sed/latest/_static/vendor/fontawesome/webfonts/fa-regular-400.ttf b/sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-regular-400.ttf similarity index 100% rename from sed/latest/_static/vendor/fontawesome/webfonts/fa-regular-400.ttf rename to sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-regular-400.ttf diff --git a/sed/latest/_static/vendor/fontawesome/webfonts/fa-regular-400.woff2 b/sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-regular-400.woff2 similarity index 100% rename from sed/latest/_static/vendor/fontawesome/webfonts/fa-regular-400.woff2 rename to sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-regular-400.woff2 diff --git a/sed/latest/_static/vendor/fontawesome/webfonts/fa-solid-900.ttf b/sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-solid-900.ttf similarity index 100% rename from sed/latest/_static/vendor/fontawesome/webfonts/fa-solid-900.ttf rename to sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-solid-900.ttf diff --git a/sed/latest/_static/vendor/fontawesome/webfonts/fa-solid-900.woff2 b/sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-solid-900.woff2 similarity index 100% rename from sed/latest/_static/vendor/fontawesome/webfonts/fa-solid-900.woff2 rename to sed/v1.0.0/_static/vendor/fontawesome/webfonts/fa-solid-900.woff2 diff --git a/sed/latest/_static/webpack-macros.html b/sed/v1.0.0/_static/webpack-macros.html similarity index 100% rename from sed/latest/_static/webpack-macros.html rename to sed/v1.0.0/_static/webpack-macros.html diff --git a/sed/latest/genindex.html b/sed/v1.0.0/genindex.html similarity index 99% rename from sed/latest/genindex.html rename to sed/v1.0.0/genindex.html index 249dbf8..96fada4 100644 --- a/sed/latest/genindex.html +++ b/sed/v1.0.0/genindex.html @@ -7,7 +7,7 @@ - Index — SED 1.0.0a1.dev19+gf1bb527 documentation + Index — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/index.html b/sed/v1.0.0/index.html similarity index 98% rename from sed/latest/index.html rename to sed/v1.0.0/index.html index 87d9832..86d2286 100644 --- a/sed/latest/index.html +++ b/sed/v1.0.0/index.html @@ -9,7 +9,7 @@ - SED documentation — SED 1.0.0a1.dev19+gf1bb527 documentation + SED documentation — SED 1.0.0 documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -59,7 +59,7 @@ - + @@ -121,7 +121,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/misc/contributing.html b/sed/v1.0.0/misc/contributing.html similarity index 98% rename from sed/latest/misc/contributing.html rename to sed/v1.0.0/misc/contributing.html index b011fe5..416e797 100644 --- a/sed/latest/misc/contributing.html +++ b/sed/v1.0.0/misc/contributing.html @@ -8,7 +8,7 @@ - Contributing to sed — SED 1.0.0a1.dev19+gf1bb527 documentation + Contributing to sed — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/misc/contribution.html b/sed/v1.0.0/misc/contribution.html similarity index 98% rename from sed/latest/misc/contribution.html rename to sed/v1.0.0/misc/contribution.html index 64c51bf..39bae27 100644 --- a/sed/latest/misc/contribution.html +++ b/sed/v1.0.0/misc/contribution.html @@ -8,7 +8,7 @@ - Development — SED 1.0.0a1.dev19+gf1bb527 documentation + Development — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/misc/maintain.html b/sed/v1.0.0/misc/maintain.html similarity index 98% rename from sed/latest/misc/maintain.html rename to sed/v1.0.0/misc/maintain.html index 2e8ffc5..83af02e 100644 --- a/sed/latest/misc/maintain.html +++ b/sed/v1.0.0/misc/maintain.html @@ -8,7 +8,7 @@ - How to Maintain — SED 1.0.0a1.dev19+gf1bb527 documentation + How to Maintain — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -56,7 +56,7 @@ - + @@ -118,7 +118,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/objects.inv b/sed/v1.0.0/objects.inv similarity index 99% rename from sed/latest/objects.inv rename to sed/v1.0.0/objects.inv index f418b441ba78ddcc6df3ba634e13208532dd091e..6ed9f011390e2b6a1a52fd432e964ac33a101906 100644 GIT binary patch delta 10 RcmaDFb|q|r%|>4dZ2%pP1aklY delta 28 jcmcZ-_B3pQjbNgoUP@}2p`~_unqg9ssge0c8wqUynga=E diff --git a/sed/latest/py-modindex.html b/sed/v1.0.0/py-modindex.html similarity index 98% rename from sed/latest/py-modindex.html rename to sed/v1.0.0/py-modindex.html index 054dbd6..0dce1ad 100644 --- a/sed/latest/py-modindex.html +++ b/sed/v1.0.0/py-modindex.html @@ -7,7 +7,7 @@ - Python Module Index — SED 1.0.0a1.dev19+gf1bb527 documentation + Python Module Index — SED 1.0.0 documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -55,7 +55,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/search.html b/sed/v1.0.0/search.html similarity index 97% rename from sed/latest/search.html rename to sed/v1.0.0/search.html index b7534ed..1e19422 100644 --- a/sed/latest/search.html +++ b/sed/v1.0.0/search.html @@ -6,7 +6,7 @@ - Search - SED 1.0.0a1.dev19+gf1bb527 documentation + Search - SED 1.0.0 documentation @@ -36,7 +36,7 @@ - + @@ -45,7 +45,7 @@ @@ -56,7 +56,7 @@ - + @@ -118,7 +118,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/v1.0.0/searchindex.js b/sed/v1.0.0/searchindex.js new file mode 100644 index 0000000..e899c73 --- /dev/null +++ b/sed/v1.0.0/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"alltitles": {"1. Step:": [[18, "1.-Step:"], [18, "id9"]], "1. step:": [[18, "1.-step:"]], "1st step:": [[18, "1st-step:"]], "2. Step": [[18, "2.-Step"]], "2. Step:": [[18, "2.-Step:"], [18, "id6"], [18, "id10"]], "3. Step:": [[18, "3.-Step:"], [18, "id11"]], "4. Delay calibration:": [[18, "4.-Delay-calibration:"]], "4. Step:": [[18, "4.-Step:"], [18, "id13"]], "5. Step:": [[18, "5.-Step:"]], "5. Visualization of calibrated histograms": [[18, "5.-Visualization-of-calibrated-histograms"]], "API": [[0, "api"], [4, null], [9, "module-sed.dataset.dataset"]], "Abstract BaseLoader": [[13, "module-sed.loader.base.loader"]], "Add Jitter": [[20, "Add-Jitter"]], "Advanced Topics": [[27, "advanced-topics"]], "Append energy axis into a data frame, bin and visualize data in the calibrated energy and corrected delay axis": [[16, "Append-energy-axis-into-a-data-frame,-bin-and-visualize-data-in-the-calibrated-energy-and-corrected-delay-axis"]], "Apply BAM correction": [[15, "Apply-BAM-correction"]], "Attributes useful for user": [[9, "attributes-useful-for-user"]], "Automatically extract number and position of peaks in the ROI around t0": [[16, "Automatically-extract-number-and-position-of-peaks-in-the-ROI-around-t0"]], "Basic concepts": [[27, "basic-concepts"]], "Bin data with energy axis": [[21, "Bin-data-with-energy-axis"]], "Bin in energy": [[20, "Bin-in-energy"]], "Bin the top of the valence band": [[23, "Bin-the-top-of-the-valence-band"]], "Binning": [[5, null], [20, "Binning"]], "Binning demonstration on locally generated fake data": [[17, null]], "Binning of temperature-dependent ARPES data using time-stamped external temperature data": [[22, null]], "Binning with metadata generation, and storing into a NeXus file": [[19, null]], "Calibrator": [[6, null]], "Channel Histograms": [[21, "Channel-Histograms"]], "Check BAM versus pulse and train IDs": [[15, "Check-BAM-versus-pulse-and-train-IDs"]], "Community and contribution guide": [[0, "community-and-contribution-guide"]], "Compare to reference": [[16, "Compare-to-reference"]], "Comparison of the BAM correction effect": [[15, "Comparison-of-the-BAM-correction-effect"]], "Compute distributed binning on the partitioned dask dataframe": [[17, "Compute-distributed-binning-on-the-partitioned-dask-dataframe"]], "Compute final data volume": [[19, "Compute-final-data-volume"]], "Compute the binning along the pandas dataframe": [[17, "Compute-the-binning-along-the-pandas-dataframe"]], "Compute the results": [[20, "Compute-the-results"]], "Config": [[7, null]], "Config setup": [[15, "Config-setup"], [16, "Config-setup"], [20, "Config-setup"], [21, "Config-setup"], [25, "Config-setup"]], "Configuration": [[26, null]], "Contributing to sed": [[1, null]], "Core": [[8, null]], "Correct delay axis": [[20, "Correct-delay-axis"]], "Correct delay stage offset.": [[21, "Correct-delay-stage-offset."]], "Correct use of Jittering": [[24, null]], "Data loader": [[13, null]], "Data w/o BAM correction": [[15, "Data-w/o-BAM-correction"]], "Dataframe Operations": [[10, null]], "Dataset": [[9, null]], "DatasetsManager": [[9, "datasetsmanager"]], "Default configuration settings": [[26, "default-configuration-settings"]], "Default datasets.json": [[9, "default-datasets-json"]], "Define the binning range": [[17, "Define-the-binning-range"]], "Define the binning ranges and compute calibrated data volume": [[18, "Define-the-binning-ranges-and-compute-calibrated-data-volume"], [22, "Define-the-binning-ranges-and-compute-calibrated-data-volume"]], "Delay calibration and correction": [[6, "module-sed.calibrator.delay"]], "Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo": [[18, null]], "Developing a Loader": [[1, "developing-a-loader"]], "Development": [[2, null]], "Development Workflow": [[1, "development-workflow"]], "Development version": [[28, "development-version"]], "Diagnostics": [[11, null]], "Distortion correction": [[18, "Distortion-correction"]], "Distortion correction and Momentum Calibration workflow": [[18, "Distortion-correction-and-Momentum-Calibration-workflow"]], "Distortion correction with orthorhombic symmetry": [[23, null]], "Documentation": [[3, "documentation"]], "Energy Calibration": [[20, "Energy-Calibration"], [21, "Energy-Calibration"]], "Energy Correction (optional)": [[18, "Energy-Correction-(optional)"]], "Energy Correction and Calibration workflow": [[18, "Energy-Correction-and-Calibration-workflow"]], "Energy calibration": [[18, "Energy-calibration"]], "Energy calibration and correction": [[6, "module-sed.calibrator.energy"]], "Energy calibration using side-band peaks": [[16, "Energy-calibration-using-side-band-peaks"]], "Example configuration file for flash (HEXTOF momentum microscope at FLASH, Desy)": [[26, "example-configuration-file-for-flash-hextof-momentum-microscope-at-flash-desy"]], "Example configuration file for mpes (METIS momentum microscope at FHI-Berlin)": [[26, "example-configuration-file-for-mpes-metis-momentum-microscope-at-fhi-berlin"]], "Example of adding custom datasets": [[9, "example-of-adding-custom-datasets"]], "Examples": [[0, "examples"]], "Feature definition:": [[23, "Feature-definition:"]], "FlashLoader": [[13, "module-sed.loader.flash.loader"]], "Generate Fake Data": [[17, "Generate-Fake-Data"]], "Generate the Processor instance": [[20, "Generate-the-Processor-instance"]], "GenericLoader": [[13, "module-sed.loader.generic.loader"]], "Get data paths": [[15, "Get-data-paths"], [16, "Get-data-paths"], [20, "Get-data-paths"], [21, "Get-data-paths"], [25, "Get-data-paths"]], "Getting Started": [[1, "getting-started"]], "Getting datasets": [[9, "getting-datasets"]], "How to Maintain": [[3, null]], "IO": [[12, null]], "Import necessary libraries": [[15, "Import-necessary-libraries"], [16, "Import-necessary-libraries"], [20, "Import-necessary-libraries"], [21, "Import-necessary-libraries"], [25, "Import-necessary-libraries"]], "Important note": [[20, "Important-note"]], "Inspect the dataframe": [[21, "Inspect-the-dataframe"]], "Installation": [[28, null]], "Installing SED": [[27, "installing-sed"]], "Load Au/Mica data": [[21, "Load-Au/Mica-data"]], "Load Data": [[18, "Load-Data"], [19, "Load-Data"], [22, "Load-Data"], [23, "Load-Data"], [24, "Load-Data"]], "Load a chessy sample run": [[20, "Load-a-chessy-sample-run"]], "Load bias series": [[21, "Load-bias-series"]], "Load energy calibration files": [[21, "Load-energy-calibration-files"]], "Loader Interface": [[13, "module-sed.loader.loader_interface"]], "Main functions": [[5, "module-sed.binning"]], "Metadata": [[14, null]], "Momentum calibration and correction": [[6, "module-sed.calibrator.momentum"]], "Momentum calibration with orthorhombic axes": [[23, "Momentum-calibration-with-orthorhombic-axes"]], "Momentum calibration workflow": [[18, "Momentum-calibration-workflow"]], "MpesLoader": [[13, "module-sed.loader.mpes.loader"]], "Now we can use those parameters and load our trXPS data using the additional config file": [[16, "Now-we-can-use-those-parameters-and-load-our-trXPS-data-using-the-additional-config-file"]], "Optical Spot Profile": [[20, "Optical-Spot-Profile"]], "Optional (Step 1a):": [[18, "Optional-(Step-1a):"], [18, "id7"]], "Optional (Step 3a):": [[18, "Optional-(Step-3a):"], [18, "id12"]], "Preparation": [[15, "Preparation"], [16, "Preparation"], [20, "Preparation"], [21, "Preparation"], [25, "Preparation"]], "Prepare Energy Calibration": [[25, "Prepare-Energy-Calibration"]], "Pull Request Guidelines": [[1, "pull-request-guidelines"]], "PulseIds, ElectronIds": [[21, "PulseIds,-ElectronIds"]], "Read data": [[25, "Read-data"]], "Reference calibration from a bias series": [[16, "Reference-calibration-from-a-bias-series"]], "Release": [[3, "release"]], "Run the workflow from the config file": [[20, "Run-the-workflow-from-the-config-file"]], "Run workflow entirely from config.": [[20, "Run-workflow-entirely-from-config."]], "SED documentation": [[0, null]], "SXPLoader": [[13, "module-sed.loader.sxp.loader"]], "Save calibration": [[21, "Save-calibration"]], "Save results": [[20, "Save-results"]], "Some visualization:": [[18, "Some-visualization:"], [22, "Some-visualization:"]], "Spectrum vs. MicrobunchId": [[21, "Spectrum-vs.-MicrobunchId"]], "Spline-warp generation:": [[23, "Spline-warp-generation:"]], "Train IDs in scans": [[21, "Train-IDs-in-scans"]], "Transform to dask dataframe": [[17, "Transform-to-dask-dataframe"]], "Tutorial for binning data from the HEXTOF instrument at FLASH": [[20, null]], "Tutorial for binning data from the SXP instrument at the European XFEL": [[21, null]], "Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization": [[25, null]], "Tutorial for trXPS for energy calibration using core level side-bands": [[16, null]], "Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction": [[15, null]], "Used helper functions": [[5, "module-sed.binning.numba_bin"]], "User Guide": [[27, null]], "User guide": [[0, "user-guide"]], "Utilities": [[13, "module-sed.loader.utils"]], "Visualize trXPS data bin in the dldTimeSteps and the corrected delay axis to prepare for energy calibration using SB": [[16, "Visualize-trXPS-data-bin-in-the-dldTimeSteps-and-the-corrected-delay-axis-to-prepare-for-energy-calibration-using-SB"]], "Visualizing event histograms": [[20, "Visualizing-event-histograms"]], "We correct delay stage, t0 position and BAM (see previous tutorial)": [[16, "We-correct-delay-stage,-t0-position-and-BAM-(see-previous-tutorial)"]], "We use the stored energy calibration parameters and load trXPS data set to define:": [[15, "We-use-the-stored-energy-calibration-parameters-and-load-trXPS-data-set-to-define:"]], "Workflows": [[29, null]], "XPD from W4f core level": [[25, "XPD-from-W4f-core-level"]], "bin in the calibrated energy and corrected delay axis": [[25, "bin-in-the-calibrated-energy-and-corrected-delay-axis"]], "bin in the corrected delay axis": [[15, "bin-in-the-corrected-delay-axis"], [20, "bin-in-the-corrected-delay-axis"]], "cleanup previous config files": [[20, "cleanup-previous-config-files"], [21, "cleanup-previous-config-files"]], "correct offsets": [[20, "correct-offsets"]], "find calibration parameters": [[16, "find-calibration-parameters"], [16, "id1"], [20, "find-calibration-parameters"], [21, "find-calibration-parameters"]], "generate the energy axis": [[20, "generate-the-energy-axis"]], "get()": [[9, "get"]], "inspect the dataframe": [[20, "inspect-the-dataframe"]], "plot the delayStage values": [[20, "plot-the-delayStage-values"]], "remove()": [[9, "remove"]], "save parameters": [[20, "save-parameters"]], "save the calibration parameters": [[20, "save-the-calibration-parameters"]], "sector alignment": [[20, "sector-alignment"]], "time-of-flight spectrum": [[20, "time-of-flight-spectrum"], [21, "time-of-flight-spectrum"]], "visualize the result": [[20, "visualize-the-result"]]}, "docnames": ["index", "misc/contributing", "misc/contribution", "misc/maintain", "sed/api", "sed/binning", "sed/calibrator", "sed/config", "sed/core", "sed/dataset", "sed/dfops", "sed/diagnostic", "sed/io", "sed/loader", "sed/metadata", "tutorial/10_hextof_workflow_trXPS_bam_correction", "tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB", "tutorial/1_binning_fake_data", "tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data", "tutorial/3_metadata_collection_and_export_to_NeXus", "tutorial/4_hextof_workflow", "tutorial/5_sxp_workflow", "tutorial/6_binning_with_time-stamped_data", "tutorial/7_correcting_orthorhombic_symmetry", "tutorial/8_jittering_tutorial", "tutorial/9_hextof_workflow_trXPD", "user_guide/config", "user_guide/index", "user_guide/installation", "workflows/index"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.md", "misc/contributing.rst", "misc/contribution.md", "misc/maintain.rst", "sed/api.rst", "sed/binning.rst", "sed/calibrator.rst", "sed/config.rst", "sed/core.rst", "sed/dataset.rst", "sed/dfops.rst", "sed/diagnostic.rst", "sed/io.rst", "sed/loader.rst", "sed/metadata.rst", "tutorial/10_hextof_workflow_trXPS_bam_correction.ipynb", "tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.ipynb", "tutorial/1_binning_fake_data.ipynb", "tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.ipynb", "tutorial/3_metadata_collection_and_export_to_NeXus.ipynb", "tutorial/4_hextof_workflow.ipynb", "tutorial/5_sxp_workflow.ipynb", "tutorial/6_binning_with_time-stamped_data.ipynb", "tutorial/7_correcting_orthorhombic_symmetry.ipynb", "tutorial/8_jittering_tutorial.ipynb", "tutorial/9_hextof_workflow_trXPD.ipynb", "user_guide/config.md", "user_guide/index.md", "user_guide/installation.md", "workflows/index.md"], "indexentries": {"add() (sed.core.metadata.metahandler method)": [[14, "sed.core.metadata.MetaHandler.add", false]], "add() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.add", false]], "add_attribute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_attribute", false]], "add_delay_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_delay_offset", false]], "add_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_energy_offset", false]], "add_features() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.add_features", false]], "add_jitter() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_jitter", false]], "add_offsets() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.add_offsets", false]], "add_offsets() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_offsets", false]], "add_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_ranges", false]], "add_time_stamped_data() (in module sed.core.dfops)": [[10, "sed.core.dfops.add_time_stamped_data", false]], "add_time_stamped_data() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_time_stamped_data", false]], "adjust_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_energy_correction", false]], "adjust_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.adjust_energy_correction", false]], "adjust_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_ranges", false]], "align_dld_sectors() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.align_dld_sectors", false]], "align_dld_sectors() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.align_dld_sectors", false]], "append_delay_axis() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.append_delay_axis", false]], "append_energy_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_energy_axis", false]], "append_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_energy_axis", false]], "append_k_axis() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.append_k_axis", false]], "append_tof_ns_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_tof_ns_axis", false]], "append_tof_ns_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_tof_ns_axis", false]], "apply_correction() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_correction", false]], "apply_corrections() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_corrections", false]], "apply_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.apply_dfield", false]], "apply_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.apply_energy_correction", false]], "apply_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_energy_correction", false]], "apply_filter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_filter", false]], "apply_jitter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_jitter", false]], "apply_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_calibration", false]], "apply_momentum_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_correction", false]], "attributes (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.attributes", false]], "available (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.available", false]], "available_channels (sed.loader.sxp.loader.sxploader property)": [[13, "sed.loader.sxp.loader.SXPLoader.available_channels", false]], "available_runs (sed.loader.flash.loader.flashloader property)": [[13, "sed.loader.flash.loader.FlashLoader.available_runs", false]], "backward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.backward_fill_lazy", false]], "baseloader (class in sed.loader.base.loader)": [[13, "sed.loader.base.loader.BaseLoader", false]], "bin_and_load_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.bin_and_load_momentum_calibration", false]], "bin_centers_to_bin_edges() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_centers_to_bin_edges", false]], "bin_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.bin_data", false]], "bin_dataframe() (in module sed.binning)": [[5, "sed.binning.bin_dataframe", false]], "bin_edges_to_bin_centers() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_edges_to_bin_centers", false]], "bin_partition() (in module sed.binning)": [[5, "sed.binning.bin_partition", false]], "binned (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.binned", false]], "binsearch() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.binsearch", false]], "buffer_file_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.buffer_file_handler", false]], "calc_geometric_distances() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_geometric_distances", false]], "calc_inverse_dfield() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_inverse_dfield", false]], "calc_symmetry_scores() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_symmetry_scores", false]], "calibrate() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.calibrate", false]], "calibrate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calibrate", false]], "calibrate_delay_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_delay_axis", false]], "calibrate_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_energy_axis", false]], "calibrate_momentum_axes() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_momentum_axes", false]], "cleanup_oldest_scan() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.cleanup_oldest_scan", false]], "cm2palette() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.cm2palette", false]], "complete_dictionary() (in module sed.core.config)": [[7, "sed.core.config.complete_dictionary", false]], "compute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.compute", false]], "concatenate_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.concatenate_channels", false]], "config (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.config", false]], "coordinate_transform() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.coordinate_transform", false]], "copy() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.copy", false]], "copytool (class in sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.CopyTool", false]], "correction_function() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.correction_function", false]], "cpy() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.cpy", false]], "create_buffer_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_buffer_file", false]], "create_dataframe_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_channel", false]], "create_dataframe_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_electron", false]], "create_dataframe_per_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_file", false]], "create_dataframe_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_pulse", false]], "create_dataframe_per_train() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_train", false]], "create_multi_index_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_electron", false]], "create_multi_index_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_pulse", false]], "create_numpy_array_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_numpy_array_per_channel", false]], "data_name (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.data_name", false]], "dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.dataframe", false]], "dataset (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.Dataset", false]], "datasetsmanager (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.DatasetsManager", false]], "define_features() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.define_features", false]], "delaycalibrator (class in sed.calibrator.delay)": [[6, "sed.calibrator.delay.DelayCalibrator", false]], "detector_coordinates_2_k_coordinates() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.detector_coordinates_2_k_coordinates", false]], "dictmerge() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.dictmerge", false]], "drop_column() (in module sed.core.dfops)": [[10, "sed.core.dfops.drop_column", false]], "dup (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.dup", false]], "duplicateentryerror": [[14, "sed.core.metadata.DuplicateEntryError", false]], "energycalibrator (class in sed.calibrator.energy)": [[6, "sed.calibrator.energy.EnergyCalibrator", false]], "existing_data_paths (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.existing_data_paths", false]], "extract_bias() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.extract_bias", false]], "extract_delay_stage_parameters() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.extract_delay_stage_parameters", false]], "feature_extract() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.feature_extract", false]], "feature_extract() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_extract", false]], "feature_select() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_select", false]], "features (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.features", false]], "filename (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.FILENAME", false]], "files (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.files", false]], "filter_column() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.filter_column", false]], "find_bias_peaks() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.find_bias_peaks", false]], "find_correspondence() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_correspondence", false]], "find_nearest() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_nearest", false]], "fit_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.fit_energy_calibration", false]], "flashloader (class in sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.FlashLoader", false]], "forward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.forward_fill_lazy", false]], "gather_calibration_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_calibration_metadata", false]], "gather_calibration_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_calibration_metadata", false]], "gather_correction_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_correction_metadata", false]], "gather_correction_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_correction_metadata", false]], "gather_files() (in module sed.loader.utils)": [[13, "sed.loader.utils.gather_files", false]], "gather_metadata() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.gather_metadata", false]], "gather_metadata() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.gather_metadata", false]], "generate_inverse_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.generate_inverse_dfield", false]], "generate_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.generate_splinewarp", false]], "genericloader (class in sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.GenericLoader", false]], "get() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.get", false]], "get_archiver_data() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_archiver_data", false]], "get_attribute() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_attribute", false]], "get_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_channels", false]], "get_count_rate() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_count_rate", false]], "get_count_rate() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_count_rate", false]], "get_count_rate() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_count_rate", false]], "get_count_rate() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_count_rate", false]], "get_count_rate() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_count_rate", false]], "get_count_rate() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_count_rate", false]], "get_datasets_and_aliases() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_datasets_and_aliases", false]], "get_elapsed_time() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_elapsed_time", false]], "get_files_from_run_id() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_files_from_run_id", false]], "get_loader() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_loader", false]], "get_metadata() (sed.loader.flash.metadata.metadataretriever method)": [[13, "sed.loader.flash.metadata.MetadataRetriever.get_metadata", false]], "get_names_of_all_loaders() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_names_of_all_loaders", false]], "get_normalization_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.get_normalization_histogram", false]], "get_parquet_metadata() (in module sed.loader.utils)": [[13, "sed.loader.utils.get_parquet_metadata", false]], "get_start_and_end_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_start_and_end_time", false]], "get_stats() (in module sed.loader.utils)": [[13, "sed.loader.utils.get_stats", false]], "get_target_dir() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.get_target_dir", false]], "grid_histogram() (in module sed.diagnostics)": [[11, "sed.diagnostics.grid_histogram", false]], "hdf5_to_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_array", false]], "hdf5_to_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_dataframe", false]], "hdf5_to_timed_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_array", false]], "hdf5_to_timed_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_dataframe", false]], "json_path (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.json_path", false]], "load() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load", false]], "load_bias_series() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load_bias_series", false]], "load_config() (in module sed.core.config)": [[7, "sed.core.config.load_config", false]], "load_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.load_data", false]], "load_data() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.load_data", false]], "load_datasets_dict() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.load_datasets_dict", false]], "load_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.load_dfield", false]], "load_h5() (in module sed.io)": [[12, "sed.io.load_h5", false]], "load_h5_in_memory() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.load_h5_in_memory", false]], "load_tiff() (in module sed.io)": [[12, "sed.io.load_tiff", false]], "loader (in module sed.loader.base.loader)": [[13, "sed.loader.base.loader.LOADER", false]], "loader (in module sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.LOADER", false]], "loader (in module sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.LOADER", false]], "loader (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.LOADER", false]], "loader (in module sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.LOADER", false]], "map_columns_2d() (in module sed.core.dfops)": [[10, "sed.core.dfops.map_columns_2d", false]], "metadata (sed.core.metadata.metahandler property)": [[14, "sed.core.metadata.MetaHandler.metadata", false]], "metadataretriever (class in sed.loader.flash.metadata)": [[13, "sed.loader.flash.metadata.MetadataRetriever", false]], "metahandler (class in sed.core.metadata)": [[14, "sed.core.metadata.MetaHandler", false]], "mm_to_ps() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.mm_to_ps", false]], "module": [[5, "module-sed.binning", false], [5, "module-sed.binning.numba_bin", false], [5, "module-sed.binning.utils", false], [6, "module-sed.calibrator.delay", false], [6, "module-sed.calibrator.energy", false], [6, "module-sed.calibrator.momentum", false], [7, "module-sed.core.config", false], [8, "module-sed.core", false], [9, "module-sed.dataset.dataset", false], [10, "module-sed.core.dfops", false], [11, "module-sed.diagnostics", false], [12, "module-sed.io", false], [13, "module-sed.loader.base.loader", false], [13, "module-sed.loader.flash.loader", false], [13, "module-sed.loader.flash.metadata", false], [13, "module-sed.loader.generic.loader", false], [13, "module-sed.loader.loader_interface", false], [13, "module-sed.loader.mirrorutil", false], [13, "module-sed.loader.mpes.loader", false], [13, "module-sed.loader.sxp.loader", false], [13, "module-sed.loader.utils", false], [14, "module-sed.core.metadata", false]], "momentumcorrector (class in sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.MomentumCorrector", false]], "mpesloader (class in sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.MpesLoader", false]], "mycopy() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mycopy", false]], "mymakedirs() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mymakedirs", false]], "name (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.NAME", false]], "normalization_histogram (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalization_histogram", false]], "normalize() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.normalize", false]], "normalized (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalized", false]], "normspec() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.normspec", false]], "nranges (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.nranges", false]], "ntraces (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.ntraces", false]], "numba_histogramdd() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.numba_histogramdd", false]], "offset_by_other_columns() (in module sed.core.dfops)": [[10, "sed.core.dfops.offset_by_other_columns", false]], "parquet_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.parquet_handler", false]], "parse_config() (in module sed.core.config)": [[7, "sed.core.config.parse_config", false]], "parse_h5_keys() (in module sed.loader.utils)": [[13, "sed.loader.utils.parse_h5_keys", false]], "parse_metadata() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.parse_metadata", false]], "peakdetect1d() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peakdetect1d", false]], "peaksearch() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peaksearch", false]], "plot_single_hist() (in module sed.diagnostics)": [[11, "sed.diagnostics.plot_single_hist", false]], "poly_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.poly_energy_calibration", false]], "pose_adjustment() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.pose_adjustment", false]], "pose_adjustment() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pose_adjustment", false]], "pre_binning() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pre_binning", false]], "range_convert() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.range_convert", false]], "read_dataframe() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.read_dataframe", false]], "read_dataframe() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.read_dataframe", false]], "read_dataframe() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.read_dataframe", false]], "read_dataframe() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.read_dataframe", false]], "read_dataframe() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.read_dataframe", false]], "read_env_var() (in module sed.core.config)": [[7, "sed.core.config.read_env_var", false]], "remove() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.remove", false]], "remove() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.remove", false]], "reset_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.reset_deformation", false]], "reset_multi_index() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.reset_multi_index", false]], "save() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save", false]], "save_config() (in module sed.core.config)": [[7, "sed.core.config.save_config", false]], "save_delay_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_calibration", false]], "save_delay_offsets() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_offsets", false]], "save_energy_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_calibration", false]], "save_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_correction", false]], "save_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_offset", false]], "save_env_var() (in module sed.core.config)": [[7, "sed.core.config.save_env_var", false]], "save_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_momentum_calibration", false]], "save_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_splinewarp", false]], "save_transformations() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_transformations", false]], "save_workflow_params() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_workflow_params", false]], "sed.binning": [[5, "module-sed.binning", false]], "sed.binning.numba_bin": [[5, "module-sed.binning.numba_bin", false]], "sed.binning.utils": [[5, "module-sed.binning.utils", false]], "sed.calibrator.delay": [[6, "module-sed.calibrator.delay", false]], "sed.calibrator.energy": [[6, "module-sed.calibrator.energy", false]], "sed.calibrator.momentum": [[6, "module-sed.calibrator.momentum", false]], "sed.core": [[8, "module-sed.core", false]], "sed.core.config": [[7, "module-sed.core.config", false]], "sed.core.dfops": [[10, "module-sed.core.dfops", false]], "sed.core.metadata": [[14, "module-sed.core.metadata", false]], "sed.dataset.dataset": [[9, "module-sed.dataset.dataset", false]], "sed.diagnostics": [[11, "module-sed.diagnostics", false]], "sed.io": [[12, "module-sed.io", false]], "sed.loader.base.loader": [[13, "module-sed.loader.base.loader", false]], "sed.loader.flash.loader": [[13, "module-sed.loader.flash.loader", false]], "sed.loader.flash.metadata": [[13, "module-sed.loader.flash.metadata", false]], "sed.loader.generic.loader": [[13, "module-sed.loader.generic.loader", false]], "sed.loader.loader_interface": [[13, "module-sed.loader.loader_interface", false]], "sed.loader.mirrorutil": [[13, "module-sed.loader.mirrorutil", false]], "sed.loader.mpes.loader": [[13, "module-sed.loader.mpes.loader", false]], "sed.loader.sxp.loader": [[13, "module-sed.loader.sxp.loader", false]], "sed.loader.utils": [[13, "module-sed.loader.utils", false]], "sedprocessor (class in sed.core)": [[8, "sed.core.SedProcessor", false]], "select_k_range() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_k_range", false]], "select_slice() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slice", false]], "select_slicer() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slicer", false]], "simplify_binning_arguments() (in module sed.binning.utils)": [[5, "sed.binning.utils.simplify_binning_arguments", false]], "size() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.size", false]], "spline_warp_estimate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.spline_warp_estimate", false]], "split_channel_bitwise() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_channel_bitwise", false]], "split_dld_time_from_sector_id() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_dld_time_from_sector_id", false]], "supported_file_types (sed.loader.base.loader.baseloader attribute)": [[13, "sed.loader.base.loader.BaseLoader.supported_file_types", false]], "supported_file_types (sed.loader.flash.loader.flashloader attribute)": [[13, "sed.loader.flash.loader.FlashLoader.supported_file_types", false]], "supported_file_types (sed.loader.generic.loader.genericloader attribute)": [[13, "sed.loader.generic.loader.GenericLoader.supported_file_types", false]], "supported_file_types (sed.loader.mpes.loader.mpesloader attribute)": [[13, "sed.loader.mpes.loader.MpesLoader.supported_file_types", false]], "supported_file_types (sed.loader.sxp.loader.sxploader attribute)": [[13, "sed.loader.sxp.loader.SXPLoader.supported_file_types", false]], "sxploader (class in sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.SXPLoader", false]], "symscores (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.symscores", false]], "timed_dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.timed_dataframe", false]], "to_h5() (in module sed.io)": [[12, "sed.io.to_h5", false]], "to_nexus() (in module sed.io)": [[12, "sed.io.to_nexus", false]], "to_tiff() (in module sed.io)": [[12, "sed.io.to_tiff", false]], "tof2ev() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ev", false]], "tof2evpoly() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2evpoly", false]], "tof2ns() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ns", false]], "update_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.update_deformation", false]], "verbose (sed.calibrator.delay.delaycalibrator property)": [[6, "sed.calibrator.delay.DelayCalibrator.verbose", false]], "verbose (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.verbose", false]], "verbose (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.verbose", false]], "verbose (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.verbose", false]], "verbose (sed.loader.base.loader.baseloader property)": [[13, "sed.loader.base.loader.BaseLoader.verbose", false]], "verbose (sed.loader.flash.loader.flashloader property)": [[13, "sed.loader.flash.loader.FlashLoader.verbose", false]], "verbose (sed.loader.mpes.loader.mpesloader property)": [[13, "sed.loader.mpes.loader.MpesLoader.verbose", false]], "verbose (sed.loader.sxp.loader.sxploader property)": [[13, "sed.loader.sxp.loader.SXPLoader.verbose", false]], "view() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.view", false]], "view() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.view", false]], "view_event_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.view_event_histogram", false]]}, "objects": {"sed": [[5, 0, 0, "-", "binning"], [8, 0, 0, "-", "core"], [11, 0, 0, "-", "diagnostics"], [12, 0, 0, "-", "io"]], "sed.binning": [[5, 1, 1, "", "bin_dataframe"], [5, 1, 1, "", "bin_partition"], [5, 0, 0, "-", "numba_bin"], [5, 0, 0, "-", "utils"]], "sed.binning.numba_bin": [[5, 1, 1, "", "binsearch"], [5, 1, 1, "", "numba_histogramdd"]], "sed.binning.utils": [[5, 1, 1, "", "bin_centers_to_bin_edges"], [5, 1, 1, "", "bin_edges_to_bin_centers"], [5, 1, 1, "", "simplify_binning_arguments"]], "sed.calibrator": [[6, 0, 0, "-", "delay"], [6, 0, 0, "-", "energy"], [6, 0, 0, "-", "momentum"]], "sed.calibrator.delay": [[6, 2, 1, "", "DelayCalibrator"], [6, 1, 1, "", "extract_delay_stage_parameters"], [6, 1, 1, "", "mm_to_ps"]], "sed.calibrator.delay.DelayCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "append_delay_axis"], [6, 4, 1, "", "verbose"]], "sed.calibrator.energy": [[6, 2, 1, "", "EnergyCalibrator"], [6, 1, 1, "", "correction_function"], [6, 1, 1, "", "extract_bias"], [6, 1, 1, "", "find_correspondence"], [6, 1, 1, "", "find_nearest"], [6, 1, 1, "", "fit_energy_calibration"], [6, 1, 1, "", "normspec"], [6, 1, 1, "", "peakdetect1d"], [6, 1, 1, "", "peaksearch"], [6, 1, 1, "", "poly_energy_calibration"], [6, 1, 1, "", "range_convert"], [6, 1, 1, "", "tof2ev"], [6, 1, 1, "", "tof2evpoly"], [6, 1, 1, "", "tof2ns"]], "sed.calibrator.energy.EnergyCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "add_ranges"], [6, 3, 1, "", "adjust_energy_correction"], [6, 3, 1, "", "adjust_ranges"], [6, 3, 1, "", "align_dld_sectors"], [6, 3, 1, "", "append_energy_axis"], [6, 3, 1, "", "append_tof_ns_axis"], [6, 3, 1, "", "apply_energy_correction"], [6, 3, 1, "", "bin_data"], [6, 3, 1, "", "calibrate"], [6, 4, 1, "", "dup"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "normalize"], [6, 4, 1, "", "nranges"], [6, 4, 1, "", "ntraces"], [6, 4, 1, "", "verbose"], [6, 3, 1, "", "view"]], "sed.calibrator.momentum": [[6, 2, 1, "", "MomentumCorrector"], [6, 1, 1, "", "apply_dfield"], [6, 1, 1, "", "cm2palette"], [6, 1, 1, "", "detector_coordinates_2_k_coordinates"], [6, 1, 1, "", "dictmerge"], [6, 1, 1, "", "generate_inverse_dfield"], [6, 1, 1, "", "load_dfield"]], "sed.calibrator.momentum.MomentumCorrector": [[6, 3, 1, "", "add_features"], [6, 3, 1, "", "append_k_axis"], [6, 3, 1, "", "apply_correction"], [6, 3, 1, "", "apply_corrections"], [6, 3, 1, "", "calc_geometric_distances"], [6, 3, 1, "", "calc_inverse_dfield"], [6, 3, 1, "", "calc_symmetry_scores"], [6, 3, 1, "", "calibrate"], [6, 3, 1, "", "coordinate_transform"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "feature_select"], [6, 4, 1, "", "features"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "pose_adjustment"], [6, 3, 1, "", "reset_deformation"], [6, 3, 1, "", "select_k_range"], [6, 3, 1, "", "select_slice"], [6, 3, 1, "", "select_slicer"], [6, 3, 1, "", "spline_warp_estimate"], [6, 4, 1, "", "symscores"], [6, 3, 1, "", "update_deformation"], [6, 4, 1, "", "verbose"], [6, 3, 1, "", "view"]], "sed.core": [[8, 2, 1, "", "SedProcessor"], [7, 0, 0, "-", "config"], [10, 0, 0, "-", "dfops"], [14, 0, 0, "-", "metadata"]], "sed.core.SedProcessor": [[8, 3, 1, "", "add_attribute"], [8, 3, 1, "", "add_delay_offset"], [8, 3, 1, "", "add_energy_offset"], [8, 3, 1, "", "add_jitter"], [8, 3, 1, "", "add_time_stamped_data"], [8, 3, 1, "", "adjust_energy_correction"], [8, 3, 1, "", "align_dld_sectors"], [8, 3, 1, "", "append_energy_axis"], [8, 3, 1, "", "append_tof_ns_axis"], [8, 3, 1, "", "apply_energy_correction"], [8, 3, 1, "", "apply_momentum_calibration"], [8, 3, 1, "", "apply_momentum_correction"], [8, 4, 1, "", "attributes"], [8, 3, 1, "", "bin_and_load_momentum_calibration"], [8, 4, 1, "", "binned"], [8, 3, 1, "", "calibrate_delay_axis"], [8, 3, 1, "", "calibrate_energy_axis"], [8, 3, 1, "", "calibrate_momentum_axes"], [8, 3, 1, "", "compute"], [8, 4, 1, "", "config"], [8, 3, 1, "", "cpy"], [8, 4, 1, "", "dataframe"], [8, 3, 1, "", "define_features"], [8, 4, 1, "", "files"], [8, 3, 1, "", "filter_column"], [8, 3, 1, "", "find_bias_peaks"], [8, 3, 1, "", "generate_splinewarp"], [8, 3, 1, "", "get_normalization_histogram"], [8, 3, 1, "", "load"], [8, 3, 1, "", "load_bias_series"], [8, 4, 1, "", "normalization_histogram"], [8, 4, 1, "", "normalized"], [8, 3, 1, "", "pose_adjustment"], [8, 3, 1, "", "pre_binning"], [8, 3, 1, "", "save"], [8, 3, 1, "", "save_delay_calibration"], [8, 3, 1, "", "save_delay_offsets"], [8, 3, 1, "", "save_energy_calibration"], [8, 3, 1, "", "save_energy_correction"], [8, 3, 1, "", "save_energy_offset"], [8, 3, 1, "", "save_momentum_calibration"], [8, 3, 1, "", "save_splinewarp"], [8, 3, 1, "", "save_transformations"], [8, 3, 1, "", "save_workflow_params"], [8, 4, 1, "", "timed_dataframe"], [8, 4, 1, "", "verbose"], [8, 3, 1, "", "view_event_histogram"]], "sed.core.config": [[7, 1, 1, "", "complete_dictionary"], [7, 1, 1, "", "load_config"], [7, 1, 1, "", "parse_config"], [7, 1, 1, "", "read_env_var"], [7, 1, 1, "", "save_config"], [7, 1, 1, "", "save_env_var"]], "sed.core.dfops": [[10, 1, 1, "", "add_time_stamped_data"], [10, 1, 1, "", "apply_filter"], [10, 1, 1, "", "apply_jitter"], [10, 1, 1, "", "backward_fill_lazy"], [10, 1, 1, "", "drop_column"], [10, 1, 1, "", "forward_fill_lazy"], [10, 1, 1, "", "map_columns_2d"], [10, 1, 1, "", "offset_by_other_columns"]], "sed.core.metadata": [[14, 5, 1, "", "DuplicateEntryError"], [14, 2, 1, "", "MetaHandler"]], "sed.core.metadata.MetaHandler": [[14, 3, 1, "", "add"], [14, 4, 1, "", "metadata"]], "sed.dataset": [[9, 0, 0, "-", "dataset"]], "sed.dataset.dataset": [[9, 2, 1, "", "Dataset"], [9, 2, 1, "", "DatasetsManager"]], "sed.dataset.dataset.Dataset": [[9, 4, 1, "", "available"], [9, 4, 1, "", "data_name"], [9, 4, 1, "", "existing_data_paths"], [9, 3, 1, "", "get"], [9, 3, 1, "", "remove"]], "sed.dataset.dataset.DatasetsManager": [[9, 6, 1, "", "FILENAME"], [9, 6, 1, "", "NAME"], [9, 3, 1, "", "add"], [9, 6, 1, "", "json_path"], [9, 3, 1, "", "load_datasets_dict"], [9, 3, 1, "", "remove"]], "sed.diagnostics": [[11, 1, 1, "", "grid_histogram"], [11, 1, 1, "", "plot_single_hist"]], "sed.io": [[12, 1, 1, "", "load_h5"], [12, 1, 1, "", "load_tiff"], [12, 1, 1, "", "to_h5"], [12, 1, 1, "", "to_nexus"], [12, 1, 1, "", "to_tiff"]], "sed.loader": [[13, 0, 0, "-", "loader_interface"], [13, 0, 0, "-", "mirrorutil"], [13, 0, 0, "-", "utils"]], "sed.loader.base": [[13, 0, 0, "-", "loader"]], "sed.loader.base.loader": [[13, 2, 1, "", "BaseLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.base.loader.BaseLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.flash": [[13, 0, 0, "-", "loader"], [13, 0, 0, "-", "metadata"]], "sed.loader.flash.loader": [[13, 2, 1, "", "FlashLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.flash.loader.FlashLoader": [[13, 4, 1, "", "available_runs"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "parse_metadata"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.flash.metadata": [[13, 2, 1, "", "MetadataRetriever"]], "sed.loader.flash.metadata.MetadataRetriever": [[13, 3, 1, "", "get_metadata"]], "sed.loader.generic": [[13, 0, 0, "-", "loader"]], "sed.loader.generic.loader": [[13, 2, 1, "", "GenericLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.generic.loader.GenericLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.loader_interface": [[13, 1, 1, "", "get_loader"], [13, 1, 1, "", "get_names_of_all_loaders"]], "sed.loader.mirrorutil": [[13, 2, 1, "", "CopyTool"], [13, 1, 1, "", "get_target_dir"], [13, 1, 1, "", "mycopy"], [13, 1, 1, "", "mymakedirs"]], "sed.loader.mirrorutil.CopyTool": [[13, 3, 1, "", "cleanup_oldest_scan"], [13, 3, 1, "", "copy"], [13, 3, 1, "", "size"]], "sed.loader.mpes": [[13, 0, 0, "-", "loader"]], "sed.loader.mpes.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "MpesLoader"], [13, 1, 1, "", "get_archiver_data"], [13, 1, 1, "", "get_attribute"], [13, 1, 1, "", "get_count_rate"], [13, 1, 1, "", "get_datasets_and_aliases"], [13, 1, 1, "", "get_elapsed_time"], [13, 1, 1, "", "hdf5_to_array"], [13, 1, 1, "", "hdf5_to_dataframe"], [13, 1, 1, "", "hdf5_to_timed_array"], [13, 1, 1, "", "hdf5_to_timed_dataframe"], [13, 1, 1, "", "load_h5_in_memory"]], "sed.loader.mpes.loader.MpesLoader": [[13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "get_start_and_end_time"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.sxp": [[13, 0, 0, "-", "loader"]], "sed.loader.sxp.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "SXPLoader"]], "sed.loader.sxp.loader.SXPLoader": [[13, 4, 1, "", "available_channels"], [13, 3, 1, "", "buffer_file_handler"], [13, 3, 1, "", "concatenate_channels"], [13, 3, 1, "", "create_buffer_file"], [13, 3, 1, "", "create_dataframe_per_channel"], [13, 3, 1, "", "create_dataframe_per_electron"], [13, 3, 1, "", "create_dataframe_per_file"], [13, 3, 1, "", "create_dataframe_per_pulse"], [13, 3, 1, "", "create_dataframe_per_train"], [13, 3, 1, "", "create_multi_index_per_electron"], [13, 3, 1, "", "create_multi_index_per_pulse"], [13, 3, 1, "", "create_numpy_array_per_channel"], [13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_channels"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "parquet_handler"], [13, 3, 1, "", "read_dataframe"], [13, 3, 1, "", "reset_multi_index"], [13, 6, 1, "", "supported_file_types"], [13, 4, 1, "", "verbose"]], "sed.loader.utils": [[13, 1, 1, "", "gather_files"], [13, 1, 1, "", "get_parquet_metadata"], [13, 1, 1, "", "get_stats"], [13, 1, 1, "", "parse_h5_keys"], [13, 1, 1, "", "split_channel_bitwise"], [13, 1, 1, "", "split_dld_time_from_sector_id"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute"}, "terms": {"": [3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 26], "0": [3, 5, 6, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "00": [9, 16, 19, 20, 21], "000000": 18, "00001": 25, "0000e": [16, 20], "000425": 19, "000e": 21, "001": [15, 16, 20, 25, 26], "001247": 18, "00151332": 16, "00179088": 22, "00184761": 18, "00218781": 18, "002500171914066": 19, "00328578": 21, "003405": 18, "003489": 20, "00443912e": 22, "005007": 19, "0058": 21, "0059": 21, "00590705871582": 20, "0060": 21, "006012999918311834": 20, "0061": 21, "0064": 21, "0065": 21, "0066": 21, "0067": 21, "0068": 21, "0069": 21, "0070": 21, "0071": 21, "0072": 21, "0073": 21, "0074": 21, "007405": 18, "007966": 17, "008417": 15, "01": [9, 18, 19, 22, 25, 26], "010614999569952488": 20, "010729535670610963": 26, "01099506": 15, "01099542": 15, "01246691": 15, "01246704": 15, "0148196706891397e": [15, 25], "01481967e": 25, "0148e": 16, "017041": 19, "017908": 24, "02": [9, 15, 25], "020576": [15, 20, 25], "020576132461428642": 20, "021264": 20, "02190587": 15, "02345275878906": 20, "023453": 20, "02405744": 16, "02589138": 15, "026399": 17, "027618": 18, "028809": 15, "028886": 15, "028937": 15, "02935732": 15, "02957200": 21, "03": [15, 16, 18, 19, 20, 21, 22, 23, 25], "03103103103": 18, "031247": 18, "031682": 17, "031915": 18, "032742": 19, "036149": 18, "03646409": 18, "038665": 18, "04": [18, 20, 21, 22], "04277721": 20, "04393214": 15, "04504504506": 18, "045283": 18, "047966": 15, "04811488": 16, "048293": 16, "05": [20, 21, 26], "050672": 18, "051528": 17, "0567e": 16, "0576131995767355e": 26, "058206295066418": 26, "05883096": 18, "06": [16, 18, 19, 20, 21, 22, 23], "060071": 18, "060087": 18, "061268": 17, "06206206206": 18, "062072": 18, "062554": 18, "063214": 18, "064664": 19, "064777": 24, "065676": 19, "066406": 20, "06668048": 22, "06775099784135818": 20, "068115234375": 20, "068545": 18, "068676": 19, "069903": 19, "07": [15, 16, 18, 20, 22, 25, 26], "070368": 20, "071148": 18, "071428": 18, "071777": 20, "073857": [15, 25], "08": [16, 19, 20, 21, 22], "08010900020599365": 20, "0855611": 22, "09": [9, 15, 16, 18, 19, 20, 21, 22, 23, 25], "092560": 18, "09335629": 22, "09375": 20, "09544523": 18, "09667724e": 25, "097874": 17, "0_20vtof_v3": 26, "0_30vtof": 19, "0_30vtof_453ns_focu": 26, "0arrai": 20, "0unit": 20, "0x7f1d483540d0": 16, "0x7f1d483d7580": 16, "0x7f1d4b18ce20": 18, "0x7f1d93ae0790": 18, "0x7f1e68b20550": 24, "0x7f1e68b20580": 24, "0x7f1e68b3b340": 24, "0x7f1e6b3dc460": 24, "0x7f1e6b43ab00": 24, "0x7f1e6b502fb0": 24, "0x7f1e6b6c6f20": 24, "0x7f1e72c9bee0": 24, "0x7f2655182380": 22, "0x7f2655376e00": 22, "0x7f26553fcaf0": 22, "0x7f2655700d60": 22, "0x7f7800bfe050": 20, "0x7f7810090340": 20, "0x7f781c920100": 20, "0x7f783c3168f0": 20, "0x7f783c5f8850": 20, "0x7f876b7932e0": 23, "0x7fd6885cfa90": 21, "0x7fd688b66cb0": 21, "0x7fd694149840": 21, "0x7fd69594eb00": 21, "0x7fd6b8a81ba0": 21, "1": [3, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "10": [1, 3, 7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "100": [5, 6, 8, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "1000": [13, 15, 21, 26], "100000": [17, 26], "1001": [13, 18], "1002": [19, 24], "1005": 19, "1006": 18, "100mhz": 26, "101": [15, 16, 21], "10151": 20, "10160182": 9, "101929": 19, "1030": 16, "1031": 18, "1034": 19, "1037": 19, "1040": 18, "1050": 20, "10510510512": 18, "105156": 20, "106139": 18, "10658470": 9, "106877": 19, "1070499": 21, "107641": 18, "107739": 18, "108": 15, "1087817": 22, "10file": 9, "11": [1, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "110": 19, "11019101": [15, 16, 20, 25, 26], "111": 20, "111125": 19, "111798": 18, "1120": 21, "112204": 18, "112618": 18, "113": [9, 26], "115": 21, "1157779": 15, "116": [15, 25], "1163": 19, "1164": 18, "118164": 15, "118386": 15, "1185": 18, "1187": 19, "119125": 17, "119848": 18, "11file": 9, "12": [1, 9, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26], "120": 17, "1200": 26, "122526": 19, "122679": 19, "123": 16, "12348701": 15, "1239": 20, "125": 21, "125256": 19, "125598": 17, "125e": 26, "126": 21, "12609441": [9, 15, 16, 25], "127": 22, "128171": 19, "12877": 19, "129031": 18, "129541": 18, "129621": 18, "13": [15, 16, 18, 19, 20, 21, 22, 24, 25], "130000": 18, "130062": 18, "130142": 18, "130612": 18, "130662": 18, "131203": 18, "131213": 18, "13137674e": 22, "131793": 18, "131803": 18, "132": [15, 25], "132000": 26, "132250": 26, "132384": 18, "132434": 18, "133045": 18, "133105": 18, "133715": 18, "133805": 18, "134436": 18, "134546": 18, "135": 21, "135197": 18, "136": 22, "137": 22, "13790818": 15, "138000": 26, "13952965": 9, "13t10": 19, "14": [15, 16, 17, 18, 19, 20, 21, 22, 24, 25], "140": 19, "140000": 18, "140442": 18, "14195": 19, "14214214214": 18, "142569": 18, "142808": 19, "144": 23, "1446": 15, "1447": 15, "1448": [15, 16, 20, 25], "1449": 15, "1462": 20, "1463": 20, "1464": 20, "146665": 18, "1471": [18, 19], "1472": [18, 19], "1472e": 16, "147434": 18, "1488e": 20, "1489": 26, "149": [18, 19, 26], "15": [15, 16, 18, 19, 20, 21, 22, 24, 25, 26], "150": [6, 16, 18, 20, 21, 24], "1500": [18, 19, 21, 26], "150000": 26, "152": [18, 19, 26], "152m": 9, "153": 18, "154": [18, 19, 26], "154674": 25, "155": 23, "156": 23, "15625": [15, 25], "1570": 20, "157530": 18, "157798": 18, "158": 22, "1594998158": 22, "159558": 17, "16": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "1600": [18, 19], "1600349": 16, "160720": 18, "161": 22, "161464": 19, "1628022640": 15, "1628022830": [15, 25], "1628046700": 15, "162911": 18, "163": 22, "1646339970": 20, "1646341348": 20, "16658096": 15, "1679395179": 20, "1679395317": 20, "168248": 24, "17": [15, 16, 18, 19, 20, 21, 22, 24, 25], "170": 18, "1700200225439552": 19, "1708": 21, "1713": 21, "1745": 21, "175239": 24, "175305": 19, "17668": 26, "178929": 18, "1792": 26, "18": [15, 16, 18, 20, 21, 22, 25], "1800": [18, 26], "181025": 19, "1835647": 15, "1850e": 16, "1862196735": 21, "187": 22, "1872e": 20, "18838": 21, "188889": 18, "189": 22, "189530": 19, "189782": 19, "19": [15, 16, 18, 20, 21, 22, 25], "1900": 26, "1900000000000004": 19, "190018": 18, "190346": 18, "191479": 18, "191915": 18, "193": [16, 17], "19474964": 18, "197012": 20, "1971971972": 18, "199": [18, 19, 26], "19976": 19, "1d": [5, 6, 11], "1e": [6, 15, 16, 18, 20, 21, 22], "1q": 20, "1st": 8, "2": [5, 6, 7, 8, 10, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "20": [3, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26], "200": [6, 15, 16, 18, 19, 21, 24, 25, 26], "2000": [17, 21], "200078": 19, "200367": 19, "20067596435547": 20, "2018": 26, "2019": 19, "2020": 26, "2023": [15, 16, 20, 25, 26], "202302": 21, "2024": [15, 25], "2025": [16, 18, 19, 20, 21, 22, 23], "203": [18, 19, 23, 26], "20320320321": 18, "203661": 18, "2048": 26, "206": [18, 19, 23], "206316": 18, "207769": 19, "208": [15, 25, 26], "2099": 21, "21": [15, 18, 19, 20, 21, 22, 25], "2115": 15, "212446": 19, "21321321322": 18, "215487": 18, "216": [18, 19, 23], "21702617": 18, "2180090": 16, "218953": 19, "219": 15, "219086": 17, "219777": 20, "22": [18, 20, 21], "22135979e": 22, "222886": 18, "223263": 19, "223911": 18, "223989": 18, "2246e": 16, "226": 15, "2272e": 20, "228": 26, "229589": 20, "23": [17, 18, 19, 20, 21], "230": [18, 19, 20], "2309": 21, "231": 20, "232": 26, "23240623877487": 18, "236": 22, "236496": 19, "23t19": 26, "24": [9, 16, 18, 20, 21], "240": 25, "24007666": 15, "242": [18, 19, 22, 26], "243": [18, 19, 26], "24332926024232": 18, "244": 18, "244567": 19, "244e": 21, "2452": 26, "245890": 18, "247": [18, 23], "248": [18, 19, 26], "249": 18, "2494": 26, "25": [6, 13, 15, 16, 18, 19, 20, 21, 25, 26], "250": [15, 16, 20, 22, 23], "2500": 26, "25000": 21, "251": 23, "252": 23, "254": 23, "255": 15, "256": [6, 23, 26], "25600": 26, "256000": 26, "25773261": 22, "258": 22, "2588": 18, "26": [18, 19, 20, 21], "260110": 19, "264000": 26, "264500": 26, "265": 19, "2678e": 16, "27": [15, 16, 18, 19, 20, 21, 25, 26], "270": 22, "2704e": 20, "272000": 26, "272529": 18, "276000": 26, "28": [9, 15, 18, 19, 20, 23, 25, 26], "280": 19, "28000": 21, "282": 18, "2822433": 15, "282979": 15, "283203": 15, "283338": 19, "283623": 19, "28882003e": 22, "289": 22, "29": [15, 16, 18, 19, 20, 25, 26], "29078968": 15, "293999": 18, "294601": 18, "294860": 18, "298": 19, "299": [18, 19, 26], "299514": 19, "299805": [15, 25], "2d": [6, 10], "2h": 19, "2nd": [16, 18], "3": [1, 3, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28], "30": [15, 16, 18, 20, 25, 26], "300": [19, 22, 26], "3000": 26, "3024": 21, "302424": 18, "303": 20, "304": [18, 19, 20, 26], "3048": 20, "3049": 20, "304e": 21, "305": 18, "30500940561586": 19, "305244": [15, 25], "307": 20, "307273": 19, "308": 18, "30t20": [15, 25], "30t21": [15, 25], "31": [15, 16, 20, 21, 25], "31005859375": 20, "3112593": 21, "3128662109375": 20, "312988": 20, "3133544921875": 20, "314354": 18, "314417": 18, "3152e": 20, "32": [16, 18, 19, 20, 21, 25, 26], "32000": 26, "320179": 18, "322267": 18, "322803": 18, "32471004e": 25, "32474895": 15, "327": 22, "32870": 20, "32914": [15, 20, 25], "32919": [15, 25], "33": [16, 18, 19, 20, 21, 22, 25], "33000": 26, "334188": 18, "337": 22, "3385": 21, "34": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "3403": 21, "340437": 19, "341": [18, 19, 26], "3415291": 16, "342": 18, "342750": 19, "344": 22, "3448e": 22, "345": [18, 19, 26], "346": 18, "35": [19, 20, 26], "350": [18, 19, 26], "35000": 26, "35093": 20, "352656": 19, "353": 19, "353173": 19, "3548200": 15, "355": [18, 23], "357709": 17, "36": [20, 25, 26], "3600865": 16, "361": 23, "362793": 20, "364": 18, "365": [19, 24], "365232": 19, "37": [15, 16, 20, 21, 25], "370": 23, "370117": 20, "37122852e": 22, "371289": 18, "373940": 18, "37470505": 15, "37500": 20, "37691593": 18, "376e": 21, "377601": 20, "38": [16, 18, 19, 20, 23, 25, 26], "383728": 18, "38384691": 15, "38438438438": 18, "384484": 19, "3896953": 16, "39": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "3900": 16, "39032410": 15, "394845": 19, "3980": 16, "3989423": 15, "399": 19, "39990234375": 20, "3d": 6, "3e9": 5, "3f": 15, "3mb": 9, "3rd": 8, "4": [5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "40": [15, 20], "4000": 20, "401367": 15, "401434": 15, "403": 26, "403891": 17, "4050": 16, "41": [9, 15, 16, 19, 20, 21], "41124117": 18, "4120": [16, 20], "413437": 19, "4145": 20, "415": [18, 19], "4156": [16, 20], "4160": 16, "418284": 18, "4195": 20, "4197": 16, "41972464e": 22, "4199": 16, "42": [17, 20, 21], "420": [20, 25, 26], "4200": [16, 20], "421": 20, "422": [20, 26], "423": [19, 20], "4231": [16, 20], "4236": 20, "4237": 16, "4238": 20, "4239": 20, "424": 20, "425": 20, "426": 20, "427": 20, "4276": 16, "428": 20, "4281": 20, "4286": 20, "429": 20, "429705": 19, "43": [9, 15, 18, 20, 22], "430": 20, "43017632e": 22, "4323": 16, "4328": 20, "43293095e": 18, "433593": 17, "43443443443": 18, "43643643643": 18, "436e": 21, "4374": 20, "44": [20, 26], "440035779171833": 26, "4422": 25, "4423": [15, 25], "4424": [15, 25], "4425": 15, "4429469": 20, "443205": 17, "44455": 16, "44498": [15, 16, 25], "44762": 20, "44797": 20, "44798": 20, "44799": 20, "44824": 20, "44824_20230324t060430": 20, "44825": 20, "44826": 20, "44827": 20, "45": [16, 20], "450": 20, "4500": 16, "4501953125": 19, "452671": 18, "4527": 20, "455877": 19, "45905387e": 22, "4595": [15, 25], "46": [16, 18, 20], "46402431e": 18, "465606": 17, "465746": 20, "466": [18, 19], "47": [15, 19, 20, 21, 25], "47100427179566": [15, 25], "471104": 18, "47140008e": 22, "471847": 20, "475": [18, 19], "475972": 18, "476866": 18, "47981834e": 18, "48": [15, 18, 19, 20, 22, 23, 26], "480": 20, "4800": 20, "480dldposx": 20, "481770": 19, "482292": 18, "4830": 21, "484465": 19, "484564": 19, "485227": 19, "485542": 18, "486497": 19, "48742985": 15, "489": 26, "49": [15, 16, 20, 25, 26], "492": 22, "4949999999994": 18, "495093": 21, "496e": 21, "498385": 19, "499": 13, "4f": [15, 16, 21, 25], "4kb": 20, "4q": 20, "5": [5, 6, 8, 9, 10, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26], "50": [6, 17, 18, 19, 20, 21, 26], "500": [13, 15, 18, 19, 20, 26], "502": 22, "50320000e": 22, "50330198e": 18, "5092127": 16, "51": 20, "5100": 15, "511388": 19, "512": 26, "512794": 20, "51330000e": 18, "515091": 18, "516": 22, "516486": 18, "5189696": 16, "52": [18, 19, 20, 26], "521044": 17, "521308": 19, "521457": 25, "522056": 20, "524": 21, "52672958e": 18, "52960000e": 22, "53": 20, "531": 22, "535": 20, "536133": 20, "5361e": 18, "54": [9, 16, 20, 26], "54080000e": 18, "54154154155": 18, "545": [18, 19], "54654654654": 18, "546554": 18, "55": [19, 20], "5565754": 18, "556e": 21, "55960000e": 22, "55975950e": 18, "56": 15, "561": 20, "563143": 17, "56439197e": 18, "56525760": 16, "56768800": 16, "57": [16, 18, 19], "570": 19, "57050000e": 18, "571": 18, "5727e": 20, "5728": 20, "5730": 20, "575998": 18, "5773": 15, "5774": 15, "578103": 20, "58": 21, "580155": 19, "580955": 18, "581438": 18, "581616": 18, "582615": 19, "586": 18, "587": 19, "588": 19, "58960000e": 22, "58964": 21, "59": 16, "590": 18, "594095": 15, "594238": 15, "59620132": 21, "59838033e": 18, "59934": 15, "5e": [16, 20], "6": [6, 8, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "60": [15, 16, 21, 25], "600": [18, 19, 20, 26], "6000": 26, "60130000e": 18, "602051": [15, 25], "6029": [15, 20, 25], "6052": 21, "6066": 21, "6073e": 18, "607555": 18, "608": 17, "6088": 21, "61": [20, 21], "61261261262": 18, "614056": 17, "6158341": 18, "6170": [15, 25], "6176e": 22, "6187": [15, 25], "619277": 19, "6196": 21, "62": [16, 18, 19, 20, 21, 22, 26], "62080000e": 22, "62162162163": 18, "621785": 18, "623258": 18, "626783": 19, "6286e": 20, "628e": 21, "6315": [18, 19], "6316": [18, 19, 21, 24], "6317": [18, 19, 24], "6318": [18, 19], "633106": 17, "63430000e": 18, "63519239": 18, "635206": 19, "63564813e": 18, "63671998": 15, "6369728": 9, "6372e": 21, "6376": 21, "6380": 21, "64": [15, 25], "6400": [15, 18, 19], "64000": [18, 22], "640482": 19, "640940": 18, "642352": 18, "6448": 21, "645123": 19, "645708": 19, "64624": 22, "64638": 18, "64864": 22, "648714": 20, "64913": 18, "6496": 21, "649792": 17, "65": 21, "650": [15, 20, 25], "6505e": 16, "6508": 21, "651": [15, 25], "65140": 22, "65188": [18, 22], "65320000e": 22, "65386": 18, "65416": 22, "6542": 21, "65474": 18, "65500": 22, "656736": 20, "6568": 21, "65683": 18, "657": 25, "65704": 22, "657630": 18, "65764": 22, "65782": 18, "658": 15, "6580": 21, "65991": 18, "66": 24, "660": [18, 19], "66000": [22, 24], "66004": 22, "66088": 22, "66100": [18, 23], "66101": 18, "6618227": 20, "66200": 18, "66266266267": 18, "66300": 23, "66310": 18, "66316": 22, "664": 19, "6640": 21, "664187": 20, "66436": 22, "66442": 18, "66448": 18, "66449": [18, 19], "66454": [18, 24], "66455": [19, 24], "665": 18, "666": 19, "66600": 24, "66605": 24, "6664": 21, "66651": 18, "66652": 22, "667": 18, "66730000e": 18, "66794": 18, "66820": 22, "669": 25, "67": 20, "670": 15, "6700": 21, "67000": [18, 24], "67003": 18, "67012": 22, "670135": 17, "670972": 15, "671": [18, 19, 24, 25], "67180": 22, "67190": 18, "672": 15, "67203319e": 18, "6736": 21, "673617": 15, "67384": 22, "67388": 18, "674966": 17, "67575": 18, "6772": 21, "677563e": [15, 25], "67780": 22, "67795": 18, "6784": 21, "679395e": 20, "67993": 18, "679976": 19, "68": 26, "681": 25, "682": 15, "68213": 18, "6832": 21, "683584": 18, "684": 25, "68432": [18, 19], "684410678887588e": 26, "68458": 19, "68459": 18, "685": 15, "686": 25, "68664": 18, "687": 15, "68800000e": 22, "688e": 21, "689": [17, 20], "6892": 21, "690": 20, "691": 18, "69148": 18, "692": [19, 24], "696": [9, 20], "6964": 21, "697": [18, 19, 20], "6kv_kmodem4": [19, 26], "6mb": 9, "7": [6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "70": [16, 18, 22, 26], "700": [21, 26], "7004554": 22, "70083": 18, "70084": 19, "700983e": 21, "701": 18, "70100": 18, "70101": [19, 24], "701432": 20, "702": 19, "7024": 21, "70360000e": 18, "703641": 17, "70683038e": 18, "707": 19, "707786": 18, "707867": 18, "709": 18, "7096": 21, "71": [9, 16, 18], "711914": 20, "712": [18, 19, 24], "713": 18, "714": 19, "71571571572": 18, "715783": 19, "717008": 18, "717173": 18, "72": [15, 25], "723243": 19, "72411": 19, "72412": 18, "72421": [18, 19], "72520000e": 22, "72628": [18, 19], "72632": [18, 19], "727541": 18, "72794": [18, 19], "72801": 19, "72802": 18, "729496": 20, "729893": 18, "729931": 19, "730": [18, 26], "73025": 18, "73026": [18, 19, 24], "730696": 19, "7348e": 18, "735": 26, "735395": 17, "73900": [18, 19], "73902": 19, "73903": 18, "73990000e": 18, "73g": 9, "73gb": 9, "74": 15, "741": [18, 19], "744810": 18, "745": 20, "75": [15, 20, 26], "750": [21, 26], "75000": 18, "7502612": 18, "751262": 19, "756": 21, "75613": 18, "75614": [18, 19], "75615": [19, 24], "756182": 18, "757679": 18, "760": 18, "76000": 22, "760810": 19, "760e": 21, "761": [19, 24], "762199": [15, 25], "76360000e": 22, "764932": 15, "76527879": 15, "769545": 19, "77": [16, 22], "77430106": 18, "78": [15, 25], "780": 20, "780473": 18, "78060000e": 18, "783501": 15, "787527": 18, "791": 18, "792": 19, "7937937938": 18, "79487877": 18, "795029": 25, "799076": 19, "7998131": 20, "8": [8, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "80": [19, 22, 26], "800": [19, 20, 21], "8000": 21, "801": 17, "8038038038": 18, "803871": 19, "80482246": 16, "8058058058": 18, "805877": 19, "808362": 19, "809527": 18, "80966772": 16, "8096677238144319": [15, 25], "81": [16, 20], "812274": 17, "817": [18, 19], "817142": 18, "817292": 18, "818": [19, 24], "8182": 20, "819440": 18, "82": 26, "820e": 21, "82130000e": 18, "821539": 19, "822": [18, 19], "824157": 25, "826874": 20, "827154": 18, "827845": 18, "8280": 20, "828330": 19, "828590": 19, "831864": 18, "832103": 18, "83212495": 18, "832646": 18, "835": 19, "837507": 20, "838": [18, 19], "839": 18, "84": [15, 20, 25], "845992": 19, "846473": 20, "847": 19, "848": 18, "849198": 18, "849440": 19, "85": 20, "850": 21, "853": 20, "855952": 18, "858299": [15, 25], "86": 18, "864480": 18, "864716": 20, "86750000e": 18, "87": [16, 18, 20], "872415": 19, "873829": 17, "874866": 17, "875": 17, "87500": 20, "8758304": 15, "87630041": 18, "877689": 25, "88": [18, 19, 26], "8810": 20, "881435": 18, "887": [15, 25], "888010": 18, "890": 20, "890523": 24, "891": 20, "891153": 18, "892": 20, "892e": 21, "893": 20, "894": 20, "894587": 18, "895": [15, 20, 25], "8956187": 15, "896": 20, "897": 20, "8976": 20, "898": 20, "8982": 20, "899": 20, "8990": 20, "8999938964844": 20, "8e": 18, "9": [1, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "90": 15, "900": [20, 25], "9000": 18, "90000": 18, "9002e": 16, "901023": 17, "901034": 25, "9058e": 20, "91": 15, "9148": 21, "92": 15, "920": [18, 26], "9200134277344": 20, "922107": 19, "922kb": 20, "925175": 19, "9255": 20, "929539": 18, "9375": 20, "938": 20, "940002": 20, "94000244140625": 20, "940029": 19, "946285": 20, "947": 20, "951": 21, "953383": 19, "95544165": 18, "957": 21, "96": [18, 19, 26], "962": 21, "9636feecb79bb32b828b1a9804269573256d7696": 19, "96875": [15, 25], "969298": 19, "97": [15, 19, 22], "970": 18, "971": [19, 24], "972844": 18, "974047": 17, "98": [15, 25], "98000": 17, "98205366": 18, "984": [18, 19], "9848e": 22, "9886e": 20, "988787": 18, "989246": 15, "989314": 17, "989998": [15, 25], "99": [15, 18], "9902e": 21, "993118286132812": 20, "995356": [15, 25], "995903": [15, 25], "9964": 20, "9974": 18, "9985": 22, "9988": 18, "99905": 19, "999065": 20, "9992": 16, "9992096": 15, "9993": 22, "99931647456264949": 19, "9995": 16, "9996": 21, "9997": [16, 18], "9998": [16, 22], "9999": 16, "99995": 17, "99996": 17, "99997": 17, "99998": 17, "99999": 17, "A": [1, 3, 5, 6, 7, 8, 13, 17, 20, 26], "And": 16, "As": [15, 25], "At": [1, 3], "Be": 5, "By": [9, 10], "For": [6, 8, 10, 13, 15, 16, 18, 20, 21, 22, 23, 25, 26], "If": [1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 24, 25, 26, 28], "In": [5, 6, 8, 17, 18, 19, 20, 21, 22, 25, 26], "It": [0, 3, 6, 13, 20, 24, 26], "Its": [6, 8], "NOT": [8, 20, 21], "No": 19, "Not": [6, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "On": [3, 28], "One": [6, 18], "Or": 9, "The": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26], "Then": [18, 25], "These": [7, 9, 18, 19, 24, 26], "To": [1, 3, 5, 6, 15, 16, 18, 20, 21, 24], "With": [18, 20], "_": [16, 18, 19, 23, 24], "_0": 15, "_1": 22, "__init__": 17, "__name__": 1, "_attr": 12, "_bin": [18, 22], "_build": 3, "_hl": 13, "_normalization_histogram": [18, 22], "_offset": 10, "a0": 25, "a1": 25, "a2": 25, "a_n": 6, "aa0": 26, "abc": 13, "abil": 9, "about": [0, 9, 18, 20, 21], "abov": [5, 8, 18, 20, 24, 26], "absent": 24, "absolut": [6, 8, 18, 26], "absorb": 19, "abstract": 1, "acceler": 0, "accept": 8, "access": [3, 5, 8, 12, 13, 15, 16, 20, 21, 25], "accessor": [6, 8, 13], "accord": [6, 18], "accordingli": 15, "account": [16, 18, 20], "achiev": [18, 22], "acquir": 25, "acquisit": [8, 13, 15, 20], "across": 13, "action": 3, "activ": [1, 3, 6, 28], "actual": [6, 25], "ad": [6, 7, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "adc": [6, 18, 19, 22, 23, 24, 26], "adc_bin": 26, "adc_column": 6, "adc_rang": [6, 18, 19, 26], "add": [1, 6, 8, 9, 10, 12, 13, 14, 22, 24, 25, 29], "add_attribut": 8, "add_colorbar": 20, "add_delay_offset": [8, 15, 16, 20, 21, 25], "add_energy_offset": [8, 15, 16, 20, 25], "add_featur": 6, "add_jitt": [8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "add_offset": 6, "add_rang": 6, "add_time_stamped_data": [8, 10, 22], "addit": [6, 7, 8, 10, 11, 12, 13, 25, 26], "addition": [3, 20, 25], "address": 19, "adjust": [6, 8, 18, 19, 22, 24], "adjust_energy_correct": [6, 8, 18], "adjust_rang": 6, "administr": 26, "adopt": 6, "advanc": 0, "affili": 19, "affin": [8, 18], "after": [5, 6, 9, 10, 18, 20, 24, 25], "afterward": 21, "ag": 13, "again": [20, 21, 24], "against": 1, "aggreg": 13, "ahead": 6, "akaik": [15, 16, 18, 20, 21, 22], "algorithm": [6, 8, 18, 23, 26], "alia": 13, "alias": [8, 13, 26], "alias_dict": [8, 12], "alias_kei": 13, "align": [6, 8, 15, 16, 18, 19, 22, 24, 25, 29], "align_dld_sector": [6, 8, 15, 16, 20, 25], "all": [1, 5, 6, 8, 9, 10, 11, 13, 18, 20, 21, 24, 25, 26, 28], "allow": [3, 5, 6, 9, 10, 20, 21, 25, 26], "allusersprofil": [7, 26], "along": [5, 6, 8, 18, 20, 24, 26], "alongsid": 13, "alpha": 20, "alreadi": [6, 9, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "also": [1, 3, 5, 6, 7, 8, 9, 10, 15, 16, 18, 20, 21, 22, 24, 25, 26], "altern": [6, 7, 8, 16, 18, 24, 26], "amalgam": 13, "among": 6, "amount": [6, 8, 20, 24], "amp": [8, 10, 24], "amplitud": [5, 6, 8, 10, 15, 18, 24, 26], "amplitude2": [6, 18], "an": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 26, 28], "analog": [6, 26], "analysi": 0, "analysis_data": 9, "analyt": 18, "analyz": [19, 20], "angl": [0, 6, 8, 18, 19, 22, 23], "ani": [5, 7, 8, 9, 12, 13, 14, 15, 18, 21, 24, 26], "annoi": 20, "annot": 6, "anoth": 9, "anyth": [8, 20], "apertur": [19, 26], "aperture_config": 26, "api": [5, 8, 12, 26], "append": [6, 8, 14, 18, 19, 21], "append_delay_axi": [6, 8], "append_energy_axi": [6, 8, 15, 16, 18, 19, 20, 21, 22, 25], "append_k_axi": [6, 8], "append_tof_ns_axi": [6, 8, 20, 21], "appli": [5, 6, 8, 10, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "applic": [6, 8, 10, 26], "apply_correct": [6, 8], "apply_dfield": [6, 18, 19, 22, 23], "apply_energy_correct": [6, 8, 18, 19, 22], "apply_filt": 10, "apply_jitt": [8, 10, 20], "apply_momentum_calibr": [8, 18, 19, 22, 23], "apply_momentum_correct": [8, 18, 19, 22, 23], "apply_offset_from_column": 6, "apply_ufunc": 25, "approach": [5, 25], "appropri": 3, "approv": 1, "approx": 26, "approxim": [6, 8, 16, 18, 26], "ar": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "arang": [18, 21, 22], "archiv": [8, 13, 22, 26], "archiver_channel": [8, 13, 22], "archiver_url": [13, 26], "area": 6, "arg": 8, "argument": [5, 6, 7, 8, 10, 11, 12, 13, 20], "aris": 20, "around": [6, 8, 18, 22, 26], "arp": 27, "arrai": [5, 6, 8, 12, 13, 16, 18, 20, 22, 23, 25], "arriv": [15, 26], "arrival_tim": 26, "arrow": 20, "artefact": 25, "artifact": [20, 24], "asap3": [15, 16, 20, 25, 26], "ascal": [6, 23], "assembl": 6, "assert": [9, 15, 16, 20, 21, 25], "asserterror": 8, "assign": [15, 16, 18, 19, 20, 21, 22, 23, 25], "associ": [6, 13], "assum": [1, 6, 12, 18], "assumpt": 10, "astral": [1, 3], "asymmetr": 6, "attach": [18, 22], "attempt": 14, "attr": [12, 20], "attribut": [1, 6, 8, 12, 13, 18, 20, 25, 26], "attributeerror": [5, 12], "au": 29, "au_mica": [9, 21], "au_mica_sxp": 9, "aug": 6, "augment": [6, 13], "author": 13, "auto": [3, 8, 13, 18], "auto_detect": [8, 18], "autodetect": 18, "automat": [3, 12, 13], "autoreload": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "auxiliari": [13, 26], "avail": [5, 6, 8, 9, 13, 20], "available_channel": 13, "available_run": 13, "averag": 26, "average_pow": 19, "avoid": 20, "awar": 5, "ax": [5, 6, 8, 10, 12, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26], "axi": [5, 6, 8, 11, 12, 18, 19, 22, 23, 24, 26, 29], "axis_dict": 12, "b": [1, 3, 6, 8, 15, 16, 20, 22, 25, 26], "back": 13, "backend": [6, 8, 11], "background": [0, 21, 24, 26, 29], "backward": 10, "backward_fill_lazi": 10, "bam": [20, 25, 26, 27], "band": [15, 19, 22, 25, 27], "bar": [5, 8, 26], "base": [1, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 19, 22, 23, 26], "base_dictionari": 7, "base_fold": 13, "baseload": [1, 6], "basic": 0, "bayesian": [15, 16, 18, 20, 21, 22], "bda": 26, "beam": [15, 16, 19, 26], "beamlin": [1, 26], "beamtim": [13, 15, 16, 20, 21, 25, 26], "beamtime_dir": [15, 16, 20, 21, 25, 26], "beamtime_id": [13, 15, 16, 25, 26], "beamtimeid": 26, "becam": 15, "becaus": [5, 17], "becom": 13, "been": [3, 8, 12, 16, 18], "befor": [1, 5, 6, 8, 10, 15, 20, 24, 26], "begin": 24, "behav": [5, 8], "behavior": [5, 9, 14], "behind": [0, 24], "being": [6, 8, 10, 18, 20], "below": [1, 5, 7, 20, 21, 26, 28], "berlin": [13, 19], "best": [12, 15, 18, 22, 25], "best_fit": 15, "better": [20, 21, 26], "between": [3, 5, 6, 8, 10, 13, 15, 16, 20, 21, 24, 25, 26], "bg": [15, 16, 20, 25], "bgd": 25, "bgd_blur": 25, "bia": [6, 8, 18, 20, 26, 29], "bias": [6, 8, 16, 18, 21, 22], "bias_kei": [6, 8, 26], "bias_voltag": [6, 8, 18, 19, 21, 22], "biasseri": 21, "billauer": 6, "bin": [0, 1, 3, 4, 6, 8, 11, 13, 24, 26, 27, 28, 29], "bin_and_load_momentum_calibr": [8, 18, 19, 22, 23], "bin_cent": 5, "bin_centers_to_bin_edg": 5, "bin_data": 6, "bin_datafram": [5, 6, 8, 17], "bin_edg": 5, "bin_edges_to_bin_cent": 5, "bin_partit": [5, 17], "bin_rang": 6, "binari": 20, "binax": 17, "bind": [6, 8, 18], "binned_data": [8, 16, 20, 21], "binrang": 17, "binsearch": 5, "binwidth": 6, "bisect": 5, "bit": [13, 26], "bit_mask": 13, "bitwis": 13, "bla": [5, 8, 26], "blur": 25, "bokeh": [6, 8, 11], "bool": [5, 6, 7, 8, 9, 10, 11, 13], "both": [6, 8, 9, 13, 14, 20, 21, 25, 26], "bound": 10, "boundari": 6, "branch": [1, 3], "brief": 1, "brillouin": [6, 18], "brillouin_zone_cent": 18, "broad": 15, "broken": [1, 26], "buffer": 13, "buffer_file_handl": 13, "buffer_path": [15, 16, 20, 21, 25], "bug": 1, "build": 3, "built": 3, "bunch": 15, "bunch_first_index": 26, "bvec": 6, "bx": 15, "byte": [13, 15], "bz": [8, 18, 26], "c": [12, 15, 16, 18, 20, 21, 22, 26], "c_center": 6, "c_convers": 6, "c_det": 6, "c_start": 6, "c_step": 6, "ca_in_channel": 26, "ca_siz": 26, "calc_geometric_dist": 6, "calc_inverse_dfield": 6, "calc_symmetry_scor": 6, "calcul": [5, 6, 8, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26], "caldir": [18, 22], "calib_typ": [6, 25], "calibr": [0, 4, 8, 19, 24, 26, 27, 29], "calibrate_delay_axi": [8, 18, 19], "calibrate_energy_axi": [8, 16, 18, 20, 21, 22], "calibrate_momentum_ax": [8, 18, 23], "calibration_data": 9, "calibration_method": [8, 26], "call": [5, 17, 20], "callabl": 10, "can": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28], "cancel": 3, "candid": 6, "cannot": [7, 13, 18], "care": [10, 16], "cartesian": 6, "carv": [19, 22, 26], "case": [5, 6, 8, 14, 20, 25], "caus": 5, "ccw": 6, "cd": [3, 28], "cdeform": 6, "cdeform_field": [6, 8], "cdeformfield": 6, "cell": [18, 20, 21], "center": [5, 6, 8, 15, 18, 20, 25, 26], "center_pixel": [6, 8, 26], "centr": 15, "central": 18, "centroid": 6, "certain": 6, "ch6": 26, "chang": [1, 6, 8, 10, 20, 21, 26, 28], "channel": [8, 12, 13, 15, 18, 19, 20, 23, 24, 26, 29], "channel_dict": 13, "channelalia": 26, "charg": 18, "check": [1, 3, 5, 6, 13, 21, 24], "checkout": 1, "chemical_formula": 19, "chessi": 29, "chi": [15, 16, 18, 20, 21, 22], "choos": [3, 6, 8, 18, 26], "chosen": 5, "circl": 6, "circular": 6, "class": [1, 6, 8, 9, 13, 14, 18, 19, 20, 22], "clean": [20, 21], "cleanup": 29, "cleanup_oldest_scan": 13, "clear": [1, 21], "clearli": [15, 24], "cleav": 19, "click": [3, 18], "clock": 15, "clone": [1, 3, 28], "close": [6, 24], "closest": 6, "cm": 6, "cm2": 19, "cm2palett": 6, "cmap": [6, 15, 16, 25], "cmap_nam": 6, "co": 6, "code": [1, 5, 6, 13], "coeff": 6, "coeffici": [6, 25], "col": [6, 8, 10, 17, 23, 24, 26], "collabor": 1, "collect": [0, 6, 8, 13, 18, 19, 20, 21, 22, 23, 26], "collect_metadata": [8, 13, 19, 20, 21], "color": [6, 16, 20, 25], "color_clip": [6, 26], "colormap": 6, "cols_jitt": 10, "column": [5, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "column_index": 6, "column_nam": 10, "com": [1, 3, 9, 28], "combin": [5, 8, 13, 26], "come": [9, 19, 20], "command": [1, 9], "commit": 1, "common": [18, 20], "commun": 1, "comp": 26, "compar": [13, 20, 21, 26], "comparison": 25, "compat": 12, "compens": [20, 26], "complet": [7, 9, 12, 13, 15, 16, 20, 21, 25], "complete_dictionari": 7, "composit": 6, "comput": [5, 8, 10, 13, 15, 16, 21, 23, 24, 25, 26, 29], "compute_kwd": [5, 13], "compute_length": 10, "concat": 21, "concaten": 13, "concatenate_channel": 13, "concept": 0, "concis": 1, "concurr": 3, "conda": [17, 28], "condit": 25, "config": [0, 1, 3, 4, 6, 8, 9, 13, 18, 19, 22, 23, 24, 26, 29], "config_dict": 7, "config_fil": [15, 16, 20, 21, 25], "config_overrid": [15, 16, 20, 21, 25], "config_path": 7, "config_v1": [7, 26], "configur": [3, 7, 9, 12, 13, 15, 16, 18, 19, 20, 21, 24, 25, 27], "confirm": [3, 13], "conflict": 3, "congruent": 5, "consecut": 10, "consid": [6, 12, 20], "consist": [10, 26], "constant": [6, 8, 15, 16, 20, 21, 25], "constrain": [6, 15, 16, 20, 25], "constrained_layout": [17, 18, 21, 22], "construct": [6, 13], "contain": [5, 6, 7, 8, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 26], "content": [3, 7, 13], "continu": [9, 22, 24], "contrast": [25, 26], "contribut": 2, "contributed_definit": 19, "control": 14, "conveni": 20, "convers": [6, 13, 20, 21, 25, 26, 27], "convert": [5, 6, 8, 12, 13, 19, 20, 21, 24, 26], "coord": [6, 12, 17], "coordin": [6, 8, 12, 18, 19, 20, 26], "coordinate_transform": 6, "coordtyp": 6, "copi": [3, 8, 9, 13, 22, 26], "copy_tool": 26, "copytool": 13, "core": [0, 4, 5, 7, 10, 13, 14, 15, 20, 21, 26, 27, 29], "correct": [0, 8, 12, 19, 22, 26, 27, 29], "corrected_delai": 26, "corrected_i": [6, 26], "corrected_tof": [6, 26], "corrected_x": [6, 26], "correction_funct": 6, "correction_typ": [6, 8, 26], "correctli": 1, "corrector": 8, "correl": [16, 18, 20, 21, 22, 27], "correspond": [5, 6, 8, 10, 12, 13, 18, 19, 24, 25, 26], "could": 15, "count": [5, 11, 13, 18, 20, 21, 22], "countrat": 13, "countslong_nam": 20, "countsmetadata": 20, "coupl": 21, "cover": [1, 6, 8, 10], "cp": 3, "cpp": 20, "cpu": [5, 8, 17], "cpy": 8, "creat": [1, 3, 7, 9, 13, 18, 19, 22, 23, 24, 28], "create_buffer_fil": 13, "create_dataframe_per_channel": 13, "create_dataframe_per_electron": 13, "create_dataframe_per_fil": 13, "create_dataframe_per_puls": 13, "create_dataframe_per_train": 13, "create_multi_index_per_electron": 13, "create_multi_index_per_puls": 13, "create_numpy_array_per_channel": 13, "created_bi": 20, "creation": [3, 13, 25], "creation_d": [15, 20, 25], "crit": [15, 16, 18, 20, 21, 22], "critic": 20, "cross": [6, 27], "crosshair": 6, "crosshair_radii": 6, "crosshair_thick": 6, "cryo_temperatur": 26, "cryotemperatur": [15, 16, 20, 25, 26], "crystal": 19, "cstart": [6, 26], "cstep": [6, 26], "csv": 13, "ct": 15, "ctime": 13, "cube": 6, "curl": [1, 3], "current": [6, 7, 8, 9, 10, 13, 15, 16, 18, 20, 21, 25, 26], "curv": [6, 8, 18, 26], "custom": 6, "cutoff": 26, "cw": 6, "d": [5, 6, 8, 15, 16, 18, 20, 21, 22, 25, 26], "dak": 17, "daostarfind": 18, "daq": [13, 26], "dash": [16, 25], "dask": [0, 5, 6, 8, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26], "data": [0, 1, 3, 4, 5, 6, 8, 9, 10, 12, 14, 26, 27, 29], "data_fil": [6, 8, 18, 22], "data_nam": 9, "data_parquet_dir": 13, "data_path": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "data_raw_dir": 13, "dataarrai": [5, 6, 8, 12, 20, 21], "dataarraydldposi": 20, "dataconvert": [12, 19], "datafil": [6, 8, 18], "dataformat": 13, "datafram": [0, 4, 5, 6, 8, 13, 15, 16, 18, 19, 22, 23, 24, 25, 26, 29], "dataframe_electron": 13, "dataframe_puls": 13, "dataset": [0, 3, 4, 6, 8, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "dataset_kei": [13, 26], "datastream": 0, "datatyp": 26, "date": 1, "datetim": 25, "dbc2": 26, "dct": 11, "dd": 13, "ddf": [8, 13, 17], "de": [19, 26], "deal": 19, "debug": [13, 20], "decod": 13, "decreas": [6, 8, 18], "default": [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "default_config": [7, 26], "defin": [0, 5, 6, 8, 9, 13, 16, 19, 20, 21, 23, 25, 26], "define_featur": [8, 18, 22, 23], "definit": [5, 8, 12, 26], "deform": [6, 8, 18, 19, 22, 23], "delai": [8, 13, 19, 26, 29], "delay_column": 6, "delay_mm": 6, "delay_rang": [6, 8, 18, 19], "delay_range_mm": 6, "delay_start": 20, "delay_stop": 20, "delaycalibr": [6, 8], "delaystag": [15, 16, 21, 25, 26, 29], "delet": [9, 10, 13, 20, 21], "delta": 6, "demonstr": [0, 23, 27], "depend": [1, 3, 8, 13, 16, 18, 27, 28], "deploi": 3, "deploy": 3, "deriv": [6, 24], "describ": [5, 6, 8, 12, 23], "descript": [1, 13, 19], "design": [3, 6], "desir": 13, "dest": [13, 26], "dest_column": [8, 10, 22], "destin": [6, 8, 10, 13], "detail": [6, 7, 8, 24], "detect": [6, 8, 13, 18, 20], "detector": [6, 13, 18, 20, 25, 26], "detector_coordinates_2_k_coordin": 6, "detector_rang": [6, 26], "deterior": 24, "determin": [6, 8, 13, 15, 16, 18, 20, 21, 25], "dev": [1, 28], "develop": [0, 27], "deviat": [6, 16, 18], "df": [5, 6, 10, 13, 17], "df_backup": 24, "df_partit": [8, 18, 19, 22, 23, 24], "dfield": 6, "dfop": [6, 10], "dfpid": [8, 18, 20, 21, 22], "dgroup": 26, "diag": 26, "diagnost": [0, 4, 6, 8, 13, 26], "diamet": [6, 18, 26], "dict": [5, 6, 7, 8, 9, 11, 12, 13, 14], "dictionar": 6, "dictionari": [5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 20, 21, 25, 26], "dictmerg": 6, "differ": [0, 3, 6, 7, 8, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26], "differenti": 6, "difficult": 5, "digit": [6, 20, 21, 24, 25, 26], "dim": [12, 17, 21], "dimens": [5, 6, 8, 10, 12, 18, 24], "dimension": [0, 5, 8, 10, 12, 13, 20], "dir": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "direct": [6, 8, 15, 16, 20, 25, 26], "directli": [6, 8, 15, 16, 17, 18, 20, 21, 22, 25, 26], "directori": [1, 3, 7, 9, 13, 15, 16, 20, 21, 25, 26], "disabl": [17, 26], "discov": 6, "discuss": [19, 24], "disk": 13, "dispers": 6, "displac": 6, "displai": [6, 8, 26], "dispos": 26, "dist_metr": 6, "distanc": [6, 8, 16, 18, 23, 24, 26], "distinct": 18, "distinguish": 13, "distort": [6, 8, 19, 22, 26, 27], "distribut": [6, 10, 24, 25, 28], "dither": 24, "divid": [3, 25], "divis": 25, "dld": [20, 21, 25], "dld1": 26, "dld_time": 26, "dldaux": 26, "dldposi": [15, 16, 20, 21, 25, 26], "dldposx": [15, 16, 20, 21, 25, 26], "dldposxpandasindexpandasindex": 20, "dldposypandasindexpandasindex": 20, "dldsectorid": [13, 15, 16, 20, 25, 26], "dldtime": [20, 21, 26], "dldtimebins": [15, 16, 20, 25, 26], "dldtimestep": [13, 15, 20, 21, 25, 26], "do": [3, 6, 8, 20, 21, 23, 25, 28], "doc": [1, 3, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "document": [1, 2, 9], "doe": [6, 9, 12, 13, 17, 20], "doesn": 9, "domin": 20, "don": [3, 8, 18, 25], "done": [6, 15, 16, 20, 21, 25, 28], "dortmund": 20, "doubl": 6, "down": 3, "download": [3, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "draft": 3, "drift": [6, 15], "drive": [8, 13, 18, 22], "drop": [10, 13], "drop_column": 10, "dtype": [20, 26], "dummi": 13, "dup": 6, "duplic": [6, 14, 25], "duplicate_polici": 14, "duplicateentryerror": 14, "dure": [3, 6, 13, 20, 25], "dynam": [3, 18, 19], "e": [1, 3, 5, 6, 8, 11, 15, 16, 18, 19, 20, 24, 26, 28], "e0": [6, 15, 16, 18, 20, 21, 22, 25, 26], "each": [5, 6, 8, 10, 11, 13, 16, 17, 18, 20, 25, 26], "easi": [5, 8, 9, 12], "easier": 20, "ec": 16, "edc": [6, 18, 22, 25], "edg": [5, 8, 11], "edit": [1, 3, 28], "ef": 18, "effect": [18, 20, 21, 22], "either": [6, 8, 18, 20, 22, 23, 28], "elaps": [13, 18], "electron": [6, 8, 13, 19, 20, 21], "electron_flash1_user3_stream_2_run44762_file1_20230321t113927": 20, "electronid": [13, 15, 16, 20, 25, 29], "element": [5, 6, 8, 12], "elimin": 25, "eln_data": 8, "els": [15, 16, 20, 21, 25], "email": 19, "empti": [6, 7, 13], "encod": [13, 26], "encoder_posit": 26, "end": [0, 1, 5, 6, 8, 13, 20, 24, 26], "endstat": 8, "energi": [8, 12, 17, 19, 22, 26, 27, 29], "energy_c": [15, 25], "energy_calibr": 25, "energy_column": 6, "energy_offset": 6, "energy_resolut": 19, "energy_scal": [6, 8, 15, 16, 18, 20, 21, 22, 25, 26], "energycal_2019_01_08": 9, "energycal_2020_07_20": 9, "energycalfold": 18, "energycalibr": [6, 8], "engin": 26, "enhanc": 25, "enough": [10, 24], "ensur": [0, 1], "entir": [10, 13, 24, 29], "entri": [3, 5, 6, 8, 13, 14, 18, 19, 23, 24, 26], "entry_titl": 19, "env": [7, 13], "environ": [1, 3, 7, 13, 28], "epic": [8, 13, 22, 26], "epics_pv": 26, "equal": [6, 23, 26], "equat": 6, "equiscal": [6, 8, 18, 23], "equival": [6, 18, 20, 23], "eref": 18, "error": [3, 5, 7, 9, 13, 14, 20], "essenti": 18, "estim": 6, "etc": [6, 7, 13, 18, 26, 28], "european": [0, 29], "ev": [6, 16, 20, 26], "eval": [15, 16, 18, 20, 21, 22], "evalu": [0, 20], "even": [23, 26], "evenli": 13, "event": [0, 3, 6, 8, 13, 17, 21, 22, 24, 26, 29], "eventid": 26, "everi": [3, 20, 26], "evolut": 21, "exact": 24, "exactli": 24, "exampl": [1, 5, 6, 8, 17, 18, 19, 20, 22, 23, 25, 28], "example_config": 26, "example_dset_info": 9, "example_dset_nam": 9, "example_subdir": 9, "exceed": 5, "except": [13, 14], "exclud": 13, "execut": [3, 9], "exfel": 21, "exist": [6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "existing_data_path": 9, "exp": [21, 26], "expand_dim": 16, "expect": 6, "experi": [5, 26], "experiment": 19, "experiment_summari": 19, "experiment_titl": 19, "explan": 14, "explicitli": 20, "explod": 13, "expr": 17, "express": [6, 13], "extend": 9, "extens": [8, 13], "extent": [6, 19], "extern": [8, 13, 27], "extr": [19, 26], "extra": [6, 8, 20], "extract": [6, 8, 9, 13, 18, 20, 21, 22, 26], "extract_bia": 6, "extract_delay_stage_paramet": 6, "extractor_curr": 26, "extractor_voltag": 26, "extractorcurr": [15, 16, 20, 25, 26], "extractorvoltag": [15, 16, 20, 25, 26], "f": [6, 15, 16, 20, 21, 22, 25, 26], "f1": 26, "f_end": 13, "f_start": 13, "f_step": 13, "fa_hor_channel": 26, "fa_in_channel": 26, "fa_siz": 26, "factor": [6, 24, 26], "faddr": [8, 12], "fail": 13, "fair": 0, "fairmat": 19, "fake": 27, "fals": [3, 5, 6, 7, 8, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "faradayweg": 19, "fast": [5, 8, 26], "fast_dtw": 8, "fastdtw": [6, 26], "fastdtw_radiu": [8, 26], "faster": [5, 17], "featrang": 6, "featur": [0, 1, 5, 6, 8, 9, 16, 18, 20, 21, 22, 26], "feature_extract": [6, 8], "feature_point": 26, "feature_select": [6, 8], "feature_typ": 6, "feedback": 1, "feel": 28, "fel": 15, "fermi": [6, 18], "fetch": [8, 9, 13], "few": [1, 21], "fhi": [13, 19, 22], "fid": 13, "field": [6, 8, 18, 19, 22, 23, 25, 26], "field_aperture_i": 20, "field_aperture_x": 20, "fig": [15, 16, 17, 18, 20, 21, 22, 25], "figsiz": [6, 11, 15, 16, 17, 18, 20, 21, 22, 25], "figur": [6, 11, 15, 16, 20, 21, 22, 23, 24, 25], "file": [1, 3, 5, 6, 7, 8, 9, 12, 13, 15, 18, 22, 23, 24, 25, 27, 29], "file_path": 13, "file_sort": 13, "file_statist": 20, "filemetadata": 13, "filenam": [6, 8, 9, 13, 20, 26], "filenotfounderror": [7, 13], "fill": [6, 10, 13, 19, 20, 21, 24, 26], "filter": [8, 10, 23], "filter_column": [8, 21], "filter_timed_by_electron": [13, 20], "final": [18, 26], "find": [5, 6, 8, 26, 29], "find_bias_peak": [8, 16, 18, 20, 21, 22], "find_correspond": 6, "find_nearest": 6, "find_peak": 16, "fine": 25, "fir": 13, "first": [6, 7, 8, 13, 15, 17, 18, 20, 21, 24, 25, 26], "first_event_time_stamp_kei": [13, 26], "firsteventtimestamp": [13, 26], "fit": [6, 15, 16, 18, 20, 21, 22, 25], "fit_energy_calibr": 6, "fit_funct": 25, "fit_report": 15, "fix": [1, 6, 10, 18, 20, 21], "fixed_cent": 6, "fl0": 26, "fl1": 26, "fl1user1": 26, "fl1user2": 26, "fl1user3": [15, 16, 20, 25, 26], "fl2photdiag_pbd2_gmd_data": 26, "fl2user1": 26, "fl2user2": 26, "flag": [6, 8, 13], "flash": [0, 13, 16, 27, 29], "flash1_user1_stream_2": 26, "flash1_user2_stream_2": 26, "flash1_user3_stream_2": 26, "flash2_user1_stream_2": 26, "flash2_user2_stream_2": 26, "flash_example_config": [15, 16, 20, 25], "flashload": 20, "flat": 25, "flexibl": 5, "flight": [6, 8, 13, 18, 26, 29], "flip": [6, 8, 15, 16, 20, 25, 26], "flip_delay_axi": [6, 8, 15, 16, 20, 25], "flip_time_axi": 26, "float": [5, 6, 8, 10, 11, 13, 20], "float32": [15, 16, 20, 25, 26], "float64": [15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "float64420": 20, "flow": 8, "fluctuat": [22, 26], "fluenc": 19, "fmc0": 26, "fo": [18, 21], "fold": [18, 23], "folder": [7, 8, 9, 13, 16, 18, 19, 20, 22, 23, 24, 26], "folder_config": [7, 15, 16, 25, 26], "follow": [1, 3, 5, 6, 8, 12, 18, 19, 20, 22, 23, 26], "fontsiz": [15, 25], "forc": 13, "force_copi": 13, "force_recr": [13, 20], "fork": 1, "form": [6, 8, 10, 18], "format": [0, 1, 6, 7, 8, 11, 12, 13, 15, 20, 21, 24, 26], "format_vers": 20, "formula": 6, "forward": [10, 13, 26], "forward_fill_iter": 26, "forward_fill_lazi": 10, "found": [6, 7, 8, 12, 13, 18, 19, 20, 23, 24], "four": 24, "fov": 20, "frame": [0, 8], "free": [3, 6, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28], "frequenc": 19, "fritz": 19, "from": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 22, 23, 24, 26, 29], "from_panda": 17, "ftype": 13, "full": [12, 13, 18], "fulli": [7, 9], "function": [0, 1, 6, 7, 8, 10, 11, 13, 15, 16, 17, 18, 20, 21, 22, 24, 26], "further": [18, 26], "futur": [3, 13, 17], "futurewarn": 17, "fwhm": [15, 18, 26], "g": [1, 3, 6, 8, 11, 15, 16, 18, 20, 24, 25, 26], "gamma": [6, 18, 22, 23, 26], "gamma2": [6, 18], "gamma_k": 23, "gamma_m": 23, "gap": 24, "gather_calibration_metadata": 6, "gather_correction_metadata": 6, "gather_fil": 13, "gather_metadata": 13, "gauss": 25, "gauss_mod": 15, "gaussian": [6, 8, 15, 18, 25, 26], "gaussian_filt": 25, "gaussianmodel": 15, "gave": 24, "gb": 3, "gbyte": [13, 16, 18, 19, 20, 21, 22, 23, 24, 25], "gd_w110": [9, 20], "ge": 6, "gener": [1, 3, 6, 8, 13, 15, 16, 18, 21, 22, 24, 25, 26, 27, 29], "generate_inverse_dfield": 6, "generate_splinewarp": [8, 18, 22, 23], "geometr": [6, 18], "get": [2, 13, 18, 19, 22, 23, 24, 29], "get_archiver_data": 13, "get_attribut": 13, "get_channel": 13, "get_count_r": [13, 18, 22], "get_datasets_and_alias": 13, "get_elapsed_tim": [13, 18], "get_files_from_run_id": 13, "get_load": 13, "get_metadata": 13, "get_names_of_all_load": 13, "get_normalization_histogram": 8, "get_parquet_metadata": 13, "get_start_and_end_tim": 13, "get_stat": 13, "get_target_dir": 13, "getdata": 26, "getmtim": 22, "getter": 8, "gid": [13, 26], "git": [1, 3, 28], "github": [1, 3, 19, 28], "github_token": 3, "give": [1, 9, 14, 15, 16, 17, 20, 21, 26], "given": [5, 6, 7, 8, 9, 10, 13, 19, 20, 26], "glob": [13, 22], "gmd": 26, "gmd_data_gmd_data": 26, "gmdbda": [15, 16, 20, 25, 26], "go": 3, "good": [6, 8, 21], "gpf": [15, 16, 20, 21, 25, 26], "graph": [6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "grid": [6, 8, 11, 26], "grid_histogram": [8, 11], "griddata": 6, "group": [3, 13, 26], "group_nam": 13, "groupnam": 13, "gt": [16, 18, 19, 20, 21, 22, 23, 24], "guess": 12, "gui": [8, 18, 23], "guid": 1, "guidelin": 2, "h": 26, "h5": [8, 13, 18, 20, 22, 26], "h5_file": 13, "h5_path": 13, "h5file": 13, "h5filenam": 13, "h5group": 13, "h5py": [13, 22], "h5web": 19, "ha": [3, 5, 6, 8, 9, 10, 13, 16, 20, 21, 26], "haber": 19, "half": [18, 24, 26], "hand": 26, "handl": [0, 11, 13], "handler": 14, "happen": 5, "happi": 25, "have": [1, 3, 6, 8, 10, 12, 16, 18, 20, 21, 24, 25, 26, 28], "hdf": [15, 16, 20, 25], "hdf5": [6, 8, 12, 13, 26], "hdf5_to_arrai": 13, "hdf5_to_datafram": 13, "hdf5_to_timed_arrai": 13, "hdf5_to_timed_datafram": 13, "head": [15, 18, 20, 21, 24, 25], "height": [15, 16], "help": [10, 16, 20, 24, 28], "helper": 13, "henc": 15, "here": [3, 5, 6, 15, 16, 18, 20, 21, 25, 26], "hex": 6, "hexagon": [18, 23], "hextof": [0, 8, 13, 16, 27, 29], "hierarch": [7, 26], "high": [8, 18, 25, 26], "highest": [5, 6], "highlight": 6, "hinder": 6, "hint": 20, "hist": [5, 8], "hist_mod": [5, 8, 17, 26], "histkwd": [8, 11], "histogram": [5, 8, 11, 15, 16, 22, 25, 26, 29], "histogramdd": 5, "histval": 11, "hit": [20, 21], "home": [7, 9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "homographi": 6, "hook": 1, "hope": 1, "hor": 26, "horizont": [6, 11], "hostedtoolcach": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "how": [0, 2, 5, 6, 8, 19, 20, 21, 23], "howev": [20, 21], "html": [3, 6, 19], "http": [1, 3, 6, 9, 15, 16, 19, 25, 26, 28], "hubbard": 22, "hyper": 6, "hypercub": 5, "hypervolum": 6, "hz": 13, "i": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "id": [3, 6, 8, 13, 26, 29], "id_1_trace_1": 6, "id_1_trace_2": 6, "id_2_trace_1": 6, "id_2_trace_2": 6, "idea": [3, 21], "ideal": [8, 19, 24], "ident": [13, 25], "identifi": [8, 13, 18], "ignor": [9, 12, 13, 20], "ignore_zip": 9, "igor": 20, "il": 6, "imag": [6, 8, 18, 24, 25], "imagej": 12, "imkwd": 6, "implement": [1, 6, 8, 9, 13, 17, 24, 26], "import": [9, 17, 18, 19, 22, 23, 24, 29], "importantli": 24, "impos": [16, 20], "impress": 20, "improv": [5, 17, 20, 25], "imshow": [6, 17], "incident_energi": 19, "incident_energy_spread": 19, "incident_polar": 19, "incident_wavelength": 19, "includ": [1, 3, 6, 8, 10, 11, 12, 13, 15, 18, 19, 20, 22, 26], "include_cent": [6, 8, 18, 22, 23, 26], "incommensur": 20, "increas": [6, 8, 18, 21], "increment": 13, "index": [5, 6, 10, 13, 20, 26], "index_kei": 26, "indic": 8, "individu": [8, 13, 26], "inequival": 20, "inf": [8, 10], "infer": [6, 12, 18], "infer_oth": [6, 8, 18, 22], "influenc": 21, "info": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "inform": [0, 1, 6, 8, 9, 12, 13, 15, 20, 22, 24, 25, 26], "inherit": 13, "inhomogen": 20, "init": [15, 16, 18, 20, 21, 22], "initi": [6, 8, 10, 24, 26], "inplac": 10, "input": [5, 6, 8, 12, 13, 18, 26], "input_column": 13, "input_fil": [8, 12, 26], "insid": [13, 18], "insight": 20, "inspect": [18, 22, 25, 29], "instal": [0, 1, 3, 17], "instanc": [6, 8, 9, 11, 13, 22, 26, 29], "instead": [8, 12, 25], "institut": [19, 20], "instrument": [0, 13, 19, 26, 27, 29], "int": [5, 6, 8, 10, 11, 13, 20, 26], "int64": [15, 16, 20, 21, 25], "int8": [15, 16, 20, 25], "integ": [5, 6, 8, 20, 24], "integr": [6, 15, 25, 26], "intend": [5, 26, 28], "intens": [15, 20, 22, 24, 25, 26], "interact": [6, 8, 18, 20], "interest": [6, 13, 18, 20], "interfac": 1, "intermedi": [20, 26], "intern": 5, "interp_ord": 6, "interpol": [6, 8, 10], "interpret": 8, "interrupt": 9, "interv": [8, 10, 13], "intra": 15, "intrins": 24, "introduc": [0, 1, 25], "inv_dfield": 8, "invalid": [6, 13], "invers": [6, 8, 18, 19, 22, 23], "invert": [15, 16, 20, 25], "investig": 19, "involv": 6, "io": [0, 4, 19], "ipykernel": 28, "isel": 20, "isol": 18, "issu": [1, 3, 10, 24], "item": 7, "iter": [7, 10, 13, 20, 26], "its": [1, 8, 13, 15, 18, 25], "jgu": 20, "jitter": [5, 8, 10, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 29], "jitter_amp": [8, 26], "jitter_col": [8, 26], "jitter_column": 26, "jitter_typ": [10, 24], "job": [3, 26], "json": [7, 13, 19, 20, 26], "json_path": 9, "julian": 19, "jupyt": [1, 28], "jupyterlab": 19, "jupyterlab_h5web": 19, "just": [9, 20], "k": [6, 8, 18, 23, 26], "k_coord_a": [6, 8, 18, 23], "k_coord_b": [6, 8, 18, 23], "k_distanc": [6, 8, 18], "kc": 6, "keep": [6, 7, 8, 13, 14, 15, 16, 20, 25], "kei": [5, 6, 7, 8, 12, 13, 14, 26], "kernel": 28, "keyerror": [5, 13], "keyword": [5, 6, 8, 9, 10, 11, 12, 13, 20], "kinet": [6, 8, 15, 16, 18, 20, 21, 22, 25, 26], "kit": [6, 13], "know": 20, "known": [6, 16, 18, 24], "kr": 6, "ktof": [18, 19, 23, 24, 26], "kwarg": 9, "kwd": [6, 8, 10, 11, 12, 13], "kx": [6, 8, 18, 19, 22, 23, 26], "kx_scale": 26, "ky": [6, 8, 18, 19, 22, 23, 26], "ky_scal": 26, "l": 13, "lab": [8, 19, 28], "label": [6, 15, 16, 20, 24], "landmark": [6, 18, 19, 22, 23], "larg": [5, 24, 25], "larger": [6, 18], "laser": [15, 20, 26], "last": [5, 6, 8], "later": [18, 20, 21], "latest": [1, 3], "layer": [15, 16, 17, 18, 19, 20, 21, 22, 23, 25], "layout": [15, 16, 20, 25], "lazi": 0, "lead": 24, "lean": [5, 8], "least": [6, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "leastsq": [15, 16, 18, 20, 21, 22], "left": [5, 18, 20], "legaci": [5, 8], "legend": [6, 8, 11, 15, 16, 21, 24], "legend_loc": 6, "legkwd": [6, 8, 11], "len": [17, 18, 19, 23, 24, 26], "length": [10, 20, 23, 26], "lens_mod": 19, "lens_mode_config": 26, "less": 24, "let": [9, 20, 21, 24], "level": [6, 9, 13, 15, 21, 27, 29], "lib": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "librari": [7, 8, 29], "like": [1, 5, 12, 20], "likewis": 9, "limit": [5, 8, 18], "linalg": 6, "line": [6, 16, 18, 20, 21, 22, 24, 25], "line2d": [16, 18, 21, 22, 24], "linear": 19, "linekwd": 6, "linesegkwd": 6, "linestyl": [16, 25], "linewidth": [6, 20], "linspac": 17, "lint": 1, "linux": [7, 26, 28], "list": [5, 6, 8, 9, 10, 11, 13, 18, 20, 23, 26], "liter": 6, "ll": 20, "lmfit": [6, 8, 15, 16, 18, 20, 21, 22, 26], "lmkcenter": 6, "load": [6, 7, 8, 9, 12, 13, 25, 26, 29], "load_bias_seri": [8, 16, 18, 20, 21, 22], "load_config": [7, 20], "load_data": 6, "load_datasets_dict": 9, "load_dfield": 6, "load_ext": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "load_h5": 12, "load_h5_in_memori": 13, "load_parquet": 13, "load_tiff": 12, "loader": [0, 2, 4, 6, 8, 18, 22, 26], "loader_interfac": 13, "loader_nam": 13, "loc": [15, 18, 21, 22], "local": [1, 3, 6, 8, 13, 18, 19, 20, 21, 22, 26, 27, 28], "local_folder_config": [20, 21], "localdatastor": 26, "locat": [6, 7, 9, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "lock": 26, "loess": [6, 8], "log": 6, "long": 15, "long_nam": 20, "longer": 24, "look": [5, 6, 8, 9, 13, 15, 20, 21, 24, 25, 26], "lookahead": 6, "lorentz": 6, "lorentzian": [6, 8, 18, 26], "lorentzian_asymmetr": [6, 8, 18], "lose": 24, "loss": 24, "lot": [25, 26], "lower": [6, 10, 22], "lower_bound": [8, 10, 23], "lowerbound1": 6, "lowerbound2": 6, "lsqr": [6, 8, 18], "lssf": [1, 3], "lstsq": [6, 8, 18], "lt": [15, 16, 18, 19, 20, 21, 22, 23, 24], "m": [1, 13, 17, 23, 26, 28], "m1": [19, 26], "m1sb": 16, "m2": [19, 26], "m3": [19, 26], "machin": [1, 19, 24], "maco": 28, "macro": 13, "macrobunch": 13, "made": [1, 5, 8, 25], "mai": [6, 20, 25], "main": [1, 3, 6, 9, 13, 21], "main_dict": 6, "mainli": 20, "maintain": [0, 1, 2], "mainz": 20, "make": [1, 3, 5, 11, 15, 20, 25, 26, 28], "make_param": 15, "maklar": 19, "manag": 9, "mani": [10, 20], "manipul": [14, 24], "manner": 26, "manual": [3, 8, 12, 13, 18, 19, 23], "map": [6, 10, 13], "map_2d": 10, "map_columns_2d": 10, "map_coordin": 6, "map_partit": [6, 10], "mapkwd": 6, "mark": 18, "marker": 13, "mask": 13, "master": 15, "match": 6, "materi": 18, "matlab": 6, "matplotlib": [6, 8, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "matric": 6, "matrix": 6, "max": [10, 15, 16, 18, 19, 20, 21, 25], "max_valu": [8, 21], "maxima": [6, 16, 18, 20, 21], "maximum": [6, 8, 13, 18, 20], "maxwel": [15, 16, 20, 21, 25, 26], "mbid": 21, "mcpfront": 26, "md22": 26, "mean": [6, 8, 10, 15, 16, 18, 20, 21, 25], "meaningless": 13, "measur": [15, 18, 20, 21, 25], "mechan": 26, "member": 1, "memori": 13, "merg": [1, 6, 7, 14], "mesh": 6, "messag": [1, 14], "meta": [6, 13, 14, 18, 19], "meta_path": 20, "metadata": [0, 4, 6, 8, 12, 13, 20, 25, 26, 27], "metadata_config": 13, "metadataretriev": 13, "metahandl": [8, 14], "meter": 6, "method": [1, 5, 6, 8, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26], "meti": 13, "metric": 6, "mica": 29, "microbunch": [13, 20, 21], "microbunchid": 29, "microscop": 13, "middl": [8, 18], "might": [5, 6, 8, 18, 19, 20, 21, 22, 23], "millisecond": [13, 26], "mimic": 5, "min": [6, 16, 18, 20, 21], "min_valu": 8, "minima": 6, "minimum": [6, 8, 13], "mirror": [8, 13, 26], "mirrorutil": [13, 18, 22], "mismatch": 5, "miss": [6, 7, 8, 20], "mitig": 24, "mix": 24, "mj": 19, "mm": 6, "mm1sb": 16, "mm_to_p": 6, "mode": [1, 5, 6, 8, 12, 13, 26, 28], "model": [6, 7, 15], "modif": 26, "modul": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 26], "moment": [18, 19, 22, 23], "momentum": [8, 13, 19, 22, 25], "momentum_resolut": 19, "momentumcorrector": [6, 8], "monitor": [3, 15, 26], "monochrom": 26, "monochromat": 26, "monochromatorphotonenergi": [15, 16, 20, 25, 26], "monoton": 8, "more": [1, 10, 12, 20, 21, 24], "most": [3, 5, 13, 20, 26], "mostli": [6, 13, 26], "motor": [19, 26], "mous": 18, "movement": 9, "mpe": [6, 13, 18, 19, 20], "mpes_example_config": [18, 19, 22, 23, 24], "mpg": [19, 26], "ms_marker": 13, "ms_markers_group": 13, "ms_markers_kei": [13, 26], "msg": 17, "msmarker": [13, 26], "much": [5, 10, 15], "multi": [0, 21], "multi_index": 13, "multicolumn": 13, "multidetector": 13, "multidimension": [1, 5, 6, 13, 26], "multiindex": 13, "multipl": [6, 7, 10, 11, 17, 19, 20], "multiprocess": [5, 8], "multithread": 26, "must": [1, 8, 10, 18, 26], "mycopi": 13, "mymakedir": 13, "n": [5, 6, 8, 13, 17, 18, 20, 26], "n_core": [5, 8], "n_cpu": 8, "n_pt": 17, "name": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28], "nan": [10, 13, 21], "nanosecond": [6, 8, 20, 21, 26], "narrai": 6, "narrow": [8, 18], "natur": 24, "navig": [1, 3], "nbin": 17, "ncol": [8, 11], "nd": 15, "ndarrai": [5, 6, 8, 10, 11, 12, 13], "ndimag": [6, 25], "nearest": 6, "necessari": [1, 3, 26, 29], "need": [6, 8, 9, 12, 15, 18, 20, 21, 23, 25, 26], "neg": 6, "neighbor": [6, 24], "neither": [7, 13], "network": [8, 13, 18, 22], "never": [5, 17, 20], "nevertheless": 24, "new": [1, 3, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28], "new_cent": 6, "new_dataset": 9, "new_tof_column": 6, "new_x_column": [6, 10], "new_y_column": [6, 10], "newli": 20, "next": [6, 8, 18, 20, 21], "nexu": [0, 8, 12, 26, 27], "nfdi": 19, "nice": 14, "nicer": 15, "nir": 19, "nm": [16, 19], "nof": 25, "nois": [5, 8, 10, 24], "non": [23, 24], "none": [5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 25], "nonlinear": [6, 18], "nor": [7, 13], "normal": [0, 5, 6, 7, 8, 10, 15, 16, 18, 20, 21, 22, 24, 26, 29], "normalization_histogram": 8, "normalize_ord": [8, 26], "normalize_span": [8, 26], "normalize_to_acquisition_tim": [8, 15, 16, 18, 20, 21, 22, 25], "normspec": 6, "notadirectoryerror": 13, "note": [3, 13, 24, 29], "notebook": [0, 1, 3, 8, 19, 20, 21, 26, 28], "notic": 24, "notimplementederror": [6, 12], "now": [9, 13, 15, 18, 20, 21, 24, 25, 28], "np": [5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23], "np_arrai": 13, "npartit": [15, 16, 17, 18, 19, 20, 21, 22, 23, 25], "nrang": 6, "ntask": 13, "ntrace": 6, "num": [18, 22], "num_column": 20, "num_cor": [8, 26], "num_row": 20, "num_row_group": 20, "numba": [0, 5, 8, 17, 26], "numba_bin": 5, "numba_histogramdd": 5, "number": [1, 5, 6, 8, 10, 11, 12, 13, 14, 17, 18, 20, 23, 24, 26], "numpi": [5, 6, 8, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 26], "nx": [8, 19, 20], "nxinstrument": 19, "nxmpe": [19, 26], "nxmpes_config": [19, 20, 26], "nxuser": 19, "o": [7, 9, 16, 20, 21, 22, 25], "object": [5, 6, 8, 9, 13, 14, 19, 20, 25], "obtain": [3, 6, 13, 16, 18, 20, 21, 25], "occur": [3, 13, 26], "off": [5, 13, 18], "offlin": [15, 16, 20, 25], "offset": [6, 8, 10, 15, 16, 18, 25, 26, 29], "offset_by_other_column": 10, "offset_column": 10, "often": 10, "old": 13, "oldest": 13, "omg": [19, 26], "omit": [6, 8], "onc": [1, 20, 28], "one": [3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26], "ones": [1, 6], "onli": [3, 5, 6, 8, 9, 10, 12, 13, 20, 21, 24, 25], "onto": 8, "ontop": [18, 24], "open": [1, 3, 8, 13, 18, 26], "opencomp": [1, 3, 20, 28], "openmp": 8, "oper": [0, 4, 24], "opposit": 13, "opt": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "optic": [15, 29], "optim": 6, "option": [1, 5, 6, 7, 8, 10, 11, 12, 13, 14, 20, 23, 25, 26], "orang": [16, 25], "order": [5, 6, 7, 8, 12, 13, 15, 16, 20, 25, 26], "org": [3, 9, 15, 16, 25], "organ": 13, "orient": 18, "origin": [1, 6, 8, 21, 24], "orthogon": 6, "orthorhomb": [6, 27], "osc": 26, "oscil": 24, "oserror": 13, "other": [6, 7, 8, 10, 13, 18, 20, 25, 26], "other_entri": 6, "otherwis": [5, 6, 10, 12, 14, 15, 16, 20, 21, 25], "our": [15, 20, 21, 25, 26], "out": [3, 6, 8, 13], "out1": 15, "out2": 15, "out5": 15, "out6": 15, "outlier": 20, "output": [6, 11, 12, 13, 19, 20], "output_column": 13, "outsid": [5, 8, 18], "over": [5, 6, 7, 8, 13, 15, 17, 21, 25], "overflow": 5, "overlap": [6, 15, 20, 25], "overrid": [6, 8, 15, 16, 20, 21, 25], "overview": 21, "overwrit": [7, 8, 10, 13, 14, 20, 26], "overwritten": [6, 26], "ownership": 13, "p": [1, 3, 6, 15, 16, 19, 20, 25, 26], "p004316": 21, "p1": 26, "p1_kei": [6, 26], "p1_valu": 6, "p1sb": 16, "p2": 26, "p2_kei": [6, 26], "p2_valu": 6, "p_rd": [19, 26], "packag": [0, 1, 3, 7, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "package_dir": 7, "page": 3, "pair": [8, 10, 12, 22], "pairwis": 6, "palett": 6, "panda": 13, "pandoc": 3, "panel": [6, 8], "parallel": [5, 6, 8, 26], "param": 13, "paramet": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 22, 23, 25, 26, 29], "parqu": 20, "parquet": [13, 20, 21, 26], "parquet_handl": 13, "parquet_path": 13, "pars": [13, 26], "pars1": 15, "pars2": 15, "pars5": 15, "pars6": 15, "parse_config": 7, "parse_h5_kei": 13, "parse_metadata": 13, "parser": 13, "part": [5, 17, 18], "particular": 6, "partit": [5, 8, 10, 20], "pass": [1, 5, 6, 7, 8, 10, 11, 13, 24, 26], "past": 10, "path": [1, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 26, 29], "path_to_remov": 9, "pathcorr": 6, "pathlib": [12, 15, 16, 18, 20, 21, 25], "pattern": [13, 25], "pbar": [5, 8, 26], "pbd": 26, "pbd2": 26, "pbk": 11, "pcent": [6, 18, 19, 22, 23], "pcolormesh": 6, "pd": [5, 6, 8, 10, 13, 17], "peak": [6, 8, 15, 18, 20, 21, 23, 25, 26], "peak_window": [6, 8, 26], "peakdet": 6, "peakdetect1d": 6, "peakdetect2d": 6, "peaksearch": 6, "per": [6, 8, 13, 20, 21, 24, 26], "per_electron": [13, 26], "per_fil": 26, "per_puls": [13, 26], "per_train": [13, 26], "perfect": 18, "perform": [5, 13, 18, 20, 22], "period": [6, 15], "permiss": 3, "pg": 26, "pg2": [15, 16, 20, 25, 26], "phi": [19, 26], "photoelectron": [0, 20], "photoemiss": [0, 1, 5], "photon": [16, 20, 26], "pi": [18, 20, 23], "pick": [6, 15, 16, 20, 21, 25], "picosecond": [6, 8], "pip": [1, 3, 17, 28], "pipelin": 27, "pixel": [6, 8, 26], "pkwindow": 6, "place": [7, 26], "plan": 17, "planck": 19, "plane": [6, 8, 18, 19, 22, 23], "plate": 6, "pleas": 1, "plot": [6, 8, 11, 15, 16, 17, 18, 21, 22, 23, 24, 25, 29], "plot_single_hist": 11, "plt": [15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "plu": 18, "po": 6, "point": [5, 6, 8, 13, 15, 16, 18, 20, 21, 22, 23, 26], "point_a": [6, 8, 18, 23], "point_b": [6, 8, 18, 23], "pointop": 6, "pol": 19, "polar": [19, 20], "poly_a": 6, "poly_energy_calibr": 6, "polynomi": [6, 8, 18], "popul": 13, "port": [6, 13], "pose": [8, 19, 22], "pose_adjust": [6, 8, 18, 19, 22, 23], "posi": [12, 17], "posit": [6, 8, 15, 18, 19, 21, 23, 25, 26], "possibl": [3, 6, 10, 15, 18], "possibli": [6, 7], "posx": [12, 17], "potenti": 18, "pouter_ord": [6, 18, 19, 22, 23], "power": 5, "pq": 13, "pr": 3, "pre": [1, 7, 8, 14, 18, 25], "pre_bin": 8, "preced": 13, "preciou": [20, 21], "precis": [15, 20], "precompil": 5, "prefer": 7, "prefix": [3, 13, 26], "prepar": 29, "preparation_d": 19, "preparation_descript": 19, "present": [5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "preserv": [7, 15, 16, 20, 25], "preserve_mean": [6, 8, 10, 15, 16, 20, 25], "press": 3, "pressureac": [19, 26], "prevent": 3, "preview": [8, 18, 19], "previou": [1, 10, 14, 18, 25, 29], "previous": [20, 21], "princip": [6, 19], "print": [6, 8, 9, 13, 15, 18, 20, 21], "prioriti": [5, 8, 13], "probabl": [20, 21, 25, 26], "probe": [6, 15, 19, 20, 25, 26], "problem": 24, "procedur": [6, 15], "process": [0, 1, 3, 6, 9, 13, 15, 16, 19, 20, 21, 25, 26], "processed_dir": [13, 20], "processor": [3, 8, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29], "produc": 24, "profil": [6, 29], "progress": [3, 5, 8, 26], "project": [1, 3], "proper": [20, 21], "properti": [6, 8, 9, 13, 14], "propos": [19, 20], "proven": 0, "provid": [1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 22, 26], "public": [15, 16, 20, 21, 25], "publish": 3, "pull": [2, 18, 22, 28], "puls": [13, 26], "pulse_dur": 19, "pulse_energi": 19, "pulseid": [13, 15, 16, 20, 25, 26, 29], "pulser": 26, "pulsersignadc": [15, 16, 20, 25, 26], "pump": [6, 15, 16, 19, 20, 25, 26], "pumpprobetim": 26, "purpos": [17, 18], "push": [1, 3], "put": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "pv": 26, "py": [13, 17], "pydant": 7, "pyenv": 28, "pynxtool": [8, 12, 19, 26], "pypi": [3, 28], "pyplot": [6, 8, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "pyproject": 3, "pytest": 1, "python": [1, 3, 7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "python3": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "quad": 11, "quadmesh": [18, 20, 21, 22, 23], "qualit": 8, "quantiti": 6, "quasi": [24, 26], "queri": [13, 17], "queu": 3, "quick": 20, "quit": [15, 21], "r": [3, 12, 15, 16, 17, 18, 22, 25], "r_center": 6, "r_convers": 6, "r_det": 6, "r_ok": [15, 16, 20, 21, 25], "r_start": 6, "r_step": 6, "radial": 26, "radii": 6, "radiu": [6, 8, 26], "rais": [5, 6, 7, 8, 12, 13, 14, 17], "ramp": 22, "randn": 17, "random": [11, 17, 24], "rang": [5, 6, 8, 11, 13, 15, 16, 19, 20, 21, 23, 24, 25, 26], "range_convert": 6, "rate": [13, 18, 21, 22], "rather": 8, "ratio": 23, "raw": [3, 13, 15, 16, 20, 21, 25, 26], "raw_dir": 13, "rbv": [19, 26], "rd": 26, "rdeform": 6, "rdeform_field": [6, 8], "re": [9, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "read": [3, 6, 7, 8, 12, 13, 15, 16, 18, 20, 21, 26, 29], "read_datafram": [8, 13], "read_delay_rang": 8, "read_env_var": 7, "reader": [8, 12, 13, 19, 20, 26], "readout": 25, "real": 9, "realist": 5, "realli": 17, "rearrang": 9, "rearrange_fil": 9, "reason": [15, 16, 18, 22], "rebas": 1, "recent": 3, "recombin": [5, 26], "record": [9, 15, 16, 21, 22, 25], "recreat": 13, "recurs": 14, "reduc": [15, 16, 18, 20, 21, 22], "reduct": [6, 8, 10, 15, 16, 20, 25], "ref": 26, "ref_energi": [6, 8, 16, 18, 20, 21, 22], "ref_id": [6, 8, 16, 18, 20, 21, 22], "refer": [1, 6, 8, 18, 26], "reference_calib": 16, "refid": 18, "regardless": [13, 20], "region": [6, 25], "regist": 1, "registr": 6, "registri": 1, "rel": [6, 23], "relat": [3, 6, 8, 16, 20, 21], "relationship": 6, "releas": 2, "relev": [15, 16, 20, 21, 25], "reli": 13, "remain": [8, 13, 22], "remov": [3, 13, 20, 21, 25, 26], "remove_invalid_fil": [13, 20], "remove_zip": 9, "renam": 10, "render": 6, "reorder": 6, "repeat": [13, 15], "replac": [6, 8, 13], "report": [7, 13, 26], "repositori": [1, 3, 28], "repres": [5, 8, 12, 13], "represent": [6, 14], "request": [2, 5, 13, 20, 26, 28], "requir": [3, 5, 6, 13, 18, 19, 28], "reread": 13, "rerun": 9, "res01": 24, "res02": 24, "res03": 24, "res11": 24, "res12": 24, "res13": 24, "res14": 24, "res15": 24, "res_1d": 16, "res_bam": 15, "res_chessi": 20, "res_corr": [15, 16, 25], "res_kx_ki": 25, "res_norm": 22, "res_ref": 16, "res_sub": 21, "res_t05": 20, "res_t10": 20, "reserv": [13, 26], "reset": [6, 8, 13], "reset_deform": 6, "reset_multi_index": 13, "resolut": [15, 24], "resolv": [0, 13, 15, 26, 27], "respect": [6, 13, 15, 18, 20, 22, 23, 26], "respons": 3, "restart": 9, "restor": 8, "result": [5, 6, 8, 13, 25, 29], "retain": 12, "retriev": [8, 13, 22, 26], "rettig": 13, "return": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 26], "return_edg": 5, "return_partit": 5, "reus": 18, "revers": 8, "review": 1, "rg": [18, 22], "right": [24, 25], "rise": 8, "rmsnois": 6, "robust": [15, 20, 21, 25], "role": 19, "room": 20, "root": [13, 16, 20, 21, 26], "root_dir": 9, "rotat": [6, 8, 18, 19, 22, 23, 26], "rotation_auto": 6, "rotation_symmetri": [8, 18, 22, 23, 26], "rotsym": 6, "rotvertexgener": 6, "routin": [0, 18, 26], "row": [6, 8, 10, 15, 17], "row_group": 13, "row_index": 6, "rst": 1, "rstart": [6, 26], "rstep": [6, 26], "rtype": 14, "run": [1, 3, 8, 10, 13, 15, 16, 18, 21, 25, 26, 29], "run44498": 15, "run_id": 13, "run_numb": [15, 16, 25], "runner": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "runs44824": 20, "runtimeerror": 5, "rv": 11, "rvbin": 11, "rvrang": 11, "rx": 15, "sa1": 26, "safetymargin": 13, "same": [8, 10, 14, 18, 19, 20, 26], "sampl": [5, 6, 8, 18, 19, 21, 23, 24, 25, 26, 29], "sample_histori": 19, "sample_temperatur": [22, 26], "samplebia": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "sampletemperatur": [15, 16, 20, 25, 26], "sase": [15, 20, 25, 26], "sav": [19, 26], "save": [7, 8, 12, 13, 15, 16, 18, 19, 26, 29], "save_config": 7, "save_delay_calibr": 8, "save_delay_offset": [8, 15, 20], "save_energy_calibr": [8, 16, 18, 20, 21], "save_energy_correct": [8, 18], "save_energy_offset": [8, 20], "save_env_var": 7, "save_momentum_calibr": [8, 18], "save_parquet": 13, "save_splinewarp": [8, 18], "save_transform": 8, "save_workflow_param": [8, 20], "savgol_filt": [6, 8], "saw": 20, "sb": 25, "sb_blur": 25, "sb_norm": 25, "scale": [6, 8, 10, 18, 20, 26], "scaling_auto": 6, "scan": [6, 8, 13, 18, 19, 22, 29], "scan0121_1": [9, 22], "scan049_1": 9, "scandir": [18, 19, 22, 23, 24], "scatter": [6, 16], "scatterkwd": 6, "schedul": 13, "schema": [13, 20], "scicat": [13, 20, 26], "scicat_token": [20, 26], "scicat_url": [20, 26], "scientificmetadata": 20, "scientist": 1, "scipi": [6, 8, 16, 25], "score": 6, "script": [6, 28], "sdiag": 26, "sdir": 13, "search": [5, 6, 7, 13], "search_pattern": 13, "sec": [18, 22], "second": [6, 8, 13, 15, 26], "section": [6, 26], "sector": [6, 8, 15, 16, 25, 26, 29], "sector_delai": [6, 8, 26], "sector_id": [6, 13, 26], "sector_id_column": [6, 13, 20], "sector_id_reserved_bit": [13, 20, 26], "sectorid": 13, "sed": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "sed_config": [7, 8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26], "sed_kernel": 28, "sedprocessor": [8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "see": [1, 3, 6, 8, 9, 13, 15, 20, 21, 24, 25, 26, 28], "seg": 6, "segment": 6, "sel": [15, 16, 20, 25], "select": [1, 3, 6, 8, 13, 18, 23, 26], "select_k_rang": 6, "select_slic": 6, "selector": [6, 13], "self": [6, 8], "sensit": 24, "separ": [6, 13, 20], "sequenc": [5, 6, 8, 10, 11, 12, 13], "sequenti": 21, "seri": [6, 8, 13, 20, 29], "serial": [13, 20], "serialized_s": 20, "set": [1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25], "set_titl": [15, 16, 25], "setup": [26, 29], "sever": [0, 25], "sh": [1, 3], "shall": [18, 26], "shape": [5, 6, 8, 13], "share": 20, "shift": [6, 8, 15, 16, 20, 21, 25], "ship": 26, "short": 15, "should": [1, 5, 6, 8, 9, 12, 13, 16, 19, 20, 24, 26], "show": [5, 6, 8, 15, 16, 18, 19, 20, 21, 22, 25], "show_legend": 6, "showcas": [17, 23], "shown": 24, "side": [15, 25, 27], "sideband": [15, 25], "sig_mov": 6, "sig_stil": 6, "sigma": [6, 15, 18, 26], "sigma_radiu": [18, 26], "sign": [6, 8, 10, 26], "signal": [6, 8, 16, 20], "signific": [5, 13, 15, 17], "significantli": 3, "similar": [5, 9, 10, 13, 25], "similarli": 24, "simpl": [5, 17, 20], "simpli": [17, 20], "simplify_binning_argu": 5, "simul": 17, "simultan": [10, 25], "sinc": 26, "singl": [0, 5, 6, 8, 11, 12, 13, 17, 19, 21, 23, 26], "single_event_data": 9, "sis8300": 26, "site": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "situat": [6, 24], "size": [5, 6, 10, 11, 13, 20, 24, 26], "skip": [3, 18, 19, 23, 24, 28], "skip_test": 5, "slice": [6, 8, 15, 16, 18, 20, 21, 22, 23, 25, 26], "slice_correct": 6, "slider": [6, 8], "slightli": 21, "slow": [3, 8], "slow_ax": 19, "small": [1, 17, 24], "smaller": [15, 24], "smallest": 10, "smooth": [6, 8, 26], "so": [3, 12, 16, 20, 26], "societi": 19, "solv": [6, 24], "some": [9, 13, 16, 20, 24, 25], "sometim": [20, 25], "somewher": 18, "soon": [20, 26], "sort": [12, 13], "sourc": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 26, 28], "sp": [18, 19, 20, 21, 22, 23, 24], "sp_44455": 16, "sp_44498": [15, 16, 25], "space": [3, 6, 8, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "span": [6, 8], "spars": [6, 10], "spatial": 20, "spatial_resolut": 19, "spawn": [5, 8], "spec": [6, 13], "special": 26, "specif": [3, 6, 8, 9, 13, 15, 16, 20, 21, 25], "specifi": [5, 6, 8, 9, 10, 13, 18], "spectra": [6, 20, 21], "spectral": 6, "spectroscopi": [0, 1], "spectrum": [16, 29], "speed": [13, 20], "spent": 20, "spheric": [6, 8, 18], "sphinx": 3, "spline": [6, 8, 18, 19, 22, 26], "spline_warp_estim": [6, 8], "splinewarp": [8, 18], "split": [13, 26], "split_channel_bitwis": 13, "split_dld_time_from_sector_id": [13, 20], "split_sector_id_from_dld_tim": 26, "spot": 29, "sqrt": [18, 23], "squar": [6, 15, 16, 18, 20, 21, 22], "src": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "st": [15, 16, 25], "stack": [6, 8, 12], "stackaxi": 6, "stage": [6, 15, 20, 25, 26, 29], "stamp": [8, 10, 13, 23, 27], "standard": [6, 12, 18, 19], "start": [2, 5, 6, 8, 13, 18, 20, 26], "static": [6, 9, 26], "statist": [15, 16, 18, 20, 21, 22], "stdev": 10, "step": [0, 1, 3, 5, 6, 8, 13, 21, 24, 25, 26], "steparrai": 20, "stepsiz": 24, "still": [20, 26], "stoke": 19, "stop": [6, 9], "storag": [8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "store": [5, 6, 8, 9, 13, 16, 20, 21, 22, 25, 26, 27], "str": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 20, 22], "stream": [13, 26], "stream_0": 26, "stream_1": 26, "stream_2": 26, "stream_4": 26, "stream_name_prefix": 26, "string": [5, 7, 12, 13, 20], "structur": [13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "sub_channel": 26, "subchannel": 26, "subchannelalia": 26, "subclass": [1, 6], "subdir": [9, 18, 19, 22, 23, 24], "subfold": 9, "subfunct": 12, "submit": 28, "subplot": [15, 16, 17, 18, 20, 21, 22, 25], "subsequ": 26, "substanti": 24, "substitu": 8, "subtract": [6, 8, 10], "success": [1, 26], "successfulli": [9, 20, 21], "suffici": 6, "suffix": 10, "sum": [6, 13, 15, 16, 17, 18, 21, 22], "sum_n": 6, "support": [6, 7, 8, 10, 13], "supported_file_typ": 13, "suppress": [6, 20], "suppress_output": 6, "suptitl": [15, 16, 25], "sure": [3, 20, 26], "surround": 6, "sxp": [0, 13, 29], "sxp_example_config": 21, "sy": 17, "sym": 6, "symmetr": [6, 18], "symmetri": [6, 8, 18, 26, 27], "symscor": 6, "symtyp": 6, "sync": 26, "system": [6, 7, 13, 15, 16, 20, 21, 23, 25, 26], "system_config": [7, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "t": [3, 6, 8, 9, 12, 15, 18, 19, 20, 22, 23, 24, 25, 26], "t0": [6, 8, 18, 20, 21, 22, 25, 26, 27], "t0_kei": [6, 26], "t0_valu": 6, "t_b": 22, "t_n": 26, "ta": 6, "tab": 3, "tabl": 17, "tabular": 8, "tag": 3, "tail": 20, "take": [5, 7, 8, 9, 10, 13, 15, 18, 19, 20, 22, 23, 25], "taken": [6, 18, 24], "targcent": 6, "target": [6, 13], "target_column": 10, "tas2": [9, 22], "td": 26, "tell": 23, "temp": 22, "temp_rbv": [19, 26], "temperatur": 27, "temperature_data": 22, "tempor": 15, "term": [6, 15, 24], "terrain": [15, 16, 25], "terrain_r": 6, "test": [1, 9], "test_fid": 13, "text": [11, 15, 16, 25], "than": [8, 12, 24], "thei": [6, 7, 8, 20, 24, 26], "them": [6, 8, 9, 14, 18, 20, 21, 25, 26], "theme": 0, "therefor": [12, 20, 21], "thi": [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "thick": 6, "thin": [6, 18, 19, 22, 23], "thing": 20, "third": 25, "those": [10, 15, 20, 21, 25, 28], "though": 23, "thread": [5, 8, 13, 26], "threadpool_api": [5, 8, 26], "threadpool_limit": 8, "threads_per_work": [5, 8, 26], "three": 13, "through": [0, 1, 18], "throughout": 22, "tht": [19, 26], "thu": [20, 24, 25], "tif": 8, "tiff": [8, 12, 20], "tight": 20, "tight_layout": 20, "time": [0, 6, 8, 10, 12, 13, 15, 16, 17, 23, 24, 25, 26, 27, 29], "time0": 6, "time0_mm": 6, "time1": 26, "time_offset": 6, "time_stamp": [8, 10, 13, 22, 23], "time_stamp_alia": [8, 13], "time_stamp_column": [8, 10], "timed_datafram": 8, "timed_dataframe_unit_tim": 26, "timed_flash1_user3_stream_2_run44762_file1_20230321t113927": 20, "timestamp": [8, 10, 13, 15, 16, 20, 21, 22, 23, 25, 26], "timezon": 22, "timinginfo": 26, "titl": [6, 15, 25], "tm": [18, 19, 22, 26], "tmat": 6, "to_h5": 12, "to_nexu": 12, "to_tiff": 12, "todo": [19, 20], "tof": [6, 8, 13, 16, 18, 20, 21, 25, 26], "tof2ev": 6, "tof2evpoli": 6, "tof2n": 6, "tof_bin": [6, 26], "tof_binwidth": [6, 26], "tof_column": [6, 13, 20, 26], "tof_dist": 6, "tof_fermi": [6, 18, 26], "tof_n": [6, 8, 26], "tof_ns_column": [6, 8], "tof_voltag": 26, "tof_width": [6, 26], "tofvoltag": [15, 16, 20, 25, 26], "tog": 6, "togeth": 18, "toggl": 18, "token": [3, 13, 20, 26], "toml": 3, "too": [8, 18, 20, 24], "took": 26, "tool": [6, 8, 13, 18, 20, 23, 26], "tooltip": 11, "top": 6, "topic": 0, "total": [5, 15, 16, 17, 20, 21, 25], "toward": [6, 18], "tpswarp": 6, "tqdm": [5, 8], "trace": [6, 8, 18, 26], "traces_norm": 6, "track": [0, 5, 20], "trail": 14, "train": [13, 20, 29], "train_id": 13, "trainid": [13, 15, 16, 20, 21, 25], "transform": [5, 6, 8, 18], "transform_typ": 6, "translat": [6, 8, 18, 19, 22, 23], "transmiss": 20, "transpar": [13, 18, 22], "trarp": [0, 19, 22, 26], "tree": 13, "tremend": 13, "tri": [8, 12], "trigger": 3, "true": [5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26], "trx": [19, 26], "trxp": [25, 27], "trxpd": [0, 29], "try": [5, 9, 17, 19, 21, 24, 26], "trz": [19, 26], "ts_from": 13, "ts_to": 13, "tu": 20, "tube": 18, "tungsten": 25, "tupl": [5, 6, 8, 11, 13], "turn": 5, "tutori": [0, 3, 18, 19, 22, 23, 24, 27, 29], "twice": 10, "two": [3, 6, 8, 9, 10, 13, 18, 20, 23], "type": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 24, 26, 28], "typeerror": [5, 7, 8, 12], "typic": 26, "tzcyx": 12, "tzoffset": 22, "u": [20, 21, 24, 25], "ubid_offset": 26, "uca": 26, "udld": [19, 26], "ufa": 26, "uint16": [21, 26], "uint32": [5, 15, 16, 20, 25, 26], "uint64": [5, 21], "unbin": 26, "uncategoris": 26, "undefin": [6, 13], "under": [8, 14, 25], "underli": 8, "understand": [3, 21], "undo": 16, "unfortun": 25, "uniform": [5, 6, 8, 10, 24], "unimpl": 5, "union": 6, "unit": [8, 20, 26], "unix": 13, "unmodifi": 8, "unreport": [15, 16, 18, 20, 21, 22], "up": [1, 3, 6, 13, 15, 16, 24], "updat": [3, 6, 13], "update_deform": 6, "upload": 3, "upper": 6, "upper_bound": [8, 10, 23], "upperbound1": 6, "upperbound2": 6, "url": [9, 13, 26], "us": [0, 1, 3, 6, 8, 10, 12, 13, 17, 19, 20, 21, 23, 25, 26, 27, 28], "usag": [0, 13], "use_cent": [6, 8, 26], "use_copy_tool": 8, "use_correct": [8, 19], "use_exist": [9, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "use_time_stamp": 8, "user": [1, 3, 5, 6, 7, 13, 17, 19, 22, 23, 26, 28], "user0": 19, "user_config": [7, 22, 23, 26], "user_path": 9, "usual": [5, 20], "util": [0, 5], "utim": 22, "uv": [1, 3], "v": [3, 15, 18, 19, 23, 24, 26, 29], "v0": 3, "val": [5, 6], "valenc": 19, "valid": [6, 7, 8, 13, 20], "valu": [5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 26, 29], "valueerror": [5, 6, 7, 8, 9, 12, 13], "var_nam": 7, "vari": [16, 18, 20, 21, 22], "variabl": [1, 7, 11, 13, 15, 16, 18, 20, 21, 22], "variat": [20, 26], "variou": [13, 26], "vector": [6, 19, 23], "venv": [1, 3, 28], "verbos": [6, 7, 8, 13, 15, 16, 18, 21, 22, 23, 25], "veri": [5, 24, 25], "verifi": [7, 24], "verify_config": 7, "version": [1, 3, 6, 13, 17, 20, 25, 27], "versu": 22, "vert": 6, "vertex": 6, "vertic": [6, 11], "via": 18, "view": [3, 6, 8, 20], "view_even_histogram": 20, "view_event_histogram": [8, 18, 20, 21, 22], "violet": 16, "virtual": [1, 3, 28], "visibl": [15, 25], "visit": 3, "visual": [6, 19, 25, 26, 29], "vital": 26, "vline": [16, 25], "volt": 6, "voltag": [6, 8, 18, 22, 26], "volum": [5, 6], "voxel": 24, "w": [8, 12, 16, 25], "w110": [9, 15, 16, 25], "w4f": [15, 16, 29], "w4f5": 16, "w4f7": [16, 25], "w5p": 25, "w_4f_5": 25, "w_4f_5_blur": 25, "w_4f_5_norm": 25, "w_4f_7": 25, "w_4f_7_bgd": 25, "w_4f_7_bgd_blur": 25, "w_4f_7_blur": 25, "w_4f_7_norm": 25, "w_4f_7_nrm1": 25, "w_4f_7_nrm1_blur": 25, "w_4f_7_nrm2": 25, "w_4f_7_nrm2_blur": 25, "w_5p": 25, "w_5p_blur": 25, "w_5p_norm": 25, "wa": [5, 8, 18, 20, 21, 22], "wai": 24, "walk": 1, "wall": 17, "want": [15, 16, 18, 19, 20, 21, 22, 23, 24, 25], "warn": [5, 6, 8, 12, 17, 18, 19, 20, 21, 23, 24], "warp": [6, 8, 18], "wave": 13, "wavelength": 20, "we": [0, 1, 9, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "web": 9, "weight": [6, 8, 10, 15, 16, 20, 25], "welcom": 1, "well": [1, 5, 6, 15, 18, 23, 24], "were": [13, 20, 21], "wesp": [13, 26], "wether": 13, "what": [20, 21], "when": [5, 6, 8, 9, 13, 14, 20], "where": [5, 6, 7, 8, 9, 13, 18, 20, 21, 24, 26], "whether": [1, 6, 8, 9, 10, 13, 18, 26], "which": [1, 5, 6, 8, 9, 10, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 26], "whichev": 6, "while": [13, 16, 20], "whole": [6, 8, 15, 20, 25], "whose": 6, "wide": 7, "widget": [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "width": [6, 8, 15, 18, 19, 22, 23, 26], "window": [6, 7, 26, 28], "wise": 6, "within": [6, 8, 13, 18, 22, 24], "withing": 15, "without": [15, 20], "work": [3, 6, 7, 8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28], "worker": 26, "workflow": [0, 2, 3, 6, 8, 23, 26], "workflow_dispatch": 3, "workhors": 20, "working_dist": 19, "would": [1, 3, 9, 17], "wrapper": 8, "write": [1, 3, 8, 12, 15, 16, 20, 21, 25], "writer": 8, "written": 6, "wrong": 5, "wse2": [9, 18, 19, 23, 24], "x": [6, 8, 10, 11, 12, 15, 16, 18, 19, 20, 22, 23, 24, 26], "x0": 25, "x1": 15, "x2": 15, "x27": 20, "x5": 15, "x6": 15, "x64": [7, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "x_axi": 6, "x_center": [6, 26], "x_column": [6, 10], "x_width": [6, 26], "xarrai": [5, 8, 12, 20, 21, 25], "xaxi": 6, "xfel": [0, 29], "xgs600": [19, 26], "xlabel": 15, "xm": [18, 19, 22, 23, 26], "xpd": 29, "xr": [5, 6, 8, 12, 20, 21, 25], "xrng": 6, "xtran": [6, 8, 18, 19, 22, 23], "xuv": 19, "y": [6, 8, 10, 11, 12, 18, 19, 20, 22, 23, 24, 26], "y1": 15, "y2": 15, "y5": 15, "y6": 15, "y_axi": 6, "y_center": [6, 26], "y_column": [6, 10], "y_width": [6, 26], "yaml": [7, 8, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26], "year": 26, "yet": [8, 21, 26], "ylabel": 15, "ym": [18, 19, 22, 23, 26], "yml": 3, "you": [0, 1, 3, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28], "your": [1, 15, 16, 20, 21, 24, 25, 28], "yournameload": 1, "yourusernam": 1, "ytran": [6, 8, 18, 19, 22, 23], "z": 12, "z1": 26, "z2": 26, "zenodo": [9, 15, 16, 20, 21, 22, 25, 27], "zero": [6, 15, 16, 20, 21, 25], "zfill": [18, 22], "zip": [9, 17], "zone": [6, 18], "zraw": 26, "\u00b5j": 19, "\u00b5m": 20}, "titles": ["SED documentation", "Contributing to sed", "Development", "How to Maintain", "API", "Binning", "Calibrator", "Config", "Core", "Dataset", "Dataframe Operations", "Diagnostics", "IO", "Data loader", "Metadata", "Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction", "Tutorial for trXPS for energy calibration using core level side-bands", "Binning demonstration on locally generated fake data", "Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo", "Binning with metadata generation, and storing into a NeXus file", "Tutorial for binning data from the HEXTOF instrument at FLASH", "Tutorial for binning data from the SXP instrument at the European XFEL", "Binning of temperature-dependent ARPES data using time-stamped external temperature data", "Distortion correction with orthorhombic symmetry", "Correct use of Jittering", "Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization", "Configuration", "User Guide", "Installation", "Workflows"], "titleterms": {"1": 18, "1a": 18, "1st": 18, "2": 18, "3": 18, "3a": 18, "4": 18, "5": 18, "abstract": 13, "ad": 9, "add": 20, "addit": 16, "advanc": 27, "align": 20, "along": 17, "api": [0, 4, 9], "append": 16, "appli": 15, "around": 16, "arp": [18, 22], "attribut": 9, "au": 21, "automat": 16, "ax": 23, "axi": [15, 16, 20, 21, 25], "background": 25, "bam": [15, 16], "band": [16, 23], "baseload": 13, "basic": 27, "berlin": 26, "bia": [16, 21], "bin": [5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25], "calibr": [6, 15, 16, 18, 20, 21, 22, 23, 25], "can": 16, "channel": 21, "check": 15, "chessi": 20, "cleanup": [20, 21], "commun": 0, "compar": 16, "comparison": 15, "comput": [17, 18, 19, 20, 22], "concept": 27, "config": [7, 15, 16, 20, 21, 25], "configur": 26, "contribut": [0, 1], "convers": 18, "core": [8, 16, 25], "correct": [6, 15, 16, 18, 20, 21, 23, 24, 25], "correl": 15, "cross": 15, "custom": 9, "dask": 17, "data": [13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "datafram": [10, 17, 20, 21], "dataset": 9, "datasetsmanag": 9, "default": [9, 26], "defin": [15, 17, 18, 22], "definit": 23, "delai": [6, 15, 16, 18, 20, 21, 25], "delaystag": 20, "demonstr": [17, 18], "depend": 22, "desi": 26, "develop": [1, 2, 28], "diagnost": 11, "distort": [18, 23], "distribut": 17, "dldtimestep": 16, "document": [0, 3], "effect": 15, "electronid": 21, "energi": [6, 15, 16, 18, 20, 21, 25], "entir": 20, "european": 21, "event": 20, "exampl": [0, 9, 26], "extern": 22, "extract": 16, "fake": 17, "featur": 23, "fhi": 26, "file": [16, 19, 20, 21, 26], "final": 19, "find": [16, 20, 21], "flash": [15, 20, 25, 26], "flashload": 13, "flight": [20, 21], "frame": 16, "from": [16, 20, 21, 25], "function": 5, "gener": [17, 19, 20, 23], "genericload": 13, "get": [1, 9, 15, 16, 20, 21, 25], "guid": [0, 27], "guidelin": 1, "helper": 5, "hextof": [15, 20, 25, 26], "histogram": [18, 20, 21], "how": 3, "id": [15, 21], "import": [15, 16, 20, 21, 25], "inspect": [20, 21], "instal": [27, 28], "instanc": 20, "instrument": [15, 20, 21, 25], "interfac": 13, "io": 12, "jitter": [20, 24], "json": 9, "level": [16, 25], "librari": [15, 16, 20, 21, 25], "load": [15, 16, 18, 19, 20, 21, 22, 23, 24], "loader": [1, 13], "local": 17, "main": 5, "maintain": 3, "metadata": [14, 19], "meti": 26, "mica": 21, "microbunchid": 21, "microscop": 26, "momentum": [6, 18, 23, 26], "mpe": 26, "mpesload": 13, "necessari": [15, 16, 20, 21, 25], "nexu": 19, "normal": 25, "note": 20, "now": 16, "number": 16, "o": 15, "offset": [20, 21], "oper": 10, "optic": 20, "option": 18, "orthorhomb": 23, "our": 16, "panda": 17, "paramet": [15, 16, 20, 21], "partit": 17, "path": [15, 16, 20, 21, 25], "peak": 16, "pipelin": 18, "plot": 20, "posit": 16, "prepar": [15, 16, 20, 21, 25], "previou": [16, 20, 21], "processor": 20, "profil": 20, "pull": 1, "puls": 15, "pulseid": 21, "rang": [17, 18, 22], "read": 25, "refer": 16, "releas": 3, "remov": 9, "request": 1, "resolv": 18, "result": 20, "roi": 16, "run": 20, "sampl": 20, "save": [20, 21], "sb": 16, "scan": 21, "sector": 20, "sed": [0, 1, 27], "see": 16, "seri": [16, 21], "set": [15, 26], "setup": [15, 16, 20, 21, 25], "side": 16, "some": [18, 22], "spectrum": [20, 21], "spline": 23, "spot": 20, "stage": [16, 21], "stamp": 22, "start": 1, "step": 18, "store": [15, 18, 19], "sxp": 21, "sxploader": 13, "symmetri": 23, "t0": [15, 16], "temperatur": 22, "those": 16, "time": [18, 20, 21, 22], "top": 23, "topic": 27, "train": [15, 21], "transform": 17, "trxp": [15, 16], "trxpd": 25, "tutori": [15, 16, 20, 21, 25], "us": [5, 9, 15, 16, 18, 22, 24], "user": [0, 9, 27], "util": 13, "v": 21, "valenc": 23, "valu": 20, "version": 28, "versu": 15, "visual": [16, 18, 20, 22], "volum": [18, 19, 22], "w": 15, "w4f": 25, "warp": 23, "we": [15, 16], "workflow": [1, 18, 20, 29], "xfel": 21, "xpd": 25, "zenodo": 18}}) \ No newline at end of file diff --git a/sed/latest/sed/api.html b/sed/v1.0.0/sed/api.html similarity index 98% rename from sed/latest/sed/api.html rename to sed/v1.0.0/sed/api.html index 29421bf..4fd545e 100644 --- a/sed/latest/sed/api.html +++ b/sed/v1.0.0/sed/api.html @@ -8,7 +8,7 @@ - API — SED 1.0.0a1.dev19+gf1bb527 documentation + API — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/binning.html b/sed/v1.0.0/sed/binning.html similarity index 99% rename from sed/latest/sed/binning.html rename to sed/v1.0.0/sed/binning.html index 23c544a..a42c951 100644 --- a/sed/latest/sed/binning.html +++ b/sed/v1.0.0/sed/binning.html @@ -8,7 +8,7 @@ - Binning — SED 1.0.0a1.dev19+gf1bb527 documentation + Binning — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/calibrator.html b/sed/v1.0.0/sed/calibrator.html similarity index 99% rename from sed/latest/sed/calibrator.html rename to sed/v1.0.0/sed/calibrator.html index 3ef9378..1c42b61 100644 --- a/sed/latest/sed/calibrator.html +++ b/sed/v1.0.0/sed/calibrator.html @@ -8,7 +8,7 @@ - Calibrator — SED 1.0.0a1.dev19+gf1bb527 documentation + Calibrator — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/config.html b/sed/v1.0.0/sed/config.html similarity index 99% rename from sed/latest/sed/config.html rename to sed/v1.0.0/sed/config.html index 10d69c3..6655f66 100644 --- a/sed/latest/sed/config.html +++ b/sed/v1.0.0/sed/config.html @@ -8,7 +8,7 @@ - Config — SED 1.0.0a1.dev19+gf1bb527 documentation + Config — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/core.html b/sed/v1.0.0/sed/core.html similarity index 99% rename from sed/latest/sed/core.html rename to sed/v1.0.0/sed/core.html index e4067e3..fa4e1ff 100644 --- a/sed/latest/sed/core.html +++ b/sed/v1.0.0/sed/core.html @@ -8,7 +8,7 @@ - Core — SED 1.0.0a1.dev19+gf1bb527 documentation + Core — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/dataset.html b/sed/v1.0.0/sed/dataset.html similarity index 99% rename from sed/latest/sed/dataset.html rename to sed/v1.0.0/sed/dataset.html index 0af634b..1c0a536 100644 --- a/sed/latest/sed/dataset.html +++ b/sed/v1.0.0/sed/dataset.html @@ -8,7 +8,7 @@ - Dataset — SED 1.0.0a1.dev19+gf1bb527 documentation + Dataset — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/dfops.html b/sed/v1.0.0/sed/dfops.html similarity index 99% rename from sed/latest/sed/dfops.html rename to sed/v1.0.0/sed/dfops.html index 25ab69b..ab4d3ad 100644 --- a/sed/latest/sed/dfops.html +++ b/sed/v1.0.0/sed/dfops.html @@ -8,7 +8,7 @@ - Dataframe Operations — SED 1.0.0a1.dev19+gf1bb527 documentation + Dataframe Operations — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/diagnostic.html b/sed/v1.0.0/sed/diagnostic.html similarity index 98% rename from sed/latest/sed/diagnostic.html rename to sed/v1.0.0/sed/diagnostic.html index 62d9669..effcf8e 100644 --- a/sed/latest/sed/diagnostic.html +++ b/sed/v1.0.0/sed/diagnostic.html @@ -8,7 +8,7 @@ - Diagnostics — SED 1.0.0a1.dev19+gf1bb527 documentation + Diagnostics — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/io.html b/sed/v1.0.0/sed/io.html similarity index 98% rename from sed/latest/sed/io.html rename to sed/v1.0.0/sed/io.html index 7b6a9c9..3ef3c08 100644 --- a/sed/latest/sed/io.html +++ b/sed/v1.0.0/sed/io.html @@ -8,7 +8,7 @@ - IO — SED 1.0.0a1.dev19+gf1bb527 documentation + IO — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/loader.html b/sed/v1.0.0/sed/loader.html similarity index 99% rename from sed/latest/sed/loader.html rename to sed/v1.0.0/sed/loader.html index 88f006e..c47f5bf 100644 --- a/sed/latest/sed/loader.html +++ b/sed/v1.0.0/sed/loader.html @@ -8,7 +8,7 @@ - Data loader — SED 1.0.0a1.dev19+gf1bb527 documentation + Data loader — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/sed/metadata.html b/sed/v1.0.0/sed/metadata.html similarity index 98% rename from sed/latest/sed/metadata.html rename to sed/v1.0.0/sed/metadata.html index 8aa440d..33c8b1a 100644 --- a/sed/latest/sed/metadata.html +++ b/sed/v1.0.0/sed/metadata.html @@ -8,7 +8,7 @@ - Metadata — SED 1.0.0a1.dev19+gf1bb527 documentation + Metadata — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/v1.0.0/tutorial/10_hextof_workflow_trXPS_bam_correction.html b/sed/v1.0.0/tutorial/10_hextof_workflow_trXPS_bam_correction.html new file mode 100644 index 0000000..6f0bce5 --- /dev/null +++ b/sed/v1.0.0/tutorial/10_hextof_workflow_trXPS_bam_correction.html @@ -0,0 +1,1389 @@ + + + + + + + + + + + Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Tutorial for trXPS for the HEXTOF instrument at FLASH: t0, cross-correlation and BAM correction#

+
+

Preparation#

+
+

Import necessary libraries#

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+from pathlib import Path
+import os
+
+from sed import SedProcessor
+from sed.dataset import dataset
+import numpy as np
+
+%matplotlib widget
+import matplotlib.pyplot as plt
+
+# For peak fitting
+from lmfit.models import GaussianModel
+
+
+
+
+
+

Get data paths#

+

If it is your beamtime, you can read the raw data and write to the processed directory. For the public data, you can not write to the processed directory.

+

The paths are such that if you are on Maxwell, it uses those. Otherwise, data is downloaded in the current directory from Zenodo: https://zenodo.org/records/12609441

+
+
[2]:
+
+
+
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
+if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
+    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
+    buffer_path = beamtime_dir + "/processed/tutorial/"
+else:
+    # data_path can be defined and used to store the data in a specific location
+    dataset.get("W110") # Put in Path to a storage of at least 10 Byte free space.
+    path = dataset.dir
+    buffer_path = path + "/processed/"
+
+
+
+
+
+
+
+
+INFO - Not downloading W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/W110".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/W110"
+INFO - W110 data is already present.
+
+
+
+
+

Config setup#

+

Here, we get the path to the config file and set up the relevant directories. This can also be done directly in the config file.

+
+
[3]:
+
+
+
# pick the default configuration file for hextof@FLASH
+config_file = Path('../src/sed/config/flash_example_config.yaml')
+assert config_file.exists()
+
+
+
+
+
[4]:
+
+
+
# here we setup a dictionary that will be used to override the path configuration
+config_override = {
+    "core": {
+        "beamtime_id": 11019101,
+        "paths": {
+            "raw": path,
+            "processed": buffer_path
+        },
+    },
+}
+
+
+
+
+
[5]:
+
+
+
energy_cal = {
+    "energy": {
+        "calibration": {
+            "E0": -132.47100427179566,
+            "creation_date": '2024-11-30T20:47:03.305244',
+            "d": 0.8096677238144319,
+            "energy_scale": "kinetic",
+            "t0": 4.0148196706891397e-07,
+        },
+        "offsets":{
+            "constant": 1,
+            "creation_date": '2024-11-30T21:17:07.762199',
+            "columns": {
+                "monochromatorPhotonEnergy": {
+                    "preserve_mean": True,
+                    "weight": -1,
+                },
+                "tofVoltage": {
+                    "preserve_mean": True,
+                    "weight": -1,
+                },
+            },
+        },
+    },
+}
+
+
+
+
+
+

We use the stored energy calibration parameters and load trXPS data set to define:#

+
    +
  • t0 position with respect to delay stage values;

  • +
  • correct accordingly delay stage offset

  • +
  • fit cross-correlation

  • +
  • apply BAM correction and see its effect on cross-correlation

  • +
+
+
[6]:
+
+
+
run_number = 44498
+sp_44498 = SedProcessor(runs=[run_number], config=config_override, folder_config=energy_cal, system_config=config_file, verbose=True)
+
+sp_44498.add_jitter()
+sp_44498.align_dld_sectors()
+sp_44498.append_energy_axis()
+sp_44498.add_energy_offset()
+
+
+
+
+
+
+
+
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 14 total.
+loading complete in  0.09 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+INFO - Aligning 8s sectors of dataframe
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 16 graph layers
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 11/30/2024, 20:47:03
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 31 graph layers
+INFO - Adding energy offset to dataframe:
+INFO - Using energy offset parameters generated on 11/30/2024, 21:17:07
+INFO - Energy offset parameters:
+   Constant: 1.0
+   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 64 graph layers
+
+
+

Check which channels are included in the dataframe

+
+
[7]:
+
+
+
sp_44498.dataframe.head()
+
+
+
+
+
[7]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergy...delayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorIDenergy
0162802283010651.401434895.4014344595.40136732919.0-6187.968751.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763-43.670972
1162802283011650.594095887.5940954595.59423832919.0-6187.968751.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205760-43.673617
2162802283050682.028937672.0289374423.02880932914.0-6170.156251.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205766-40.989246
3162802283051685.282979658.2829794425.28320332914.0-6170.156251.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763-41.028886
4162802283052670.118386687.1183864424.11816432914.0-6170.156251.677563e+09116.858299...1448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205765-41.008417
+

5 rows × 21 columns

+
+
+
+
+
+

Data w/o BAM correction#

+

First, we take a look at our sideband measurement before any corrections. The sidebands on the W4f core levels can be used as a measure of the pump and probe cross-correlation, and hence our temporal resolution. We plot the data delay stage position vs Energy data, normalized by acquisition time.

+
+
[8]:
+
+
+
axes = ['energy', 'delayStage']
+ranges = [[-37.5,-27.5], [1446.75,1449.15]]
+bins = [200,40]
+res = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[9]:
+
+
+
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+res.plot(robust=True, ax=ax[0], cmap='terrain')
+fig.suptitle(f"Run {run_number}: W 4f, side bands")
+ax[0].set_title('raw')
+bg = res.sel(delayStage=slice(1448.7,1449.1)).mean('delayStage')
+(res.sel(delayStage=slice(1446.8,1449.3))-bg).plot(robust=True, ax=ax[1])
+ax[1].set_title('difference')
+
+
+
+
+
[9]:
+
+
+
+
+Text(0.5, 1.0, 'difference')
+
+
+
+
+
+
+
+
+

Now we make fit to determine precise t\(_0\) position and cross-correlation using lmfit fit models

+
+
[10]:
+
+
+
Gauss_mod = GaussianModel()
+
+#first order sideband:
+x1=res['delayStage']
+y1=res.sel(energy=slice(-30.5,-29.5)).sum('energy')
+y1=y1-np.mean(y1.sel(delayStage=slice(1448.7,1449.1)))
+
+pars1 = Gauss_mod.make_params(amplitude=0.1, center=1447.8, sigma=0.02)
+out1 = Gauss_mod.fit(y1, pars1, x=x1)
+
+#second order sideband
+x2=res['delayStage']
+y2=res.sel(energy=slice(-29.5,-28.5)).sum('energy')
+y2=y2-np.mean(y2.sel(delayStage=slice(1448.7,1449.1)))
+
+pars2 = Gauss_mod.make_params(amplitude=0.1, center=1447.8, sigma=0.02)
+out2 = Gauss_mod.fit(y2, pars2, x=x2)
+
+plt.figure()
+plt.plot(x1,y1,'rx', label='$1^{st}$ order sideband')
+plt.plot(x1,out1.best_fit,'r', label="FWHM = {:.3f} ps".format(out1.values['fwhm']))
+plt.legend(loc="best")
+plt.title('run44498, W4f, sidebands comparison')
+plt.plot(x2,y2,'bx', label='$2^{nd}$ order sideband')
+plt.plot(x2,out2.best_fit,'b', label="FWHM = {:.3f} ps".format(out2.values['fwhm']))
+plt.legend(loc="best")
+plt.xlabel("delayStage [ps]")
+plt.ylabel("Intensity [cts/s]")
+plt.show()
+
+
+
+
+
+
+
+
+
+

As we see the sidebands are quite broad and one of the possible reasons for this could be long or short-term drifts (jitter) of the FEL arrival time with respect to e.g. optical laser or differences in the intra-bunch arrival time. To check and correct for this we can look at beam arrival monitor (BAM). The BAM gives a pulse-resolved measure of the FEL arrival time with respect to a master clock.

+
+
+

Check BAM versus pulse and train IDs#

+
+
[11]:
+
+
+
axes = ['trainId', 'pulseId', 'bam']
+ranges = [[1628022640,1628046700], [0,500], [-6400,100]]
+bins = [250, 100, 1000]
+res_bam = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+

As we can see, jitter between FEL and pump laser is quite significant withing a pulse train as well as over the whole measurement period.

+
+
[12]:
+
+
+

fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained') +res_bam.sel(bam=slice(-6400,-5100)).sum('trainId').plot(ax=ax[0],robust=True, cmap='terrain') +res_bam.sel(bam=slice(-6400,-5100)).sum('pulseId').plot(ax=ax[1],robust=True, cmap='terrain') +plt.show() +
+
+
+
+
+
+
+
+
+
+
+

Apply BAM correction#

+

To correct the SASE jitter, using information from the bam column and to calibrate the pump-probe delay axis, we need to shift the delay stage values to centre the pump-probe-time overlap time zero.

+
+
[13]:
+
+
+
sp_44498.add_delay_offset(
+    constant=-1448, # this is time zero position determined from side band fit
+    flip_delay_axis=True, # invert the direction of the delay axis
+    columns=['bam'], # use the bam to offset the values
+    weights=[-0.001], # bam is in fs, delay in ps
+    preserve_mean=True # preserve the mean of the delay axis to keep t0 position
+)
+
+
+
+
+
+
+
+
+INFO - Adding delay offset to dataframe:
+INFO - Delay offset parameters:
+   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
+   Constant: -1448
+   Flip delay axis: True
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 84 graph layers
+
+
+
+

bin in the corrected delay axis#

+
+
[14]:
+
+
+
axes = ['energy', 'delayStage']
+ranges = [[-37.5,-27.5], [-1.5,1.5]]
+bins = [200,60]
+res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[15]:
+
+
+
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+fig.suptitle(f"Run {run_number}: W 4f, side bands")
+res_corr.plot(robust=True, ax=ax[0], cmap='terrain')
+ax[0].set_title('raw')
+bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
+(res_corr-bg).plot(robust=True, ax=ax[1])
+ax[1].set_title('difference')
+
+
+
+
+
[15]:
+
+
+
+
+Text(0.5, 1.0, 'difference')
+
+
+
+
+
+
+
+
+

We clearly see an effect of BAM corrections - side bands are visible much nicer and width became smaller.

+
+
[16]:
+
+
+
sp_44498.save_delay_offsets()
+
+
+
+
+
+
+
+
+INFO - Saved delay offset parameters to "sed_config.yaml".
+
+
+

Now we can repeat fit procedure to determine true cross-correlation value.

+
+
[17]:
+
+
+
Gauss_mod = GaussianModel()
+
+#first order sideband:
+x5=res_corr['delayStage'].sel(delayStage=slice(-1.6,1.5))
+y5=res_corr.sel(energy=slice(-30.4,-29.5),delayStage=slice(-1.6,1.5)).sum('energy')
+y5=y5-np.mean(y5.sel(delayStage=slice(-1.4,-1.0)))
+
+pars5 = Gauss_mod.make_params(amplitude=0.1, center=0.0, sigma=0.02)
+out5 = Gauss_mod.fit(y5, pars5, x=x5)
+
+print(out5.fit_report())
+
+#second order sideband
+x6=res_corr['delayStage'].sel(delayStage=slice(-1.6,1.5))
+y6=res_corr.sel(energy=slice(-29.5,-27.5),delayStage=slice(-1.6,1.5)).sum('energy')
+y6=y6-np.mean(y6.sel(delayStage=slice(-1.4,-1.0)))
+
+pars6 = Gauss_mod.make_params(amplitude=0.1, center=0.0, sigma=0.02)
+out6 = Gauss_mod.fit(y6, pars6, x=x6)
+
+print(out6.fit_report())
+
+#comparison plot
+plt.figure()
+plt.plot(x5,y5,'rx', label='$1^{st}$ order sideband')
+plt.plot(x5,out5.best_fit,'r', label="FWHM = {:.3f} ps".format(out5.values['fwhm']))
+plt.legend(loc="best")
+plt.title('run44498, W4f, sidebands comparison')
+plt.plot(x6,y6,'bx', label='$2^{nd}$ order sideband')
+plt.plot(x6,out6.best_fit,'b', label="FWHM = {:.3f} ps".format(out6.values['fwhm']))
+plt.legend(loc="best")
+plt.xlabel("pump probe delay [ps]")
+plt.ylabel("Intensity [cts/s]")
+plt.show()
+
+
+
+
+
+
+
+
+[[Model]]
+    Model(gaussian)
+[[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 108
+    # data points      = 60
+    # variables        = 3
+    chi-square         = 2115.59934
+    reduced chi-square = 37.1157779
+    Akaike info crit   = 219.764932
+    Bayesian info crit = 226.047966
+    R-squared          = 0.76527879
+[[Variables]]
+    amplitude:  16.8956187 +/- 1.16658096 (6.90%) (init = 0.1)
+    center:     0.04393214 +/- 0.01099542 (25.03%) (init = 0)
+    sigma:      0.13790818 +/- 0.01099506 (7.97%) (init = 0.02)
+    fwhm:       0.32474895 +/- 0.02589138 (7.97%) == '2.3548200*sigma'
+    height:     48.8758304 +/- 3.37470505 (6.90%) == '0.3989423*amplitude/max(1e-15, sigma)'
+[[Correlations]] (unreported correlations are < 0.100)
+    C(amplitude, sigma) = +0.5773
+[[Model]]
+    Model(gaussian)
+[[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 101
+    # data points      = 60
+    # variables        = 3
+    chi-square         = 255.783501
+    reduced chi-square = 4.48742985
+    Akaike info crit   = 92.9992096
+    Bayesian info crit = 99.2822433
+    R-squared          = 0.63671998
+[[Variables]]
+    amplitude:  4.39032410 +/- 0.38384691 (8.74%) (init = 0.1)
+    center:     0.02190587 +/- 0.01246704 (56.91%) (init = 0)
+    sigma:      0.12348701 +/- 0.01246691 (10.10%) (init = 0.02)
+    fwhm:       0.29078968 +/- 0.02935732 (10.10%) == '2.3548200*sigma'
+    height:     14.1835647 +/- 1.24007666 (8.74%) == '0.3989423*amplitude/max(1e-15, sigma)'
+[[Correlations]] (unreported correlations are < 0.100)
+    C(amplitude, sigma) = +0.5774
+
+
+
+
+
+
+
+
+
+
+
+

Comparison of the BAM correction effect#

+
+
[18]:
+
+
+
fig,ax=plt.subplots(2,2,figsize=(6,6),layout="constrained")
+
+plt.axes(ax[0,0])
+res.plot(cmap='terrain', robust=True)
+plt.title("W4f, no bam correction")
+
+plt.axes(ax[0,1])
+plt.plot(x1,y1,'rx',label='integrated intensity 1. order')
+plt.plot(x1,out1.best_fit,'r',label='1. order fit, FWHM = {:.3f} ps'.format(out1.values['fwhm']))
+plt.plot(x2,y2,'bx',label='integrated intensity 2. order')
+plt.plot(x2,out2.best_fit,'b',label='2. order fit, FWHM = {:.3f} ps'.format(out2.values['fwhm']))
+plt.legend(loc=1)
+plt.title("Sidebands without bam correction")
+
+plt.axes(ax[1,0])
+res_corr.sel(delayStage=slice(-1.6,1.5)).plot(robust=True,cmap='terrain')
+plt.title("W4f, with bam correction")
+
+plt.axes(ax[1,1])
+plt.plot(x5,y5,'rx',label='integrated intensity 1. order')
+plt.plot(x5,out5.best_fit,'r',label='1. order fit, FWHM = {:.3f} ps'.format(out5.values['fwhm']))
+plt.plot(x6,y6,'bx',label='integrated intensity 2. order')
+plt.plot(x6,out6.best_fit,'b',label='2. order fit, FWHM = {:.3f} ps'.format(out6.values['fwhm']))
+plt.legend(loc=1)
+plt.title("Sidebands with bam correction")
+
+fig.suptitle(f'Run {run_number}: Effect of BAM correction',fontsize='14')
+
+
+
+
+
[18]:
+
+
+
+
+Text(0.5, 0.98, 'Run 44498: Effect of BAM correction')
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html b/sed/v1.0.0/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html new file mode 100644 index 0000000..da7d93a --- /dev/null +++ b/sed/v1.0.0/tutorial/11_hextof_workflow_trXPS_energy_calibration_using_SB.html @@ -0,0 +1,1318 @@ + + + + + + + + + + + Tutorial for trXPS for energy calibration using core level side-bands — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Tutorial for trXPS for energy calibration using core level side-bands#

+
+

Preparation#

+
+

Import necessary libraries#

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+from pathlib import Path
+import os
+
+from sed import SedProcessor
+from sed.dataset import dataset
+import numpy as np
+
+%matplotlib widget
+import matplotlib.pyplot as plt
+
+### for automatic peak finding
+from scipy.signal import find_peaks
+
+
+
+
+
+

Get data paths#

+

If it is your beamtime, you can read the raw data and write to the processed directory. For the public data, you can not write to the processed directory.

+

The paths are such that if you are on Maxwell, it uses those. Otherwise, data is downloaded in the current directory from Zenodo: https://zenodo.org/records/12609441

+
+
[2]:
+
+
+
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
+if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
+    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
+    buffer_path = beamtime_dir + "/processed/tutorial/"
+else:
+    # data_path can be defined and used to store the data in a specific location
+    dataset.get("W110") # Put in Path to a storage of at least 10 GByte free space.
+    path = dataset.dir
+    buffer_path = path + "/processed/"
+
+
+
+
+
+
+
+
+INFO - Not downloading W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/W110".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/W110"
+INFO - W110 data is already present.
+
+
+
+
+

Config setup#

+

Here, we get the path to the config file and set up the relevant directories. This can also be done directly in the config file.

+
+
[3]:
+
+
+
# pick the default configuration file for hextof@FLASH
+config_file = Path('../src/sed/config/flash_example_config.yaml')
+assert config_file.exists()
+
+
+
+
+
[4]:
+
+
+
# here we setup a dictionary that will be used to override the path configuration
+config_override = {
+    "core": {
+        "beamtime_id": 11019101,
+        "paths": {
+            "raw": path,
+            "processed": buffer_path
+        },
+    },
+}
+
+
+
+
+
+
+

Reference calibration from a bias series#

+
+
[5]:
+
+
+
sp_44455 = SedProcessor(runs=[44455], config=config_override, system_config=config_file)
+sp_44455.add_jitter()
+sp_44455.align_dld_sectors()
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 6 total.
+loading complete in  0.07 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+INFO - Aligning 8s sectors of dataframe
+INFO - Dask DataFrame Structure:
+              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=6
+               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 16 graph layers
+
+
+
+

find calibration parameters#

+

We now will fit the tof-energy relation. This is done by finding the maxima of a peak in the tof spectrum, and then fitting the square root relation to obtain the calibration parameters.

+
+
[6]:
+
+
+
axes = ['sampleBias','dldTimeSteps']
+bins = [4, 250]
+ranges = [[77.5,81.5],  [4050,4500]]
+res = sp_44455.compute(bins=bins, axes=axes, ranges=ranges)
+sp_44455.load_bias_series(binned_data=res)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[7]:
+
+
+
ranges=(4120, 4200)
+ref_id=0
+sp_44455.find_bias_peaks(ranges=ranges, ref_id=ref_id, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Use feature ranges: [(4120.2, 4199.4), (4156.2, 4231.8), (4197.6, 4276.8), (4237.2, 4323.6)].
+INFO - Extracted energy features: [[4.1472e+03 1.0000e+00]
+ [4.1850e+03 1.0000e+00]
+ [4.2246e+03 1.0000e+00]
+ [4.2678e+03 1.0000e+00]].
+
+
+
+
[8]:
+
+
+
sp_44455.calibrate_energy_axis(
+    ref_energy=-31.4,
+    method="lmfit",
+    energy_scale='kinetic',
+    d={'value':1.0,'min': .7, 'max':1.0, 'vary':True},
+    t0={'value':5e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
+    E0={'value': 0., 'min': -200, 'max': 100, 'vary': True},
+)
+
+
+
+
+
+
+
+
+INFO - [[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 46
+    # data points      = 4
+    # variables        = 3
+    chi-square         = 0.00151332
+    reduced chi-square = 0.00151332
+    Akaike info crit   = -25.5189696
+    Bayesian info crit = -27.3600865
+[[Variables]]
+    d:   0.80966772 +/- 1.56525760 (193.32%) (init = 1)
+    t0:  4.0148e-07 +/- 1.6505e-07 (41.11%) (init = 5e-07)
+    E0: -101.048293 +/- 12.5092127 (12.38%) (init = 0)
+[[Correlations]] (unreported correlations are < 0.100)
+    C(d, t0)  = -0.9999
+    C(d, E0)  = -0.9998
+    C(t0, E0) = +0.9995
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Now that we have the calibration parameters, we can generate the energy axis for each spectrum

+
+
[9]:
+
+
+
sp_44455.save_energy_calibration("reference_calib.yaml")
+
+
+
+
+
+
+
+
+INFO - Saved energy calibration parameters to "reference_calib.yaml".
+
+
+
+
+

Now we can use those parameters and load our trXPS data using the additional config file#

+

To obtain a correct energy axis, we offset the energy axis by the difference of photon energy between this run and the energy calibration runs

+
+
[10]:
+
+
+
run_number = 44498
+sp_44498 = SedProcessor(runs=[run_number], config=config_override, folder_config="reference_calib.yaml", system_config=config_file, verbose=True)
+sp_44498.add_jitter()
+sp_44498.append_energy_axis()
+sp_44498.add_energy_offset(
+    constant=1,
+    columns=['monochromatorPhotonEnergy','tofVoltage'],
+    weights=[-1,-1],
+    preserve_mean=[True, True],
+)
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/reference_calib.yaml]
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 14 total.
+loading complete in  0.08 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:24:45
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 29 graph layers
+INFO - Adding energy offset to dataframe:
+INFO - Energy offset parameters:
+   Column[monochromatorPhotonEnergy]: Weight=-1, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1, Preserve Mean: True, Reductions: None.
+   Constant: 1
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 62 graph layers
+
+
+

And bin an energy spectrum for reference

+
+
[11]:
+
+
+
axes = ['energy']
+ranges = [[-37.5,-27.5]]
+bins = [200]
+res_ref = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
+
+plt.figure()
+res_ref.plot()
+
+
+
+
+
+
+
+
+
+
+
[11]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f1d483540d0>]
+
+
+
+
+
+
+
+
+
+
+
+

Energy calibration using side-band peaks#

+
+

Visualize trXPS data bin in the dldTimeSteps and the corrected delay axis to prepare for energy calibration using SB#

+

We now prepare for an alternative energy calibration based on the side-bands of the time-dependent dataset. This is e.g. helpful if no bias series has been obtained.

+
+
[12]:
+
+
+
run_number = 44498
+sp_44498 = SedProcessor(runs=[run_number], config=config_override, system_config=config_file, verbose=True)
+sp_44498.add_jitter()
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 14 total.
+loading complete in  0.08 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+
+
+
+
+

We correct delay stage, t0 position and BAM (see previous tutorial)#

+
+
[13]:
+
+
+
sp_44498.add_delay_offset(
+    constant=-1448, # this is time zero position determined from side band fit
+    flip_delay_axis=True, # invert the direction of the delay axis
+    columns=['bam'], # use the bam to offset the values
+    weights=[-0.001], # bam is in fs, delay in ps
+    preserve_mean=True # preserve the mean of the delay axis to keep t0 position
+)
+
+
+
+
+
+
+
+
+INFO - Adding delay offset to dataframe:
+INFO - Delay offset parameters:
+   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
+   Constant: -1448
+   Flip delay axis: True
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=14
+                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 34 graph layers
+
+
+
+
[14]:
+
+
+
axes = ['dldTimeSteps', 'delayStage']
+ranges = [[3900,4200], [-1.5,1.5]]
+bins = [100,60]
+res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+
+fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+fig.suptitle(f"Run {run_number}: W 4f, side bands")
+res_corr.plot(ax=ax[0], cmap='terrain')
+ax[0].set_title('raw')
+bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
+(res_corr-bg).plot(ax=ax[1])
+ax[1].set_title('difference')
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[14]:
+
+
+
+
+Text(0.5, 1.0, 'difference')
+
+
+
+
+
+
+
+
+
+
+

Automatically extract number and position of peaks in the ROI around t0#

+
+
[15]:
+
+
+
# binned data
+roi = slice(3980, 4160)
+delay = slice(-0.5,0.5)
+data = res_corr.sel(dldTimeSteps = roi, delayStage=delay).sum('delayStage')
+distance = 7
+peaks, _ = find_peaks(data, height=None, distance=distance)
+
+p1SB = data[peaks]['dldTimeSteps'][0]
+W4f5 = data[peaks]['dldTimeSteps'][1]
+m1SB = data[peaks]['dldTimeSteps'][2]
+W4f7 = data[peaks]['dldTimeSteps'][3]
+mm1SB = data[peaks]['dldTimeSteps'][4]
+plt.figure()
+data.plot()
+plt.scatter(data[peaks]['dldTimeSteps'], data[peaks], c='r')#, "x")
+plt.vlines([p1SB-7,p1SB+7], 0, 150, color='violet', linestyles='dashed', label='$1^{st}$ order SB')
+plt.vlines([W4f5-7,W4f5+7], 0, 150, color='b', linestyles='dashed', label='W 4f 7/2')
+plt.vlines([m1SB-7,m1SB+7], 0, 150, color='g', linestyles='dashed', label='$-1^{st}$ order SB')
+plt.vlines([W4f7-7,W4f7+7], 0, 150, color='r', linestyles='dashed', label='W 4f 5/2')
+plt.vlines([mm1SB-7,mm1SB+7], 0, 150, color='orange', linestyles='dashed', label='$2nd -1^{st}$ order SB')
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+
+
+
+
+

find calibration parameters#

+

We now will fit the tof-energy relation. This is done using the maxima of a peak in the ToF spectrum and the known kinetic energy of those peaks (kinetic energy of e.g. W4f peaks (-31.4 and -33.6 eV) and their SB of different orders accounting energy of pump beam of 1030 nm = 1.2 eV. The calibration parameters are obtained by fitting the square root relation.

+
+
[16]:
+
+
+
### Kinetic energy of w4f peaks and their SB
+ref_energy = -30.2
+sp_44498.ec.biases = -1*np.array([-30.2,-31.4,-32.6,-33.6,-34.8])
+sp_44498.ec.peaks = np.expand_dims(data[peaks]['dldTimeSteps'].data,1)
+sp_44498.ec.tof = res_corr.dldTimeSteps.data
+
+sp_44498.calibrate_energy_axis(
+    ref_energy=ref_energy,
+    method="lmfit",
+    d={'value':1.0,'min': .8, 'max':1.0, 'vary':True},
+    t0={'value':5e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
+    E0={'value': -100., 'min': -200, 'max': 15, 'vary': True},
+)
+
+
+
+
+
+
+
+
+INFO - [[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 123
+    # data points      = 5
+    # variables        = 3
+    chi-square         = 0.04811488
+    reduced chi-square = 0.02405744
+    Akaike info crit   = -17.2180090
+    Bayesian info crit = -18.3896953
+[[Variables]]
+    d:   0.80482246 +/- 0.56768800 (70.54%) (init = 1)
+    t0:  4.0567e-07 +/- 2.9002e-07 (71.49%) (init = 5e-07)
+    E0: -59.1600349 +/- 29.3415291 (49.60%) (init = -100)
+[[Correlations]] (unreported correlations are < 0.100)
+    C(d, t0)  = -0.9999
+    C(d, E0)  = -0.9997
+    C(t0, E0) = +0.9992
+
+
+
+
+
+
+
+
+
+
+

Append energy axis into a data frame, bin and visualize data in the calibrated energy and corrected delay axis#

+

To get a correct energy axis, we undo the shifts imposed by the calibration function

+
+
[17]:
+
+
+
sp_44498.append_energy_axis()
+sp_44498.add_energy_offset(
+    constant=30.2,
+    columns=['monochromatorPhotonEnergy','tofVoltage','sampleBias'],
+    weights=[-1,-1,-1],
+    preserve_mean=[True, True,False],
+)
+
+
+
+
+
+
+
+
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:24:57
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 49 graph layers
+INFO - Adding energy offset to dataframe:
+INFO - Energy offset parameters:
+   Column[monochromatorPhotonEnergy]: Weight=-1, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1, Preserve Mean: True, Reductions: None.
+   Column[sampleBias]: Weight=-1, Preserve Mean: False, Reductions: None.
+   Constant: 30.2
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float64       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 87 graph layers
+
+
+
+
[18]:
+
+
+
axes = ['energy', 'delayStage']
+ranges = [[-37.5,-27.5], [-1.5,1.5]]
+bins = [200,60]
+res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+
+fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+fig.suptitle(f"Run {run_number}: W 4f, side bands")
+res_corr.plot(ax=ax[0], cmap='terrain')
+ax[0].set_title('raw')
+bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
+(res_corr-bg).plot(ax=ax[1])
+ax[1].set_title('difference')
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[18]:
+
+
+
+
+Text(0.5, 1.0, 'difference')
+
+
+
+
+
+
+
+
+
+
+
+

Compare to reference#

+

While this calibration methods gives a reasonable approximation to the energy axis, there are some deviations to the bias method, so it should be used with care

+
+
[19]:
+
+
+
axes = ['energy']
+ranges = [[-37.5,-27.5]]
+bins = [200]
+res_1D = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
+
+plt.figure()
+(res_ref/res_ref.max()).plot(label="bias series calibration")
+(res_1D/res_1D.max()).plot(label="side band calibration")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[19]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1d483d7580>
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/1_binning_fake_data.html b/sed/v1.0.0/tutorial/1_binning_fake_data.html new file mode 100644 index 0000000..cd8ef70 --- /dev/null +++ b/sed/v1.0.0/tutorial/1_binning_fake_data.html @@ -0,0 +1,921 @@ + + + + + + + + + + + Binning demonstration on locally generated fake data — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Binning demonstration on locally generated fake data#

+

In this example, we generate a table with random data simulating a single event dataset. We showcase the binning method, first on a simple single table using the bin_partition method and then in the distributed method bin_dataframe, using daks dataframes. The first method is never really called directly, as it is simply the function called by the bin_dataframe on each partition of the dask dataframe.

+
+
[1]:
+
+
+
import dask
+import numpy as np
+import pandas as pd
+import dask.dataframe
+
+import matplotlib.pyplot as plt
+
+from sed.binning import bin_partition, bin_dataframe
+
+%matplotlib widget
+
+
+
+
+
+
+
+
+/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/dask/dataframe/__init__.py:42: FutureWarning:
+Dask dataframe query planning is disabled because dask-expr is not installed.
+
+You can install it with `pip install dask[dataframe]` or `conda install dask`.
+This will raise in a future version.
+
+  warnings.warn(msg, FutureWarning)
+
+
+
+

Generate Fake Data#

+
+
[2]:
+
+
+
n_pts = 100000
+cols = ["posx", "posy", "energy"]
+df = pd.DataFrame(np.random.randn(n_pts, len(cols)), columns=cols)
+df
+
+
+
+
+
[2]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
posxposyenergy
01.989314-0.8748660.443205
11.0612680.0978740.219086
2-0.403891-2.4656060.674966
3-1.1191251.9740471.703641
40.125598-2.614056-0.433593
............
999950.5631430.812274-1.031682
99996-0.007966-2.026399-1.735395
999970.5210440.873829-0.357709
999980.6331060.670135-0.649792
999991.901023-0.0515280.159558
+

100000 rows × 3 columns

+
+
+
+
+

Define the binning range#

+
+
[3]:
+
+
+
binAxes = ["posx", "posy", "energy"]
+nBins = [120, 120, 120]
+binRanges = [(-2, 2), (-2, 2), (-2, 2)]
+coords = {ax: np.linspace(r[0], r[1], n) for ax, r, n in zip(binAxes, binRanges, nBins)}
+
+
+
+
+
+

Compute the binning along the pandas dataframe#

+
+
[4]:
+
+
+
%%time
+res = bin_partition(
+    part=df,
+    bins=nBins,
+    axes=binAxes,
+    ranges=binRanges,
+    hist_mode="numba",
+)
+
+
+
+
+
+
+
+
+CPU times: user 1.12 s, sys: 23.9 ms, total: 1.14 s
+Wall time: 1.14 s
+
+
+
+
[5]:
+
+
+
fig, axs = plt.subplots(1, 3, figsize=(6, 1.875), constrained_layout=True)
+for i in range(3):
+    axs[i].imshow(res.sum(i))
+
+
+
+
+
+
+
+
+
+
+
+

Transform to dask dataframe#

+
+
[6]:
+
+
+
ddf = dask.dataframe.from_pandas(df, npartitions=50)
+ddf
+
+
+
+
+
[6]:
+
+
+
+
Dask DataFrame Structure:
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
posxposyenergy
npartitions=50
0float64float64float64
2000.........
............
98000.........
99999.........
+
+
Dask Name: from_pandas, 1 graph layer
+
+
+
+

Compute distributed binning on the partitioned dask dataframe#

+

In this example, the small dataset does not give significant improvement over the pandas implementation, at least using this number of partitions. A single partition would be faster (you can try…) but we use multiple for demonstration purposes.

+
+
[7]:
+
+
+
%%time
+res = bin_dataframe(
+    df=ddf,
+    bins=nBins,
+    axes=binAxes,
+    ranges=binRanges,
+    hist_mode="numba",
+)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 608 ms, sys: 193 ms, total: 801 ms
+Wall time: 689 ms
+
+
+
+
[8]:
+
+
+
fig, axs = plt.subplots(1, 3, figsize=(6, 1.875), constrained_layout=True)
+for dim, ax in zip(binAxes, axs):
+    res.sum(dim).plot(ax=ax)
+
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html b/sed/v1.0.0/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html new file mode 100644 index 0000000..5a5b8ca --- /dev/null +++ b/sed/v1.0.0/tutorial/2_conversion_pipeline_for_example_time-resolved_ARPES_data.html @@ -0,0 +1,1651 @@ + + + + + + + + + + + Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo#

+

In this example, we pull some time-resolved ARPES data from Zenodo, and load it into the sed package using functions of the mpes package. Then, we run a conversion pipeline on it, containing steps for visualizing the channels, correcting image distortions, calibrating the momentum space, correcting for energy distortions and calibrating the energy axis. Finally, the data are binned in calibrated axes. For performance reasons, best store the data on a locally attached storage (no network drive). +This can also be achieved transparently using the included MirrorUtil class.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+import matplotlib.pyplot as plt
+import sed
+from sed.dataset import dataset
+
+%matplotlib widget
+
+
+
+
+

Load Data#

+
+
[2]:
+
+
+
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
+data_path = dataset.dir # This is the path to the data
+scandir, caldir = dataset.subdirs # scandir contains the data, caldir contains the calibration files
+
+
+
+
+
+
+
+
+INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
+INFO - WSe2 data is already present.
+
+
+
+
[3]:
+
+
+
# create sed processor using the config file:
+sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={}, verbose=True)
+
+
+
+
+
+
+
+
+INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
+
+
+
+
[4]:
+
+
+
# Apply jittering to X, Y, t, ADC columns.
+# Columns are defined in the config, or can be provided as list.
+sp.add_jitter()
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
+
+
+
+
[5]:
+
+
+
# Plot of the count rate through the scan
+rate, secs = sp.loader.get_count_rate(range(100))
+plt.plot(secs, rate)
+
+
+
+
+
[5]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f1d4b18ce20>]
+
+
+
+
+
+
+
+
+
+
[6]:
+
+
+
# The time elapsed in the scan
+sp.loader.get_elapsed_time()
+
+
+
+
+
[6]:
+
+
+
+
+2588.4949999999994
+
+
+
+
[7]:
+
+
+
# Inspect data in dataframe Columns:
+# axes = ['X', 'Y', 't', 'ADC']
+# bins = [100, 100, 100, 100]
+# ranges = [(0, 1800), (0, 1800), (130000, 140000), (0, 9000)]
+# sp.view_event_histogram(dfpid=1, axes=axes, bins=bins, ranges=ranges)
+sp.view_event_histogram(dfpid=2)
+
+
+
+
+
+
+
+
+
+
+
+

Distortion correction and Momentum Calibration workflow#

+
+

Distortion correction#

+
+

1. step:#

+

Bin and load part of the dataframe in detector coordinates, and choose energy plane where high-symmetry points can well be identified. Either use the interactive tool, or pre-select the range:

+
+
[8]:
+
+
+
#sp.bin_and_load_momentum_calibration(df_partitions=20, plane=170)
+sp.bin_and_load_momentum_calibration(df_partitions=100, plane=33, width=10, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

2. Step:#

+

Next, we select a number of features corresponding to the rotational symmetry of the material, plus the center. These can either be auto-detected (for well-isolated points), or provided as a list (these can be read-off the graph in the cell above). These are then symmetrized according to the rotational symmetry, and a spline-warping correction for the x/y coordinates is calculated, which corrects for any geometric distortions from the perfect n-fold rotational symmetry.

+
+
[9]:
+
+
+
#features = np.array([[203.2, 341.96], [299.16, 345.32], [350.25, 243.70], [304.38, 149.88], [199.52, 152.48], [154.28, 242.27], [248.29, 248.62]])
+#sp.define_features(features=features, rotation_symmetry=6, include_center=True, apply=True)
+# Manual selection: Use a GUI tool to select peaks:
+#sp.define_features(rotation_symmetry=6, include_center=True)
+# Autodetect: Uses the DAOStarFinder routine to locate maxima.
+# Parameters are:
+#   fwhm: Full-width at half maximum of peaks.
+#   sigma: Number of standard deviations above the mean value of the image peaks must have.
+#   sigma_radius: number of standard deviations around a peak that peaks are fitted
+sp.define_features(rotation_symmetry=6, auto_detect=True, include_center=True, fwhm=10, sigma=12, sigma_radius=4, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

3. Step:#

+

Generate nonlinear correction using splinewarp algorithm. If no landmarks have been defined in previous step, default parameters from the config are used

+
+
[10]:
+
+
+
# Option whether a central point shall be fixed in the determination fo the correction
+sp.generate_splinewarp(include_center=True)
+
+
+
+
+
+
+
+
+INFO - Calculated thin spline correction based on the following landmarks:
+pouter_ord: [[203.00184761 342.98205366]
+ [299.87630041 346.19474964]
+ [350.95544165 244.77430106]
+ [305.63519239 150.21702617]
+ [199.37691593 152.83212495]
+ [153.41124117 243.05883096]]
+pcent: (249.23240623877487, 249.24332926024232)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Optional (Step 3a):#

+

Save distortion correction parameters to configuration file in current data folder:

+
+
[11]:
+
+
+
# Save generated distortion correction parameters for later reuse
+sp.save_splinewarp()
+
+
+
+
+
+
+
+
+INFO - Saved momentum correction parameters to "sed_config.yaml".
+
+
+
+
+

4. Step:#

+

To adjust scaling, position and orientation of the corrected momentum space image, you can apply further affine transformations to the distortion correction field. Here, first a potential scaling is applied, next a translation, and finally a rotation around the center of the image (defined via the config). One can either use an interactive tool, or provide the adjusted values and apply them directly.

+
+
[12]:
+
+
+
#sp.pose_adjustment(xtrans=14, ytrans=18, angle=2)
+sp.pose_adjustment(xtrans=8, ytrans=7, angle=-4, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Applied translation with (xtrans=8.0, ytrans=7.0).
+INFO - Applied rotation with angle=-4.0.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

5. Step:#

+

Finally, the momentum correction is applied to the dataframe, and corresponding meta data are stored

+
+
[13]:
+
+
+
sp.apply_momentum_correction()
+
+
+
+
+
+
+
+
+INFO - Adding corrected X/Y columns to dataframe:
+Calculating inverse deformation field, this might take a moment...
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym
+npartitions=100
+                 float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...
+Dask Name: apply_dfield, 206 graph layers
+
+
+
+
+
+

Momentum calibration workflow#

+
+

1. Step:#

+

First, the momentum scaling needs to be calibrated. Either, one can provide the coordinates of one point outside the center, and provide its distance to the Brillouin zone center (which is assumed to be located in the center of the image), one can specify two points on the image and their distance (where the 2nd point marks the BZ center),or one can provide absolute k-coordinates of two distinct momentum points.

+

If no points are provided, an interactive tool is created. Here, left mouse click selects the off-center point (brillouin_zone_centered=True) or toggle-selects the off-center and center point.

+
+
[14]:
+
+
+
k_distance = 2/np.sqrt(3)*np.pi/3.28 # k-distance of the K-point in a hexagonal Brillouin zone
+#sp.calibrate_momentum_axes(k_distance = k_distance)
+point_a = [308, 345]
+sp.calibrate_momentum_axes(point_a=point_a, k_distance = k_distance, apply=True)
+#point_b = [247, 249]
+#sp.calibrate_momentum_axes(point_a=point_a, point_b = point_b, k_coord_a = [.5, 1.1], k_coord_b = [0, 0], equiscale=False)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Optional (Step 1a):#

+

Save momentum calibration parameters to configuration file in current data folder:

+
+
[15]:
+
+
+
# Save generated momentum calibration parameters for later reuse
+sp.save_momentum_calibration()
+
+
+
+
+
+
+
+
+INFO - Saved momentum calibration parameters to sed_config.yaml
+
+
+
+
+

2. Step:#

+

Now, the distortion correction and momentum calibration needs to be applied to the dataframe.

+
+
[16]:
+
+
+
sp.apply_momentum_calibration()
+
+
+
+
+
+
+
+
+INFO - Adding kx/ky columns to dataframe:
+INFO - Using momentum calibration parameters generated on 03/06/2025, 09:26:48
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym       kx       ky
+npartitions=100
+                 float64  float64  float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 216 graph layers
+
+
+
+
+
+
+

Energy Correction and Calibration workflow#

+
+

Energy Correction (optional)#

+

The purpose of the energy correction is to correct for any momentum-dependent distortion of the energy axis, e.g. from geometric effects in the flight tube, or from space charge

+
+

1st step:#

+

Here, one can select the functional form to be used, and adjust its parameters. The binned data used for the momentum calibration is plotted around the Fermi energy (defined by tof_fermi), and the correction function is plotted ontop. Possible correction functions are: “spherical” (parameter: diameter), “Lorentzian” (parameter: gamma), “Gaussian” (parameter: sigma), and “Lorentzian_asymmetric” (parameters: gamma, amplitude2, gamma2).

+

One can either use an interactive alignment tool, or provide parameters directly.

+
+
[17]:
+
+
+
#sp.adjust_energy_correction(amplitude=2.5, center=(730, 730), gamma=920, tof_fermi = 66200)
+sp.adjust_energy_correction(amplitude=2.5, center=(730, 730), gamma=920, tof_fermi = 66200, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Optional (Step 1a):#

+

Save energy correction parameters to configuration file in current data folder:

+
+
[18]:
+
+
+
# Save generated energy correction parameters for later reuse
+sp.save_energy_correction()
+
+
+
+
+
+
+
+
+INFO - Saved energy correction parameters to sed_config.yaml
+
+
+
+
+

2. Step#

+

After adjustment, the energy correction is directly applied to the TOF axis.

+
+
[19]:
+
+
+
sp.apply_energy_correction()
+
+
+
+
+
+
+
+
+INFO - Applying energy correction to dataframe...
+INFO - Using energy correction parameters generated on 03/06/2025, 09:26:48
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym       kx       ky       tm
+npartitions=100
+                 float64  float64  float64  float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 230 graph layers
+
+
+
+
+
+

Energy calibration#

+

For calibrating the energy axis, a set of data taken at different bias voltages around the value where the measurement was taken is required.

+
+

1. Step:#

+

In a first step, the data are loaded, binned along the TOF dimension, and normalized. The used bias voltages can be either provided, or read from attributes in the source files if present.

+
+
[20]:
+
+
+
# Load energy calibration EDCs
+energycalfolder = caldir
+scans = np.arange(1,12)
+voltages = np.arange(12,23,1)
+files = [energycalfolder + r'/Scan' + str(num).zfill(3) + '_' + str(num+11) + '.h5' for num in scans]
+sp.load_bias_series(data_files=files, normalize=True, biases=voltages, ranges=[(64000, 75000)])
+
+
+
+
+
+
+
+
+WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

2. Step:#

+

Next, the same peak or feature needs to be selected in each curve. For this, one needs to define “ranges” for each curve, within which the peak of interest is located. One can either provide these ranges manually, or provide one range for a “reference” curve, and infer the ranges for the other curves using a dynamic time warping algorithm.

+
+
[21]:
+
+
+
# Option 1 = specify the ranges containing a common feature (e.g an equivalent peak) for all bias scans
+# rg = [(129031.03103103103, 129621.62162162163), (129541.54154154155, 130142.14214214214), (130062.06206206206, 130662.66266266267), (130612.61261261262, 131213.21321321322), (131203.20320320321, 131803.8038038038), (131793.7937937938, 132384.38438438438), (132434.43443443443, 133045.04504504506), (133105.10510510512, 133715.71571571572), (133805.8058058058, 134436.43643643643), (134546.54654654654, 135197.1971971972)]
+# sp.find_bias_peaks(ranges=rg, infer_others=False)
+# Option 2 = specify the range for one curve and infer the others
+# This will open an interactive tool to select the correct ranges for the curves.
+# IMPORTANT: Don't choose the range too narrow about a peak, and choose a refid
+# somewhere in the middle or towards larger biases!
+rg = (66100, 67000)
+sp.find_bias_peaks(ranges=rg, ref_id=5, infer_others=True, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Use feature ranges: [(64638.0, 65386.0), (64913.0, 65683.0), (65188.0, 65991.0), (65474.0, 66310.0), (65782.0, 66651.0), (66101.0, 67003.0), (66442.0, 67388.0), (66794.0, 67795.0), (67190.0, 68213.0), (67575.0, 68664.0), (67993.0, 69148.0)].
+INFO - Extracted energy features: [[6.51330000e+04 9.43293095e-01]
+ [6.54080000e+04 9.52672958e-01]
+ [6.57050000e+04 9.47981834e-01]
+ [6.60130000e+04 9.46402431e-01]
+ [6.63430000e+04 9.50330198e-01]
+ [6.66730000e+04 9.63564813e-01]
+ [6.70360000e+04 9.59838033e-01]
+ [6.73990000e+04 9.67203319e-01]
+ [6.78060000e+04 9.55975950e-01]
+ [6.82130000e+04 9.56439197e-01]
+ [6.86750000e+04 9.70683038e-01]].
+
+
+
+
+

3. Step:#

+

Next, the detected peak positions and bias voltages are used to determine the calibration function. Essentially, the functional Energy(TOF) is being determined by either least-squares fitting of the functional form d2/(t-t0)2 via lmfit (method: “lmfit”), or by analytically obtaining a polynomial approximation (method: “lstsq” or “lsqr”). The parameter ref_energy is used to define the absolute energy position of the feature used for calibration in the calibrated energy +scale. energy_scale can be either “kinetic” (decreasing energy with increasing TOF), or “binding” (increasing energy with increasing TOF).

+

After calculating the calibration, all traces corrected with the calibration are plotted ontop of each other, and the calibration function (Energy(TOF)) together with the extracted features is being plotted.

+
+
[22]:
+
+
+
# Eref can be used to set the absolute energy (kinetic energy, E-EF, etc.) of the feature used for energy calibration (if known)
+Eref=-1.3
+# the lmfit method uses a fit of (d/(t-t0))**2 to determine the energy calibration
+# limits and starting values for the fitting parameters can be provided as dictionaries
+sp.calibrate_energy_axis(
+    ref_energy=Eref,
+    method="lmfit",
+    energy_scale='kinetic',
+    d={'value':1.0,'min': .7, 'max':1.2, 'vary':True},
+    t0={'value':8e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
+    E0={'value': 0., 'min': -100, 'max': 0, 'vary': True},
+)
+
+
+
+
+
+
+
+
+INFO - [[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 43
+    # data points      = 11
+    # variables        = 3
+    chi-square         = 0.00218781
+    reduced chi-square = 2.7348e-04
+    Akaike info crit   = -87.7502612
+    Bayesian info crit = -86.5565754
+[[Variables]]
+    d:   1.09544523 +/- 0.03646409 (3.33%) (init = 1)
+    t0:  7.6073e-07 +/- 7.5361e-09 (0.99%) (init = 8e-07)
+    E0: -46.6158341 +/- 0.79487877 (1.71%) (init = 0)
+[[Correlations]] (unreported correlations are < 0.100)
+    C(d, t0)  = -0.9997
+    C(d, E0)  = -0.9988
+    C(t0, E0) = +0.9974
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Optional (Step 3a):#

+

Save energy calibration parameters to configuration file in current data folder:

+
+
[23]:
+
+
+
# Save generated energy calibration parameters for later reuse
+sp.save_energy_calibration()
+
+
+
+
+
+
+
+
+INFO - Saved energy calibration parameters to "sed_config.yaml".
+
+
+
+
+

4. Step:#

+

Finally, the the energy axis is added to the dataframe. Here, the applied bias voltages of the measurement is taken into account to provide the correct energy offset. If the bias cannot be read from the file, it can be provided manually.

+
+
[24]:
+
+
+
sp.append_energy_axis(bias_voltage=16.8)
+
+
+
+
+
+
+
+
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:26:57
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym       kx       ky       tm   energy
+npartitions=100
+                 float64  float64  float64  float64  float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 243 graph layers
+
+
+
+
+
+
+

4. Delay calibration:#

+

The delay axis is calculated from the ADC input column based on the provided delay range. ALternatively, the delay scan range can also be extracted from attributes inside a source file, if present.

+
+
[25]:
+
+
+
sp.dataframe.head()
+
+
+
+
+
[25]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
XYtADCXmYmkxkytmenergy
0-0.245890-0.245890-0.245890-0.2458900.0000000.000000-2.060071-2.060071-48.471104-25.223989
1364.6576301001.65763070100.6576306316.657630355.0685451031.894587-1.1076410.70786770083.642352-9.314417
2760.756182817.75618275614.7561826315.756182791.140442839.3837280.0620720.19147975613.881435-16.717008
3691.787527970.78752766454.7875276316.787527713.322803984.827845-0.1466650.58161666449.111798-0.832646
4671.027618712.02761873026.0276186317.027618697.038665741.371289-0.190346-0.07142873025.640940-13.817142
+
+
+
+
[26]:
+
+
+
#from pathlib import Path
+#datafile = "file.h5"
+#print(datafile)
+#sp.calibrate_delay_axis(datafile=datafile)
+delay_range = (-500, 1500)
+sp.calibrate_delay_axis(delay_range=delay_range, preview=True)
+
+
+
+
+
+
+
+
+INFO - Adding delay column to dataframe:
+INFO - Append delay axis using delay_range = [-500, 1500] and adc_range = [475.0, 6400.0]
+INFO -              X            Y             t          ADC           Xm  \
+0     0.045283     0.045283      0.045283     0.045283   -12.112204
+1   364.623258  1001.623258  70100.623258  6316.623258   355.031915
+2   760.929539   817.929539  75614.929539  6315.929539   791.320179
+3   691.515091   970.515091  66454.515091  6316.515091   713.036149
+4   671.142569   712.142569  73026.142569  6317.142569   697.160720
+5   299.293999  1164.293999  68459.293999  6316.293999   282.452671
+6   571.112618   665.112618  73903.112618  6316.112618   590.222886
+7   822.157798   545.157798  72632.157798  6318.157798   848.334188
+8   817.727541   415.727541  72421.727541  6316.727541   838.418284
+9  1006.060087   667.060087  72802.060087  6317.060087  1040.106139
+
+            Ym        kx        ky            tm     energy        delay
+0    86.832103 -2.092560 -1.827154    -48.162911 -25.223911  -660.322267
+1  1031.864480 -1.107739  0.707786  70083.607555  -9.314354  1471.855952
+2   839.546554  0.062554  0.191915  75614.050672 -16.717173  1471.621785
+3   984.581438 -0.147434  0.580955  66448.849198  -0.831864  1471.819440
+4   741.475972 -0.190018 -0.071148  73025.757679 -13.817292  1472.031247
+5  1185.482292 -1.302424  1.119848  68432.780473  -5.972844  1471.744810
+6   701.294601 -0.476866 -0.178929  73900.203661 -14.888010  1471.683584
+7   586.988787  0.215487 -0.485542  72628.007405 -13.294860  1472.373940
+8   466.206316  0.188889 -0.809527  72412.063214 -13.001247  1471.891153
+9   709.272529  0.729893 -0.157530  72794.575998 -13.516486  1472.003405
+
+
+
+
+

5. Visualization of calibrated histograms#

+

With all calibrated axes present in the dataframe, we can visualize the corresponding histograms, and determine the respective binning ranges

+
+
[27]:
+
+
+
axes = ['kx', 'ky', 'energy', 'delay']
+ranges = [[-3, 3], [-3, 3], [-6, 2], [-600, 1600]]
+sp.view_event_histogram(dfpid=1, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
+

Define the binning ranges and compute calibrated data volume#

+
+
[28]:
+
+
+
axes = ['kx', 'ky', 'energy', 'delay']
+bins = [100, 100, 200, 50]
+ranges = [[-2, 2], [-2, 2], [-4, 2], [-600, 1600]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delay")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delay'...
+
+
+
+
+
+
+
+
+
+
+

Some visualization:#

+
+
[29]:
+
+
+
fig, axs = plt.subplots(4, 1, figsize=(6, 18), constrained_layout=True)
+res.loc[{'energy':slice(-.1, 0)}].sum(axis=(2,3)).T.plot(ax=axs[0])
+res.loc[{'kx':slice(-.8, -.5)}].sum(axis=(0,3)).T.plot(ax=axs[1])
+res.loc[{'ky':slice(-.2, .2)}].sum(axis=(1,3)).T.plot(ax=axs[2])
+res.loc[{'kx':slice(-.8, -.5), 'energy':slice(.5, 2)}].sum(axis=(0,1)).plot(ax=axs[3])
+
+
+
+
+
[29]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f1d93ae0790>
+
+
+
+
+
+
+
+
+
+
[30]:
+
+
+
fig, ax = plt.subplots(1,1)
+(sp._normalization_histogram*90000).plot(ax=ax)
+sp._binned.sum(axis=(0,1,2)).plot(ax=ax)
+plt.show()
+
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/3_metadata_collection_and_export_to_NeXus.html b/sed/v1.0.0/tutorial/3_metadata_collection_and_export_to_NeXus.html new file mode 100644 index 0000000..2b408ff --- /dev/null +++ b/sed/v1.0.0/tutorial/3_metadata_collection_and_export_to_NeXus.html @@ -0,0 +1,1048 @@ + + + + + + + + + + + Binning with metadata generation, and storing into a NeXus file — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Binning with metadata generation, and storing into a NeXus file#

+

In this example, we show how to bin the same data used for example 3, but using the values for correction/calibration parameters generated in the example notebook 3, which are locally saved in the file sed_config.yaml. These data and the corresponding (machine and processing) metadata are then stored to a NeXus file following the NXmpes NeXus standard +(https://fairmat-experimental.github.io/nexus-fairmat-proposal/9636feecb79bb32b828b1a9804269573256d7696/classes/contributed_definitions/NXmpes.html#nxmpes) using the ‘dataconverter’ of the pynxtools package (FAIRmat-NFDI/pynxtools).

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+import sed
+from sed.dataset import dataset
+
+%matplotlib widget
+
+
+
+
+

Load Data#

+
+
[2]:
+
+
+
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
+data_path = dataset.dir # This is the path to the data
+scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
+
+
+
+
+
+
+
+
+INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
+INFO - WSe2 data is already present.
+
+
+
+
[3]:
+
+
+
metadata = {}
+# manual Meta data. These should ideally come from an Electronic Lab Notebook.
+#General
+metadata['experiment_summary'] = 'WSe2 XUV NIR pump probe data.'
+metadata['entry_title'] = 'Valence Band Dynamics - 800 nm linear s-polarized pump, 0.6 mJ/cm2 absorbed fluence'
+metadata['experiment_title'] = 'Valence band dynamics of 2H-WSe2'
+
+#User
+# Fill general parameters of NXuser
+# TODO: discuss how to deal with multiple users?
+metadata['user0'] = {}
+metadata['user0']['name'] = 'Julian Maklar'
+metadata['user0']['role'] = 'Principal Investigator'
+metadata['user0']['affiliation'] = 'Fritz Haber Institute of the Max Planck Society'
+metadata['user0']['address'] = 'Faradayweg 4-6, 14195 Berlin'
+metadata['user0']['email'] = 'maklar@fhi-berlin.mpg.de'
+
+#NXinstrument
+metadata['instrument'] = {}
+metadata['instrument']['energy_resolution'] = 140.
+#analyzer
+metadata['instrument']['analyzer']={}
+metadata['instrument']['analyzer']['slow_axes'] = "delay" # the scanned axes
+metadata['instrument']['analyzer']['spatial_resolution'] = 10.
+metadata['instrument']['analyzer']['energy_resolution'] = 110.
+metadata['instrument']['analyzer']['momentum_resolution'] = 0.08
+metadata['instrument']['analyzer']['working_distance'] = 4.
+metadata['instrument']['analyzer']['lens_mode'] = "6kV_kmodem4.0_30VTOF.sav"
+
+#probe beam
+metadata['instrument']['beam']={}
+metadata['instrument']['beam']['probe']={}
+metadata['instrument']['beam']['probe']['incident_energy'] = 21.7
+metadata['instrument']['beam']['probe']['incident_energy_spread'] = 0.11
+metadata['instrument']['beam']['probe']['pulse_duration'] = 20.
+metadata['instrument']['beam']['probe']['frequency'] = 500.
+metadata['instrument']['beam']['probe']['incident_polarization'] = [1, 1, 0, 0] # p pol Stokes vector
+metadata['instrument']['beam']['probe']['extent'] = [80., 80.]
+#pump beam
+metadata['instrument']['beam']['pump']={}
+metadata['instrument']['beam']['pump']['incident_energy'] = 1.55
+metadata['instrument']['beam']['pump']['incident_energy_spread'] = 0.08
+metadata['instrument']['beam']['pump']['pulse_duration'] = 35.
+metadata['instrument']['beam']['pump']['frequency'] = 500.
+metadata['instrument']['beam']['pump']['incident_polarization'] = [1, -1, 0, 0] # s pol Stokes vector
+metadata['instrument']['beam']['pump']['incident_wavelength'] = 800.
+metadata['instrument']['beam']['pump']['average_power'] = 300.
+metadata['instrument']['beam']['pump']['pulse_energy'] = metadata['instrument']['beam']['pump']['average_power']/metadata['instrument']['beam']['pump']['frequency']#µJ
+metadata['instrument']['beam']['pump']['extent'] = [230., 265.]
+metadata['instrument']['beam']['pump']['fluence'] = 0.15
+
+#sample
+metadata['sample']={}
+metadata['sample']['preparation_date'] = '2019-01-13T10:00:00+00:00'
+metadata['sample']['preparation_description'] = 'Cleaved'
+metadata['sample']['sample_history'] = 'Cleaved'
+metadata['sample']['chemical_formula'] = 'WSe2'
+metadata['sample']['description'] = 'Sample'
+metadata['sample']['name'] = 'WSe2 Single Crystal'
+
+metadata['file'] = {}
+metadata['file']["trARPES:Carving:TEMP_RBV"] = 300.
+metadata['file']["trARPES:XGS600:PressureAC:P_RD"] = 5.e-11
+metadata['file']["KTOF:Lens:Extr:I"] = -0.12877
+metadata['file']["KTOF:Lens:UDLD:V"] = 399.99905
+metadata['file']["KTOF:Lens:Sample:V"] = 17.19976
+metadata['file']["KTOF:Apertures:m1.RBV"] = 3.729931
+metadata['file']["KTOF:Apertures:m2.RBV"] = -5.200078
+metadata['file']["KTOF:Apertures:m3.RBV"] = -11.000425
+
+# Sample motor positions
+metadata['file']['trARPES:Carving:TRX.RBV'] = 7.1900000000000004
+metadata['file']['trARPES:Carving:TRY.RBV'] = -6.1700200225439552
+metadata['file']['trARPES:Carving:TRZ.RBV'] = 33.4501953125
+metadata['file']['trARPES:Carving:THT.RBV'] = 423.30500940561586
+metadata['file']['trARPES:Carving:PHI.RBV'] = 0.99931647456264949
+metadata['file']['trARPES:Carving:OMG.RBV'] = 11.002500171914066
+
+
+
+
+
[4]:
+
+
+
# create sed processor using the config file, and collect the meta data from the files:
+sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={}, metadata=metadata, collect_metadata=True)
+
+
+
+
+
+
+
+
+INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
+
+
+
+
[5]:
+
+
+
# Apply jittering to X, Y, t, ADC columns.
+sp.add_jitter()
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
+
+
+
+
[6]:
+
+
+
# Calculate machine-coordinate data for pose adjustment
+sp.bin_and_load_momentum_calibration(df_partitions=10, plane=33, width=10, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[7]:
+
+
+
# Adjust pose alignment, using stored distortion correction
+sp.pose_adjustment(xtrans=8, ytrans=7, angle=-4, apply=True, use_correction=True)
+
+
+
+
+
+
+
+
+INFO - No landmarks defined, using momentum correction parameters generated on 03/06/2025, 09:26:41
+INFO - Calculated thin spline correction based on the following landmarks:
+pouter_ord: [[203.2  341.96]
+ [299.16 345.32]
+ [350.25 243.7 ]
+ [304.38 149.88]
+ [199.52 152.48]
+ [154.28 242.27]]
+pcent: (248.29, 248.62)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Applied translation with (xtrans=8.0, ytrans=7.0).
+INFO - Applied rotation with angle=-4.0.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[8]:
+
+
+
# Apply stored momentum correction
+sp.apply_momentum_correction()
+
+
+
+
+
+
+
+
+INFO - Adding corrected X/Y columns to dataframe:
+Calculating inverse deformation field, this might take a moment...
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym
+npartitions=100
+                 float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...
+Dask Name: apply_dfield, 206 graph layers
+
+
+
+
[9]:
+
+
+
# Apply stored config momentum calibration
+sp.apply_momentum_calibration()
+
+
+
+
+
+
+
+
+INFO - Adding kx/ky columns to dataframe:
+INFO - Using momentum calibration parameters generated on 03/06/2025, 09:26:48
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym       kx       ky
+npartitions=100
+                 float64  float64  float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 216 graph layers
+
+
+
+
[10]:
+
+
+
# Apply stored config energy correction
+sp.apply_energy_correction()
+
+
+
+
+
+
+
+
+INFO - Applying energy correction to dataframe...
+INFO - Using energy correction parameters generated on 03/06/2025, 09:26:48
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym       kx       ky       tm
+npartitions=100
+                 float64  float64  float64  float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 230 graph layers
+
+
+
+
[11]:
+
+
+
# Apply stored config energy calibration
+sp.append_energy_axis(bias_voltage=16.8)
+
+
+
+
+
+
+
+
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:26:57
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC       Xm       Ym       kx       ky       tm   energy
+npartitions=100
+                 float64  float64  float64  float64  float64  float64  float64  float64  float64  float64
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 243 graph layers
+
+
+
+
[12]:
+
+
+
# Apply delay calibration
+delay_range = (-500, 1500)
+sp.calibrate_delay_axis(delay_range=delay_range, preview=True)
+
+
+
+
+
+
+
+
+INFO - Adding delay column to dataframe:
+INFO - Append delay axis using delay_range = [-500, 1500] and adc_range = [475.0, 6400.0]
+INFO -              X            Y             t          ADC           Xm  \
+0     0.384484     0.384484      0.384484     0.384484   -23.283623
+1   365.244567  1002.244567  70101.244567  6317.244567   353.769545
+2   761.101929   818.101929  75615.101929  6316.101929   792.106877
+3   692.429705   971.429705  66455.429705  6317.429705   714.760810
+4   671.413437   712.413437  73026.413437  6317.413437   697.342750
+5   298.969298  1163.969298  68458.969298  6315.969298   280.645123
+6   570.922107   664.922107  73902.922107  6315.922107   588.394845
+7   822.485227   545.485227  72632.485227  6318.485227   847.200367
+8   817.521308   415.521308  72421.521308  6316.521308   835.486497
+9  1005.828330   666.828330  72801.828330  6316.828330  1037.626783
+
+            Ym        kx        ky            tm     energy        delay
+0    97.299514 -2.122526 -1.799076    -47.803871  -8.260110  -660.207769
+1  1034.845992 -1.111125  0.715783  70084.236496   7.511388  1472.065676
+2   838.751262  0.064664  0.189782  75614.218953   0.223263  1471.679976
+3   984.283338 -0.142808  0.580155  66449.730696  15.953383  1472.128171
+4   741.940029 -0.189530 -0.069903  73026.032742   3.068676  1472.122679
+5  1187.498385 -1.307273  1.125256  68432.455877  10.828590  1471.635206
+6   702.645708 -0.481770 -0.175305  73900.005007   2.017041  1471.619277
+7   587.353173  0.212446 -0.484564  72628.340437   3.582615  1472.484465
+8   466.640482  0.181025 -0.808362  72411.849440   3.872415  1471.821539
+9   707.805877  0.723243 -0.161464  72794.352656   3.365232  1471.925175
+
+
+
+
+

Compute final data volume#

+
+
[13]:
+
+
+
axes = ['kx', 'ky', 'energy', 'delay']
+bins = [100, 100, 200, 50]
+ranges = [[-2, 2], [-2, 2], [-4, 2], [-600, 1600]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[14]:
+
+
+
# save to NXmpes NeXus (including standardized metadata)
+sp.save(data_path + "/binned.nxs")
+
+
+
+
+
+
+
+
+Using mpes reader to convert the given files:
+• ../src/sed/config/NXmpes_config.json
+The output file generated: /home/runner/work/sed/sed/docs/tutorial/datasets/WSe2/binned.nxs.
+
+
+
+
[15]:
+
+
+
# Visualization (requires JupyterLab)
+from jupyterlab_h5web import H5Web
+H5Web(data_path + "/binned.nxs")
+
+
+
+
+
[15]:
+
+
+
+
+<jupyterlab_h5web.widget.H5Web object>
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + +
+ + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/4_hextof_workflow.html b/sed/v1.0.0/tutorial/4_hextof_workflow.html new file mode 100644 index 0000000..26a09a9 --- /dev/null +++ b/sed/v1.0.0/tutorial/4_hextof_workflow.html @@ -0,0 +1,2931 @@ + + + + + + + + + + + Tutorial for binning data from the HEXTOF instrument at FLASH — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Tutorial for binning data from the HEXTOF instrument at FLASH#

+
+

Preparation#

+
+

Import necessary libraries#

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+from typing import List
+from pathlib import Path
+import os
+
+from sed import SedProcessor
+from sed.dataset import dataset
+import xarray as xr
+
+%matplotlib widget
+import matplotlib.pyplot as plt
+
+
+
+
+
+

Get data paths#

+

The paths are such that if you are on Maxwell, it uses those. Otherwise data is downloaded in current directory from Zenodo.

+

Generally, if it is your beamtime, you can both read the raw data and write to processed directory. However, for the public data, you can not write to processed directory.

+
+
[2]:
+
+
+
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
+if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
+    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
+    meta_path = beamtime_dir + "/shared"
+    buffer_path = "Gd_W110/processed/"
+else:
+    # data_path can be defined and used to store the data in a specific location
+    dataset.get("Gd_W110") # Put in Path to a storage of at least 10 GByte free space.
+    path = dataset.dir
+    meta_path = path
+    buffer_path = path + "/processed/"
+
+
+
+
+
+
+
+
+INFO - Not downloading Gd_W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/Gd_W110".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "Gd_W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/Gd_W110"
+INFO - Gd_W110 data is already present.
+
+
+
+
+

Config setup#

+

Here we get the path to the config file and setup the relevant directories. This can also be done directly in the config file.

+
+
[3]:
+
+
+
# pick the default configuration file for hextof@FLASH
+config_file = Path('../src/sed/config/flash_example_config.yaml')
+assert config_file.exists()
+
+
+
+

The path to the processed folder can also be defined as a keyword argument later.

+
+
[4]:
+
+
+
# here we setup a dictionary that will be used to override the path configuration
+config_override = {
+    "core": {
+        "paths": {
+            "raw": path,
+            "processed": buffer_path,
+        },
+    },
+}
+
+
+
+
+
+

cleanup previous config files#

+

In this notebook, we will show how calibration parameters can be generated. Therefore we want to clean the local directory of previously generated files.

+

WARNING running the cell below will delete the “sed_config.yaml” file in the local directory. If these contain precious calibration parameters, DO NOT RUN THIS CELL.

+
+
[5]:
+
+
+
local_folder_config = Path('./sed_config.yaml')
+if local_folder_config.exists():
+    os.remove(local_folder_config)
+    print(f'deleted local config file {local_folder_config}')
+assert not local_folder_config.exists()
+
+
+
+
+
+
+
+
+deleted local config file sed_config.yaml
+
+
+
+
+
+

Load a chessy sample run#

+

The common starting point at a FLASH beamtime. Look at the Chessy sample!

+
    +
  • run 44762: Chessy - FoV = 450 µm

  • +
+
+

Generate the Processor instance#

+

this cell generates an instance of the SedProcessor class. It will be our workhorse for the entire workflow.

+
+

Important note#

+

The following extra arguments are available for FlashLoader. None of which are necessary to give but helpful to know.

+
    +
  • force_recreate: Probably the most useful. In case the config is changed, this allows to reduce the raw h5 files to the the intermediate parquet format again. Otherwise, the schema between the saved dataframe and config differs.

  • +
  • debug: Setting this runs the reduction process in serial, so the errors are easier to find.

  • +
  • remove_invalid_files: Sometimes some critical channels defined in the config are missing in some raw files. Setting this will make sure to ignore such files.

  • +
  • filter_timed_by_electron: Defaults to True. When True, the timed dataframe will only contain data points where valid electron events were detected. When False, all timed data points are included regardless of electron detection (see OpenCOMPES/sed#307)

  • +
  • processed_dir: Location to save the reduced parquet files.

  • +
  • scicat_token: Token from your scicat account.

  • +
  • detector: ‘1Q’ and ‘4Q’ detector for example. Useful when there are separate raw files for each detector.

  • +
+
+
[6]:
+
+
+
sp = SedProcessor(runs=[44762], config=config_override, system_config=config_file, collect_metadata=False)
+# You can set collect_metadata=True if the scicat_url and scicat_token are defined
+
+
+
+
+
+
+
+
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 1 total.
+loading complete in  0.07 s
+
+
+
+
+
+

Add Jitter#

+

In order to avoid artifacts arising from incommensurate binning sizes with those imposed during data collection, e.g. by the detector, we jitter all the digital columns.

+
+
[7]:
+
+
+
sp.add_jitter()
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+
+
+
+
+

inspect the dataframe#

+

Looking at the dataframe can give quick insight about the columns loaded and the data available.

+
    +
  • sp.dataframe shows the structure of the dataframe without computing anything. Interesting here are the columns, and their type.

  • +
  • The sp.dataframe.head() function accesses the first 5 events in the dataframe, giving us a view of what the values of each column look like, without computing the whole thing. sp.dataframe.tail()does the same from the end.

  • +
  • sp.dataframe.compute() will compute the whole dataframe, and can take a while. We should avoid doing this.

  • +
+
+
[8]:
+
+
+
sp.dataframe
+
+
+
+
+
[8]:
+
+
+
+
Dask DataFrame Structure:
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorID
npartitions=1
uint32int64int64float64float64float64float32float32float64float32float32float32float32float32float32float32float32float32float32int8
............................................................
+
+
Dask Name: apply_jitter, 14 graph layers
+
+
+
[9]:
+
+
+
sp.dataframe.head()
+
+
+
+
+
[9]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorID
01646339970120780.864716689.8647163049.86471632914.08976.093751.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205767
11646339970121780.946285690.9462853048.94628532914.08976.093751.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205762
21646339970220561.656736230.6567365728.65673632914.08990.375001.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205763
31646339970221938.219777947.2197775730.21977732914.08990.375001.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205762
41646339970270535.522056853.5220561570.52205632914.08982.875001.679395e+0951.02345345.5127941448.312988-0.00348929.9990656029.370117-0.070368303.940002304.9400020.0205760
+
+
+
+
+

Visualizing event histograms#

+

For getting a first impression of the data, and to determine binning ranges, the method sp.view_even_histogram() allows visualizing the events in one dataframe partition as histograms. Default axes and ranges are defined in the config, and show the dldPosX, dldPosY, and dldTimeStep columns:

+
+
[10]:
+
+
+
sp.view_event_histogram(dfpid=0)
+
+
+
+
+
+
+
+
+
+
+
+

Binning#

+

Here we define the parameters for binning the dataframe to an n-dimensional histogram, which we can then plot, analyze or save.

+

If you never saw this before, the type after : is a “hint” to what type the object to the left will have. We include them here to make sure you know what each variable should be.

+
a:int = 1 # a is an integer
+b:float = 1.0 # b is a float
+c:str = 1 # we hint c to be a string, but it is still an integer
+
+
+

This is totally optional, but can help you keep track of what you are doing.

+
+
[11]:
+
+
+
# the name of the axes on which we want to bin
+axes: List[str] = ['dldPosY', 'dldPosX']
+# the number of bins for each axis
+bins: List[int] = [480, 480]
+# for each axis, the range of values to consider
+ranges: List[List[int]] = [[420,900], [420,900]]
+# here we compute the histogram
+res_chessy: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
+

visualize the result#

+

here we plot the binned histogram. The result is an xarray, which gives us some convenient visualization and simple plotting tools.

+
+
[12]:
+
+
+
res_chessy
+
+
+
+
+
[12]:
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.DataArray (dldPosY: 480, dldPosX: 480)> Size: 922kB
+array([[0., 0., 0., ..., 0., 0., 0.],
+       [0., 0., 0., ..., 0., 0., 0.],
+       [0., 0., 0., ..., 0., 0., 0.],
+       ...,
+       [0., 0., 0., ..., 0., 0., 0.],
+       [0., 0., 0., ..., 0., 0., 0.],
+       [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
+Coordinates:
+  * dldPosY  (dldPosY) float64 4kB 420.0 421.0 422.0 423.0 ... 897.0 898.0 899.0
+  * dldPosX  (dldPosX) float64 4kB 420.0 421.0 422.0 423.0 ... 897.0 898.0 899.0
+Attributes:
+    units:      counts
+    long_name:  photoelectron counts
+    metadata:   {'file_statistics': {'electron': {'0': {'created_by': 'parque...
+
+
+
[13]:
+
+
+
plt.figure()
+res_chessy.plot(robust=True) # robust is used to avoid outliers to dominate the color scale
+
+
+
+
+
[13]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f783c3168f0>
+
+
+
+
+
+
+
+
+
+
+
+

Optical Spot Profile#

+

Here we load runs 44798 and 44799, which show the profile of the optical spot on the same spatial view as in our chessy run above. The two differ in transmission, being \(T=1.0\) and \(T=0.5\) respectively.

+
+
[14]:
+
+
+
sp = SedProcessor(runs=[44798], config=config_override, system_config=config_file, collect_metadata=False)
+sp.add_jitter()
+res_t05: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+sp = SedProcessor(runs=[44799], config=config_override, system_config=config_file, collect_metadata=False)
+sp.add_jitter()
+res_t10: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 1 total.
+loading complete in  0.06 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 2 total.
+loading complete in  0.06 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+
+
+
+
+
+
+
+
+
+
[15]:
+
+
+
fig,ax = plt.subplots(1,3,figsize=(6,2), layout='tight')
+res_chessy.plot(ax=ax[0], robust=True, add_colorbar=False)
+res_t05.plot(ax=ax[1], robust=True, add_colorbar=False)
+res_t10.plot(ax=ax[2], robust=True, add_colorbar=False)
+
+
+
+
+
[15]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f783c5f8850>
+
+
+
+
+
+
+
+
+

TODO: here we can add the evaluation of the spot size.

+
+
+

Energy Calibration#

+

We now load a bias series, where the sample bias was varied, effectively shifting the energy spectra. This allows us to calibrate the conversion between the digital values of the dld and the energy.

+
+
[16]:
+
+
+
sp = SedProcessor(runs=[44797], config=config_override, system_config=config_file, collect_metadata=False)
+sp.add_jitter()
+
+
+
+
+
+
+
+
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 5 total.
+loading complete in  0.07 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+
+
+

We can use the view_event_histogram() function also to e.g. visualize the events per microbunch along the train, or hit multiplicity per microbunch:

+
+
[17]:
+
+
+
sp.view_event_histogram(dfpid=0, axes=["pulseId", "electronId"], ranges=[[0, 600], [0,10]], bins=[100, 10])
+
+
+
+
+
+
+
+
+
+
+

sector alignment#

+

as usual first we jitter, but here we also align in time the 8 sectors of the dld. This is done by finding the time of the maximum of the signal in each sector, and then shifting the signal in each sector by the difference between the maximum time and the time of the maximum in each sector.

+

For better precision, the photon peak can be used to track the energy shift.

+
+
[18]:
+
+
+
sp.align_dld_sectors()
+
+
+
+
+
+
+
+
+INFO - Aligning 8s sectors of dataframe
+INFO - Dask DataFrame Structure:
+              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=5
+               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 16 graph layers
+
+
+
+
+

time-of-flight spectrum#

+

to compare with what we see on the measurement computer, we might want to plot the time-of-flight spectrum. This is done here.

+
+
[19]:
+
+
+
sp.append_tof_ns_axis()
+
+
+
+
+
+
+
+
+INFO - Adding time-of-flight column in nanoseconds to dataframe.
+INFO - Dask DataFrame Structure:
+              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime
+npartitions=5
+               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 22 graph layers
+
+
+

Now, to determine proper binning ranges, let’s have again a look at the event histograms:

+
+
[20]:
+
+
+
sp.view_event_histogram(dfpid=0, axes=["sampleBias", "dldTime"], ranges=[[27, 33], [650,1050]], bins=[50, 100])
+
+
+
+
+
+
+
+
+
+
+
[21]:
+
+
+
axes = ['sampleBias','dldTime']
+bins = [5, 250]
+ranges = [[28,33],  [650,800]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+

We binned not only in dldTime but also in sampleBias. This allows us to separate the spectra obtained at different bias values.

+
+
[22]:
+
+
+
plt.figure()
+res.plot.line(x='dldTime'); # the ; here is to suppress an annoying output
+
+
+
+
+
+
+
+
+
+
+
+

find calibration parameters#

+

We now will fit the tof-energy relation. This is done by finding the maxima of a peak in the tof spectrum, and then fitting the square root relation to obtain the calibration parameters.

+
+
[23]:
+
+
+
axes = ['sampleBias', 'dldTimeSteps']
+bins = [5, 500]
+ranges = [[28,33], [4000, 4800]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[24]:
+
+
+
sp.load_bias_series(binned_data=res)
+
+
+
+
+
+
+
+
+
+
+
[25]:
+
+
+
ranges=(4120, 4200)
+ref_id=0
+sp.find_bias_peaks(ranges=ranges, ref_id=ref_id, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Use feature ranges: [(4120.0, 4200.0), (4156.8, 4238.4), (4195.2, 4286.4), (4236.8, 4328.0), (4281.6, 4374.4)].
+INFO - Extracted energy features: [[4.1488e+03 1.0000e+00]
+ [4.1872e+03 1.0000e+00]
+ [4.2272e+03 1.0000e+00]
+ [4.2704e+03 1.0000e+00]
+ [4.3152e+03 1.0000e+00]].
+
+
+
+
[26]:
+
+
+
sp.calibrate_energy_axis(
+    ref_energy=-.55,
+    method="lmfit",
+    energy_scale='kinetic',
+    d={'value':1.0,'min': .2, 'max':1.0, 'vary':False},
+    t0={'value':5e-7, 'min': 1e-7, 'max': 1e-6, 'vary':True},
+    E0={'value': 0., 'min': -100, 'max': 100, 'vary': True},
+)
+
+
+
+
+
+
+
+
+INFO - [[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 22
+    # data points      = 5
+    # variables        = 2
+    chi-square         = 1.9886e-04
+    reduced chi-square = 6.6286e-05
+    Akaike info crit   = -46.6618227
+    Bayesian info crit = -47.4429469
+[[Variables]]
+    d:   1 (fixed)
+    t0:  3.5727e-07 +/- 2.9058e-10 (0.08%) (init = 5e-07)
+    E0: -54.7998131 +/- 0.04277721 (0.08%) (init = 0)
+[[Correlations]] (unreported correlations are < 0.100)
+    C(t0, E0) = -0.9964
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

generate the energy axis#

+

Now that we have the calibration parameters, we can generate the energy axis for each spectrum

+
+
[27]:
+
+
+
sp.append_energy_axis()
+
+
+
+
+
+
+
+
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:33:21
+INFO - Dask DataFrame Structure:
+              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
+npartitions=5
+               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+Dask Name: assign, 37 graph layers
+
+
+

Lets have a look at the dataset, and the columns we added.

+
+
[28]:
+
+
+
sp.dataframe[['dldTime','dldTimeSteps','energy','dldSectorID']].head()
+
+
+
+
+
[28]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
dldTimedldTimeStepsenergydldSectorID
0696.4718474231.066406-2.6487141
1696.5781034231.711914-2.6641870
2697.8375074239.362793-2.8464731
3697.7014324238.536133-2.8268744
4745.1970124527.071777-8.4657461
+
+
+
+
+

Bin in energy#

+

With the newly added column, we can now bin directly in energy

+
+
[29]:
+
+
+
axes: List[str] = ['sampleBias', 'energy']
+bins: List[int] = [5, 500]
+ranges: List[List[int]] = [[28,33], [-10,10]]
+res: xr.DataArray = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[30]:
+
+
+
plt.figure() # if you are using interactive plots, you'll need to generate a new figure explicitly every time.
+res.mean('sampleBias').plot.line(x='energy',linewidth=3)
+res.plot.line(x='energy',linewidth=1,alpha=.5);
+
+
+
+
+
+
+
+
+
+
+
+

correct offsets#

+

The energy axis is now correct, taking the sample bias of the measurement into account. Additionally, we can compensate the photon energy (monochromatorPhotonEnergy) and the tofVoltage.

+
+
[31]:
+
+
+
sp.add_energy_offset(
+    columns=['monochromatorPhotonEnergy','tofVoltage'],
+    weights=[-1,-1],
+    preserve_mean=[True, True],
+)
+
+
+
+
+
+
+
+
+INFO - Adding energy offset to dataframe:
+INFO - Energy offset parameters:
+   Column[monochromatorPhotonEnergy]: Weight=-1, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1, Preserve Mean: True, Reductions: None.
+INFO - Dask DataFrame Structure:
+              trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
+npartitions=5
+               uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+...               ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                  ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+Dask Name: assign, 67 graph layers
+
+
+

Now we bin again and see the result

+
+
[32]:
+
+
+
axes = ['sampleBias', 'energy']
+bins = [5, 500]
+ranges = [[28,33], [-10,2]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[33]:
+
+
+
plt.figure()
+ax = plt.subplot(111)
+res.energy.attrs['unit'] = 'eV' # add units to the axes
+res.mean('sampleBias').plot.line(x='energy',linewidth=3, ax=ax)
+res.plot.line(x='energy',linewidth=1,alpha=.5,label='all',ax=ax);
+
+
+
+
+
+
+
+
+
+
+
+

save the calibration parameters#

+

The parameters we have found can be saved to a file, so that we can use them later. This means the calibration can be used for different runs.

+
+
[34]:
+
+
+
sp.save_energy_calibration()
+sp.save_energy_offset()
+
+
+
+
+
+
+
+
+INFO - Saved energy calibration parameters to "sed_config.yaml".
+INFO - Saved energy offset parameters to "sed_config.yaml".
+
+
+

A more general function, which saves parameters for all the calibrations performed. Use either the above or below function. They are equivalent (and overwrite each other)

+
+
[35]:
+
+
+
sp.save_workflow_params()
+
+
+
+
+
+
+
+
+INFO - Saved energy calibration parameters to "sed_config.yaml".
+INFO - Saved energy offset parameters to "sed_config.yaml".
+
+
+
+
+
+

Correct delay axis#

+

To calibrate the pump-probe delay axis, we need to shift the delay stage values to center the pump-probe-time overlap time zero. Also, we want to correct the SASE jitter, using information from the bam column.

+

Here we load multiple runs at once

+
+
[36]:
+
+
+
sp = SedProcessor(
+    runs=[44824,44825,44826,44827],
+    config=config_override,
+    system_config=config_file,
+    collect_metadata=False,
+)
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 62 total.
+loading complete in  0.24 s
+
+
+
+

Run the workflow from the config file#

+

as we have saved some calibration and correction parameters, we can now run the workflow from the config file. This is done by calling each of the correction functions, with no parameters. The functions will then load the parameters from the config file.

+
+
[37]:
+
+
+
sp.add_jitter()
+sp.align_dld_sectors()
+sp.append_energy_axis()
+sp.add_energy_offset()
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+INFO - Aligning 8s sectors of dataframe
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 16 graph layers
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:33:21
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 31 graph layers
+INFO - Adding energy offset to dataframe:
+INFO - Using energy offset parameters generated on 03/06/2025, 09:33:23
+INFO - Energy offset parameters:
+   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 61 graph layers
+
+
+
+
+

plot the delayStage values#

+
+
[38]:
+
+
+
axes = ['energy','delayStage']
+bins = [100,150]
+delay_start,delay_stop=1462.00,1464.85
+ranges = [[-5,2], [delay_start,delay_stop]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[39]:
+
+
+
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+res.plot(robust=True, ax=ax[0])
+bg = res.isel(delayStage=slice(0,10)).mean('delayStage')
+(res-bg).plot(robust=True, ax=ax[1])
+
+
+
+
+
[39]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f781c920100>
+
+
+
+
+
+
+
+
+
+
[40]:
+
+
+
sp.add_delay_offset(
+    constant=-1463.7, # this is time zero
+    flip_delay_axis=True, # invert the direction of the delay axis
+    columns=['bam'], # use the bam to offset the values
+    weights=[-0.001], # bam is in fs, delay in ps
+    preserve_mean=True # preserve the mean of the delay axis
+)
+
+
+
+
+
+
+
+
+INFO - Adding delay offset to dataframe:
+INFO - Delay offset parameters:
+   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
+   Constant: -1463.7
+   Flip delay axis: True
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 81 graph layers
+
+
+
+
[41]:
+
+
+
sp.dataframe # This has generated too many layers, there is room for improvement!
+
+
+
+
+
[41]:
+
+
+
+
Dask DataFrame Structure:
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorIDenergy
npartitions=62
uint32int64int64float64float64float32float32float32float64float32float32float64float32float32float32float32float32float32float32int8float64
...............................................................
..................................................................
...............................................................
...............................................................
+
+
Dask Name: assign, 81 graph layers
+
+
+
+

bin in the corrected delay axis#

+
+
[42]:
+
+
+
axes = ['energy','delayStage']
+bins = [100,150]
+delay_start,delay_stop=1462.00,1464.85
+ranges = [[-3,2], [-1.1, 1.75]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[43]:
+
+
+
fig,ax = plt.subplots(1,2,figsize=(6,2.25))
+res.plot(robust=True, ax=ax[0])
+bg = res.sel(delayStage=slice(-1,-0.2)).mean('delayStage')
+(res-bg).plot(robust=True, ax=ax[1])
+fig.tight_layout()
+
+
+
+
+
+
+
+
+
+

You may note some intensity variation along the delay axis. This comes mainly from inhomogeneous speed of the delay stage, and thus inequivalent amounts of time spent on every delay point. This can be corrected for by normalizing the data to the acquisition time per delay point:

+
+
[44]:
+
+
+
res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+res.plot(robust=True, ax=ax[0])
+bg = res.sel(delayStage=slice(-1,-.2)).mean('delayStage')
+(res-bg).plot(robust=True, ax=ax[1])
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[44]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f7810090340>
+
+
+
+
+
+
+
+
+
+
+

save parameters#

+

as before, we can save the parameters we just used in the config for the next run

+
+
[45]:
+
+
+
sp.save_delay_offsets()
+
+
+
+
+
+
+
+
+INFO - Saved delay offset parameters to "sed_config.yaml".
+
+
+
+
+
+

Run workflow entirely from config.#

+

Once all the calibrations are done, a new run can be loaded by simply calling all the calibration functions.

+
+
[46]:
+
+
+
from sed.core.config import load_config
+import numpy as np
+metadata = load_config(meta_path + "/44824_20230324T060430.json")
+
+# Fix metadata
+metadata["scientificMetadata"]["Laser"]["wavelength"]["value"] = float(metadata["scientificMetadata"]["Laser"]["wavelength"]["value"][:-2])
+metadata["scientificMetadata"]["Laser"]["energy"] = {"value": 1239.84/metadata["scientificMetadata"]["Laser"]["wavelength"]["value"], "unit": "eV"}
+metadata["scientificMetadata"]["Laser"]["polarization"] = [1, 1, 0, 0]
+metadata["scientificMetadata"]["Collection"]["field_aperture_x"] = float(metadata["scientificMetadata"]["Collection"]["field_aperture_x"])
+metadata["scientificMetadata"]["Collection"]["field_aperture_y"] = float(metadata["scientificMetadata"]["Collection"]["field_aperture_y"])
+metadata["pi"] = {"institute": "JGU Mainz"}
+metadata["proposer"] = {"institute": "TU Dortmund"}
+
+
+
+
+
[47]:
+
+
+
sp = SedProcessor(
+    runs=[44824,44825,44826,44827],
+    config=config_override,
+    system_config=config_file,
+    metadata = metadata,
+    collect_metadata=False,
+)
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 62 total.
+loading complete in  0.16 s
+
+
+
+
[48]:
+
+
+
sp.add_jitter()
+sp.align_dld_sectors()
+sp.append_tof_ns_axis()
+sp.append_energy_axis()
+sp.add_energy_offset()
+sp.add_delay_offset()
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+INFO - Aligning 8s sectors of dataframe
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 16 graph layers
+INFO - Adding time-of-flight column in nanoseconds to dataframe.
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 22 graph layers
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:33:21
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+Dask Name: assign, 37 graph layers
+INFO - Adding energy offset to dataframe:
+INFO - Using energy offset parameters generated on 03/06/2025, 09:33:23
+INFO - Energy offset parameters:
+   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+Dask Name: assign, 67 graph layers
+INFO - Adding delay offset to dataframe:
+INFO - Using delay offset parameters generated on 03/06/2025, 09:35:12
+INFO - Delay offset parameters:
+   Constant: -1463.7
+   Flip delay axis: True
+   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID  dldTime   energy
+npartitions=62
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...      ...
+Dask Name: assign, 87 graph layers
+
+
+
+

Compute the results#

+
+
[49]:
+
+
+
axes = ['energy','delayStage']
+bins = [100,150]
+delay_start,delay_stop=1462.00,1464.85
+ranges = [[-5,2], [-1.1, 1.75]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[50]:
+
+
+
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+res.plot(robust=True, ax=ax[0])
+bg = res.sel(delayStage=slice(-1,-.2)).mean('delayStage')
+(res-bg).plot(robust=True, ax=ax[1])
+
+
+
+
+
[50]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f7800bfe050>
+
+
+
+
+
+
+
+
+
+
+
+

Save results#

+

binned data can now be saved as h5 or tiff. igor binaries soon to come if requested!

+
+
[51]:
+
+
+
sp.save('runs44824-27.h5')
+
+
+
+
+
+
+
+
+saving data to runs44824-27.h5
+Saved creation_date as string.
+Saved creation_date as string.
+Saved creation_date as string.
+Saving complete!
+
+
+
+
[52]:
+
+
+
sp.save('runs44824-27.tiff')
+
+
+
+
+
+
+
+
+Successfully saved runs44824-27.tiff
+ Axes order: ['delayStage', 'energy', 'C', 'Y', 'X', 'S']
+
+
+
+
[53]:
+
+
+
sp.save("runs44824-27.nxs")
+
+
+
+
+
+
+
+
+Using mpes reader to convert the given files:
+• ../src/sed/config/NXmpes_config-HEXTOF.json
+The output file generated: runs44824-27.nxs.
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/sed/latest/tutorial/5_sxp_workflow.html b/sed/v1.0.0/tutorial/5_sxp_workflow.html similarity index 69% rename from sed/latest/tutorial/5_sxp_workflow.html rename to sed/v1.0.0/tutorial/5_sxp_workflow.html index 4394139..84a7e5a 100644 --- a/sed/latest/tutorial/5_sxp_workflow.html +++ b/sed/v1.0.0/tutorial/5_sxp_workflow.html @@ -8,7 +8,7 @@ - Tutorial for binning data from the SXP instrument at the European XFEL — SED 1.0.0a1.dev19+gf1bb527 documentation + Tutorial for binning data from the SXP instrument at the European XFEL — SED 1.0.0 documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

@@ -576,7 +576,7 @@

Load Au/Mica data
-
+
@@ -720,7 +720,7 @@

Channel Histograms
-
+

@@ -741,7 +741,7 @@

PulseIds, ElectronIds
-
+

We can also inspect the counts per train as function of the trainId and the pulseId, which gives us a good idea about the evolution of the count rate over the run(s)

-
+

@@ -800,7 +800,7 @@

Spectrum vs. MicrobunchId
-
+

We see that the background below the Au 4f core levels slightly changes with microbunch ID. The origin of this is not quite clear yet.

-
+
@@ -892,7 +892,7 @@

time-of-flight spectrum
-
+

@@ -932,7 +932,7 @@

Load energy calibration files
-
+

@@ -1120,7 +1120,7 @@

Load bias series
-
+

@@ -1140,19 +1140,19 @@

find calibration parameters
-
+
-
+
-
+
-
+

@@ -1266,10 +1266,10 @@

Bin data with energy axis
-
+

@@ -1384,7 +1384,7 @@

Correct delay stage offset.
-
+
[ ]:
@@ -1436,7 +1436,7 @@ 

Correct delay stage offset. -{"state": {"21b434e96b554d9584e9046f7a8a93bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32246f6e4fb24935a70daa83ac397486": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_21b434e96b554d9584e9046f7a8a93bf", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_0b288839be3c46c091ceb3dc29b515c8", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "791acd41223943aa9bfca3e79479420a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b288839be3c46c091ceb3dc29b515c8": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_791acd41223943aa9bfca3e79479420a", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "6bc6f6f8607c4989aa0715a1956adbc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78619a61038b42c79e5f962cc3fb3911": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_6bc6f6f8607c4989aa0715a1956adbc9", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_fca4a3596f9847aab58f716cc6b36358", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "10269d6b1266444dae2108857fd55066": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fca4a3596f9847aab58f716cc6b36358": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_10269d6b1266444dae2108857fd55066", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "afcb66fa1a164658b3f4747214dd5e3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4d6a8ee36114b8c88e3ec3a4450cd4d": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 200.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_afcb66fa1a164658b3f4747214dd5e3c", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_96a6e96977524ef8a745e30cf3e09628", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "b1d799744c2f4042909d74346d52409d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96a6e96977524ef8a745e30cf3e09628": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_b1d799744c2f4042909d74346d52409d", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "7ef98c3f64d0464d87d71744a92a204c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60c155ea24a64aecbc01afc064ec8a74": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_7ef98c3f64d0464d87d71744a92a204c", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_0e458a6747c3459fb2caea357c500281", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "6690cb6a25884325bf6c5f0f0cc91b3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e458a6747c3459fb2caea357c500281": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_6690cb6a25884325bf6c5f0f0cc91b3a", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "8e3ad6e7126c4e81a0e8da4dd1ac10b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "31882b2f19fe48049fb0f81c6e34037e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ab97e28a9d7640868d67bf7d00dc6bff": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e3ad6e7126c4e81a0e8da4dd1ac10b7", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_31882b2f19fe48049fb0f81c6e34037e", "tabbable": null, "tooltip": null, "value": 22.0}}, "a465772dc6834e358d82f71c897a1acf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4e5057b342047f49d4970cfc87fff39": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e5a48da9ef2841d8b404ed166a4cd3f2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a465772dc6834e358d82f71c897a1acf", "placeholder": "\u200b", "style": "IPY_MODEL_e4e5057b342047f49d4970cfc87fff39", "tabbable": null, "tooltip": null, "value": "100%"}}, "c786928297b64924b70e4b13a5a6af2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "969070020a2847d08363982954ed5336": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5bbc1e6333742419fc426d90f36ae01": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c786928297b64924b70e4b13a5a6af2c", "placeholder": "\u200b", "style": "IPY_MODEL_969070020a2847d08363982954ed5336", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:02<00:00,\u200717.22it/s]"}}, "40b35dcd8a0340daa83bf5dbe551547f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a57fbf48791e4ba6b1439287a01c7f54": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e5a48da9ef2841d8b404ed166a4cd3f2", "IPY_MODEL_ab97e28a9d7640868d67bf7d00dc6bff", "IPY_MODEL_c5bbc1e6333742419fc426d90f36ae01"], "layout": "IPY_MODEL_40b35dcd8a0340daa83bf5dbe551547f", "tabbable": null, "tooltip": null}}, "077566c53eb744058eb83af9f21cc5c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f788b5e3e7284c5190dcd0a3a96a7966": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "67e89857bf29414db06e1a5786096815": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_077566c53eb744058eb83af9f21cc5c5", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f788b5e3e7284c5190dcd0a3a96a7966", "tabbable": null, "tooltip": null, "value": 22.0}}, "5875ea8bf6c94c98bb34b27ab896cd1c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad307a34371544a38bb03f3c80457231": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ff5f6732a13644558b23e7440942ee23": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5875ea8bf6c94c98bb34b27ab896cd1c", "placeholder": "\u200b", "style": "IPY_MODEL_ad307a34371544a38bb03f3c80457231", "tabbable": null, "tooltip": null, "value": "100%"}}, "f6ae2d94b5c241eeb6fafb7e1666cc08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dc5f70e82084a09b360d2a883dff97f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a7e920c0f17489b99560c0a4534dfd4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f6ae2d94b5c241eeb6fafb7e1666cc08", "placeholder": "\u200b", "style": "IPY_MODEL_7dc5f70e82084a09b360d2a883dff97f", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200719.74it/s]"}}, "110dd6c489604e60959f35ab361681cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06a419669a0b4b939f89d94632afb929": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ff5f6732a13644558b23e7440942ee23", "IPY_MODEL_67e89857bf29414db06e1a5786096815", "IPY_MODEL_6a7e920c0f17489b99560c0a4534dfd4"], "layout": "IPY_MODEL_110dd6c489604e60959f35ab361681cb", "tabbable": null, "tooltip": null}}, "1a80af0d3cf8461c8c09da9ab4bdf2b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc563f5d6cdb4a63b16b4eeb3775d1cc": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_1a80af0d3cf8461c8c09da9ab4bdf2b3", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_f4efb353a78447139f3c866062cf3660", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "4c848e01b77f4557be6563c178c78c64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4efb353a78447139f3c866062cf3660": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_4c848e01b77f4557be6563c178c78c64", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "25810df97c164bbfbb24b204f60e6c37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30b616be04a04b8b91b9f25cbe86b053": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_25810df97c164bbfbb24b204f60e6c37", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_a13b395b57e346f79239a1b5dc730522", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "c995fd30435e4407839c0410b42d13a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a13b395b57e346f79239a1b5dc730522": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_c995fd30435e4407839c0410b42d13a6", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "51d7fce672f546ff8695ef205fddec07": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db53ca16e9c04e3898a4cb05f7b830db": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 200.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_51d7fce672f546ff8695ef205fddec07", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_2d7fdf59d43140768be3cfcf0f7bc5ff", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "70b168701fd2491d9b89894b677aeb80": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d7fdf59d43140768be3cfcf0f7bc5ff": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_70b168701fd2491d9b89894b677aeb80", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "5ca35ceca29d43b3afb62ef6547825a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad94ea241a6c41a2b813e7397138228c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db8031367c064348949d357cea1760d7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ca35ceca29d43b3afb62ef6547825a1", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ad94ea241a6c41a2b813e7397138228c", "tabbable": null, "tooltip": null, "value": 2.0}}, "310bc19ee1e04ccebf4435c0d340b4fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ab323f3908246118e52e15c79e3ed87": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "adf6e541a19f4c3b90b0a93fc2b9d469": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_310bc19ee1e04ccebf4435c0d340b4fa", "placeholder": "\u200b", "style": "IPY_MODEL_7ab323f3908246118e52e15c79e3ed87", "tabbable": null, "tooltip": null, "value": "100%"}}, "ba0db293c36741ea8e46e5d95ef8ce66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "793b81ad07af4d90ab1012ee9746cb7d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "260175edf85b4e7ab122f862b4e6d5f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ba0db293c36741ea8e46e5d95ef8ce66", "placeholder": "\u200b", "style": "IPY_MODEL_793b81ad07af4d90ab1012ee9746cb7d", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u2007\u20072.38it/s]"}}, "3b4483359eba4f8ca63b320349e03ef5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e79fdd8ee9a4190947a6fb0d68a067f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_adf6e541a19f4c3b90b0a93fc2b9d469", "IPY_MODEL_db8031367c064348949d357cea1760d7", "IPY_MODEL_260175edf85b4e7ab122f862b4e6d5f4"], "layout": "IPY_MODEL_3b4483359eba4f8ca63b320349e03ef5", "tabbable": null, "tooltip": null}}, "28abb6ad60f64b899cb252a93d8953c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4aae2065634e45c9abe8e31efe2fbe36": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "08ff0a0405c14302b07803bc5668911e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28abb6ad60f64b899cb252a93d8953c5", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4aae2065634e45c9abe8e31efe2fbe36", "tabbable": null, "tooltip": null, "value": 2.0}}, "091bb8a43a5e41b889a73399292a0fdb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9af74897740c4594810af0bfa7d63c66": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc172e0d664b4a919b111836ace07b7b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_091bb8a43a5e41b889a73399292a0fdb", "placeholder": "\u200b", "style": "IPY_MODEL_9af74897740c4594810af0bfa7d63c66", "tabbable": null, "tooltip": null, "value": "100%"}}, "228bd362f7e9448bae34e2c024cf4f5a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d2a3b7670264e62bf34638e650db1ca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "125e312df2e54403814397df63697226": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_228bd362f7e9448bae34e2c024cf4f5a", "placeholder": "\u200b", "style": "IPY_MODEL_3d2a3b7670264e62bf34638e650db1ca", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200728.45it/s]"}}, "bede914b4a5d486b8906978da7982531": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4aab3868689945329dad3d0bfa319eff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dc172e0d664b4a919b111836ace07b7b", "IPY_MODEL_08ff0a0405c14302b07803bc5668911e", "IPY_MODEL_125e312df2e54403814397df63697226"], "layout": "IPY_MODEL_bede914b4a5d486b8906978da7982531", "tabbable": null, "tooltip": null}}, "636e99bd9663402e8a192ad61f5c29d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73103b833a3e4140ac1c32d8a58ab2b0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d6e694f28321455da792ba7dcb8111a2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_636e99bd9663402e8a192ad61f5c29d3", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_73103b833a3e4140ac1c32d8a58ab2b0", "tabbable": null, "tooltip": null, "value": 2.0}}, "12ef85e9f2cd418aa1fd82b31d93a280": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f2da9ae37b84b51896e193452257a90": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "96cfb6c7915d4b3fb5135b3c79256e0f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12ef85e9f2cd418aa1fd82b31d93a280", "placeholder": "\u200b", "style": "IPY_MODEL_9f2da9ae37b84b51896e193452257a90", "tabbable": null, "tooltip": null, "value": "100%"}}, "3873944d31754a3bbc20f529e7f31a0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77b0b05378694ba4a6c44a87b386db1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bad7ed23e72f4273bffb048e9d4f34a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3873944d31754a3bbc20f529e7f31a0c", "placeholder": "\u200b", "style": "IPY_MODEL_77b0b05378694ba4a6c44a87b386db1a", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200728.70it/s]"}}, "36659b3886284124a8515746a456b7e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9056212669d54e55aaa7e1ca91d67476": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_96cfb6c7915d4b3fb5135b3c79256e0f", "IPY_MODEL_d6e694f28321455da792ba7dcb8111a2", "IPY_MODEL_bad7ed23e72f4273bffb048e9d4f34a5"], "layout": "IPY_MODEL_36659b3886284124a8515746a456b7e6", "tabbable": null, "tooltip": null}}, "6bd7e1fbb853422bac9a20e4c3850068": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "318f83c95ec44aaaab0c228ed70c9de4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a663164c5f0a4e1c8952e47757186158": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6bd7e1fbb853422bac9a20e4c3850068", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_318f83c95ec44aaaab0c228ed70c9de4", "tabbable": null, "tooltip": null, "value": 2.0}}, "030b8b9092e748d188b8cff72771eb26": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1bde3d6b5d344092bea73f68bdd7e1c1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6d7ddfd7a96540a887266c7e6c21c644": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_030b8b9092e748d188b8cff72771eb26", "placeholder": "\u200b", "style": "IPY_MODEL_1bde3d6b5d344092bea73f68bdd7e1c1", "tabbable": null, "tooltip": null, "value": "100%"}}, "8613af5fd1d04257a3276736e304c9c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16e6e8a3610a477893b8035479bbc241": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6606e388e6744c78a3b16c8b2684e91": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8613af5fd1d04257a3276736e304c9c7", "placeholder": "\u200b", "style": "IPY_MODEL_16e6e8a3610a477893b8035479bbc241", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200728.24it/s]"}}, "b426bbeb4e474499b3f13f8feb9ac0b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6f71810b091435bba36f2467954d062": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6d7ddfd7a96540a887266c7e6c21c644", "IPY_MODEL_a663164c5f0a4e1c8952e47757186158", "IPY_MODEL_a6606e388e6744c78a3b16c8b2684e91"], "layout": "IPY_MODEL_b426bbeb4e474499b3f13f8feb9ac0b1", "tabbable": null, "tooltip": null}}, "f64b21f88d1d4cdb83e508a6d1fde2e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "092676488bac4f65b1fb96ddd5ed2673": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e20f13f8986f428cb6ecd86976c79c84": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f64b21f88d1d4cdb83e508a6d1fde2e6", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_092676488bac4f65b1fb96ddd5ed2673", "tabbable": null, "tooltip": null, "value": 2.0}}, "8b21124e54ad4929b4efc68856dbc843": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "472b3bf1c8994001b63a6d58a7c6a110": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4641ad4b40924a16bd887a3163982277": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b21124e54ad4929b4efc68856dbc843", "placeholder": "\u200b", "style": "IPY_MODEL_472b3bf1c8994001b63a6d58a7c6a110", "tabbable": null, "tooltip": null, "value": "100%"}}, "8e204e57d03b425ebbf36568d531758c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e74f392084e4fc898e86d72fa39a86e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "592fc479da62414e94d4d47ea607f235": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e204e57d03b425ebbf36568d531758c", "placeholder": "\u200b", "style": "IPY_MODEL_1e74f392084e4fc898e86d72fa39a86e", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200727.08it/s]"}}, "6d345e5060e34c6da6c9d10bd56f591d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37cdb1d7f42f46bebb896b64e221ae08": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4641ad4b40924a16bd887a3163982277", "IPY_MODEL_e20f13f8986f428cb6ecd86976c79c84", "IPY_MODEL_592fc479da62414e94d4d47ea607f235"], "layout": "IPY_MODEL_6d345e5060e34c6da6c9d10bd56f591d", "tabbable": null, "tooltip": null}}, "f372ccb11f594578a60e9f78fb43418a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29246253f035474d9448314dc890f752": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bb9788a4b38340d7864c7b4b324d067f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f372ccb11f594578a60e9f78fb43418a", "max": 4.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_29246253f035474d9448314dc890f752", "tabbable": null, "tooltip": null, "value": 4.0}}, "2c9ebd76fa7a4544890c9e85dcee35f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8589f66c61ca486ca24763ce5effc4a5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c6fe2be892d24c408a2f457f626e76cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c9ebd76fa7a4544890c9e85dcee35f5", "placeholder": "\u200b", "style": "IPY_MODEL_8589f66c61ca486ca24763ce5effc4a5", "tabbable": null, "tooltip": null, "value": "100%"}}, "32aa0734a12c48ab9fc6f125c92d33fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "658f9cf972594013b0ed88916a64925d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b627ce96d3bb4bd497486391dae9652f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32aa0734a12c48ab9fc6f125c92d33fc", "placeholder": "\u200b", "style": "IPY_MODEL_658f9cf972594013b0ed88916a64925d", "tabbable": null, "tooltip": null, "value": "\u20074/4\u2007[00:00<00:00,\u200720.24it/s]"}}, "ae2904aeac7b4d3095ad2eb23511ee3e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61d4a98e9258439e81f7055d7b36d1d3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c6fe2be892d24c408a2f457f626e76cc", "IPY_MODEL_bb9788a4b38340d7864c7b4b324d067f", "IPY_MODEL_b627ce96d3bb4bd497486391dae9652f"], "layout": "IPY_MODEL_ae2904aeac7b4d3095ad2eb23511ee3e", "tabbable": null, "tooltip": null}}, "bede38b61fa34b7a8988106fd8e01c53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8096ea96b2fc4fcdbddf3158b86c1567": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aac694bff6f24f17a070c946bae9165a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bede38b61fa34b7a8988106fd8e01c53", "max": 4.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8096ea96b2fc4fcdbddf3158b86c1567", "tabbable": null, "tooltip": null, "value": 4.0}}, "2df7274dcf934267aaed74a32c7016b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba775eab841544e7abf557722e0d7a5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "84d0cd12d4ef4d3ea60c2e9cfd97d1de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2df7274dcf934267aaed74a32c7016b5", "placeholder": "\u200b", "style": "IPY_MODEL_ba775eab841544e7abf557722e0d7a5f", "tabbable": null, "tooltip": null, "value": "100%"}}, "89135c3963bc44b6b74bfea3f4799bd8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d56bfc86f2894620b4918f789d598d2b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7be0f2904efc49b69252e0432548e145": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_89135c3963bc44b6b74bfea3f4799bd8", "placeholder": "\u200b", "style": "IPY_MODEL_d56bfc86f2894620b4918f789d598d2b", "tabbable": null, "tooltip": null, "value": "\u20074/4\u2007[00:00<00:00,\u200719.85it/s]"}}, "af47125e452b4c36b772a69d08832ae1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a8aec2420334857bcd2b6a91b90170d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_84d0cd12d4ef4d3ea60c2e9cfd97d1de", "IPY_MODEL_aac694bff6f24f17a070c946bae9165a", "IPY_MODEL_7be0f2904efc49b69252e0432548e145"], "layout": "IPY_MODEL_af47125e452b4c36b772a69d08832ae1", "tabbable": null, "tooltip": null}}, "56ac949d619043028fc6e01ad38adc2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b795a6a20b114d6e80705baeb9cdeb43": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5b0e0b0268634516953778aafc3bd53e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56ac949d619043028fc6e01ad38adc2b", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b795a6a20b114d6e80705baeb9cdeb43", "tabbable": null, "tooltip": null, "value": 2.0}}, "5f76de2f739d433d971e4301b4f724c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b894f84b3b3f4961a4ee0888744113e4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61c0cc1945b244928dbb5e0da6ff8adf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5f76de2f739d433d971e4301b4f724c2", "placeholder": "\u200b", "style": "IPY_MODEL_b894f84b3b3f4961a4ee0888744113e4", "tabbable": null, "tooltip": null, "value": "100%"}}, "e60bd856e67c4d599613d4f9132a74b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32b2c63c46534e05941e55ca328c67f7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fd414fa9cdc64215a52322926c08037a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e60bd856e67c4d599613d4f9132a74b1", "placeholder": "\u200b", "style": "IPY_MODEL_32b2c63c46534e05941e55ca328c67f7", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200727.25it/s]"}}, "451174aee33142c6a2619b892e39337c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b10f328cd0a48638074c2be7e74e351": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_61c0cc1945b244928dbb5e0da6ff8adf", "IPY_MODEL_5b0e0b0268634516953778aafc3bd53e", "IPY_MODEL_fd414fa9cdc64215a52322926c08037a"], "layout": "IPY_MODEL_451174aee33142c6a2619b892e39337c", "tabbable": null, "tooltip": null}}, "49daf0e8810d40b69d94a318613f8a45": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7588dea0b87949938bc313639d8053c5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8e6b03b9c45a49c089fd261bf4270398": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49daf0e8810d40b69d94a318613f8a45", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7588dea0b87949938bc313639d8053c5", "tabbable": null, "tooltip": null, "value": 2.0}}, "d58b9013baef4a02b9dbb83925131b2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4139cdb45abb48e98350e8436cb75699": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1827eec9a04f413cba7697029f707a37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d58b9013baef4a02b9dbb83925131b2e", "placeholder": "\u200b", "style": "IPY_MODEL_4139cdb45abb48e98350e8436cb75699", "tabbable": null, "tooltip": null, "value": "100%"}}, "fddf2f42fc7c41ec8afb1e4933177a2f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b269b56680dd43b5adffaa0136c6fe59": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "87a142966c814abe850c094eb7ec9a99": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fddf2f42fc7c41ec8afb1e4933177a2f", "placeholder": "\u200b", "style": "IPY_MODEL_b269b56680dd43b5adffaa0136c6fe59", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200726.52it/s]"}}, "41205034ea78495dbe1f32e6fb9b9f55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60d0abfd885f454aa8152dd72c591caa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1827eec9a04f413cba7697029f707a37", "IPY_MODEL_8e6b03b9c45a49c089fd261bf4270398", "IPY_MODEL_87a142966c814abe850c094eb7ec9a99"], "layout": "IPY_MODEL_41205034ea78495dbe1f32e6fb9b9f55", "tabbable": null, "tooltip": null}}, "dd049de7a69d41d6a367604b8855a795": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5dbc134b8a804fa787233cbe719f9878": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a867fe0313044049844725d40067771b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd049de7a69d41d6a367604b8855a795", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5dbc134b8a804fa787233cbe719f9878", "tabbable": null, "tooltip": null, "value": 2.0}}, "33ad92b00ef54241b82e7a7d29d9a159": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2abc9815b3b48bcb33475b355f2c37c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f54a47d913814fdcbe2971df90edde74": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_33ad92b00ef54241b82e7a7d29d9a159", "placeholder": "\u200b", "style": "IPY_MODEL_f2abc9815b3b48bcb33475b355f2c37c", "tabbable": null, "tooltip": null, "value": "100%"}}, "072b66a2bdc64ff780072266c480b9ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25593db9dd914ce6814a32dd8d26b74c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9de9d3073e84b0fb4f7da835564cff2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_072b66a2bdc64ff780072266c480b9ea", "placeholder": "\u200b", "style": "IPY_MODEL_25593db9dd914ce6814a32dd8d26b74c", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200726.55it/s]"}}, "824734c5a049491cb52736533507eea4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55ff233002e541088da6bbb53ada8424": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f54a47d913814fdcbe2971df90edde74", "IPY_MODEL_a867fe0313044049844725d40067771b", "IPY_MODEL_d9de9d3073e84b0fb4f7da835564cff2"], "layout": "IPY_MODEL_824734c5a049491cb52736533507eea4", "tabbable": null, "tooltip": null}}, "01d7f326798d4ac89ceb382e2668035b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0db7a155aecb48bbbf3154c66a222209": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c01d4b6ae544f84a160acce78fc1af2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_01d7f326798d4ac89ceb382e2668035b", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0db7a155aecb48bbbf3154c66a222209", "tabbable": null, "tooltip": null, "value": 2.0}}, "26c761f5cbbf44958371b8fb1536a73c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6dfd6057271d443082e48645879e5635": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6ae51f2fde344d45b6dfe88bec71a9f8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26c761f5cbbf44958371b8fb1536a73c", "placeholder": "\u200b", "style": "IPY_MODEL_6dfd6057271d443082e48645879e5635", "tabbable": null, "tooltip": null, "value": "100%"}}, "d34ab757dbea43ab851220a873f1d6cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40be143beab045a28f9581f627a3b186": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "86f04c10d58541b09fa251a75cedd4bf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d34ab757dbea43ab851220a873f1d6cc", "placeholder": "\u200b", "style": "IPY_MODEL_40be143beab045a28f9581f627a3b186", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200727.05it/s]"}}, "f15a0921d367442284fe26945fa27a47": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b341ff1e2b344ae2a37fe308eaa4db63": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6ae51f2fde344d45b6dfe88bec71a9f8", "IPY_MODEL_6c01d4b6ae544f84a160acce78fc1af2", "IPY_MODEL_86f04c10d58541b09fa251a75cedd4bf"], "layout": "IPY_MODEL_f15a0921d367442284fe26945fa27a47", "tabbable": null, "tooltip": null}}, "32d947518b304e829efd930d265b3044": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8fa3bccc43a14e8abbbfdb10ab6b9a95": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_32d947518b304e829efd930d265b3044", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_546a04f5183b4eb3bb75846d05d88942", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "79a84d037ae74e7698fe989cd9869e94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "546a04f5183b4eb3bb75846d05d88942": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_79a84d037ae74e7698fe989cd9869e94", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "6d8e92085ad247b792fdd7662e3ac2f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54c01d30fd444f49ac22d46c0f7ff3cf": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_6d8e92085ad247b792fdd7662e3ac2f5", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_d89e88136316429fa12d3f9b30dd20a2", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "176edd07731c4c39aa7250424abba052": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d89e88136316429fa12d3f9b30dd20a2": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_176edd07731c4c39aa7250424abba052", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "7bf305d7d26942e9a9761c88b7239df1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b054e692786440118126289fbc649e9a": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "7142e977c2974d519af0dfb23483dc78": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntSliderView", "behavior": "drag-tap", "continuous_update": true, "description": "refid", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7bf305d7d26942e9a9761c88b7239df1", "max": 10, "min": 0, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_b054e692786440118126289fbc649e9a", "tabbable": null, "tooltip": null, "value": 6}}, "88fc44d95ce5448bbd0dccb07e7bfb5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06af101450e74b1cb2741554f217e4af": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "5e9caa1e105a45f6ab0f63748679a4c5": {"model_name": "IntRangeSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "IntRangeSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntRangeSliderView", "behavior": "drag-tap", "continuous_update": true, "description": "ranges", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_88fc44d95ce5448bbd0dccb07e7bfb5b", "max": 24988, "min": 1000, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_06af101450e74b1cb2741554f217e4af", "tabbable": null, "tooltip": null, "value": [6380, 6700]}}, "41c8d581dd734154ba0918b33113d17d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70da010dbd3c4b438d3c48f1b46ba43d": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_7142e977c2974d519af0dfb23483dc78", "IPY_MODEL_5e9caa1e105a45f6ab0f63748679a4c5", "IPY_MODEL_06c88523eedc4c3187e824c1ab07b4b2"], "layout": "IPY_MODEL_41c8d581dd734154ba0918b33113d17d", "tabbable": null, "tooltip": null}}, "9ae261817fb0420b95b30d95a274bc18": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06c88523eedc4c3187e824c1ab07b4b2": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_9ae261817fb0420b95b30d95a274bc18", "msg_id": "", "outputs": [], "tabbable": null, "tooltip": null}}, "18c6a8fd89ff460ea1617d96bca6a016": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "949fed3c1ece4940a560be8e0d718249": {"model_name": "ButtonStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null}}, "7ff233b6005f4eff9c15ba675cdfe364": {"model_name": "ButtonModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "apply", "disabled": false, "icon": "", "layout": "IPY_MODEL_18c6a8fd89ff460ea1617d96bca6a016", "style": "IPY_MODEL_949fed3c1ece4940a560be8e0d718249", "tabbable": null, "tooltip": null}}, "d8727b6a37b34435936dbb3c35b1eaec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4e41e5312c6499291ea6a4f53976a61": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_d8727b6a37b34435936dbb3c35b1eaec", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_153233dd4b134aea9e7481f5f7896766", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "b9fc44ef4381405389c6d252cfc67f33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "153233dd4b134aea9e7481f5f7896766": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_b9fc44ef4381405389c6d252cfc67f33", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "8d8d377054ff4dcb8277830a86f4c646": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b34bec3fec34072901c468bdb8ad677": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_8d8d377054ff4dcb8277830a86f4c646", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_9dfc9329e2e54e4daf712571f650c8c7", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "ddd81fb768924e0088efe2333a46c398": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9dfc9329e2e54e4daf712571f650c8c7": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_ddd81fb768924e0088efe2333a46c398", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "718b7bf70e314e10a4a6cc4c62add1a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e5698df59f540c7b595c290b6f435f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "417df9da49da4e848d4929ce6f8021ce": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_718b7bf70e314e10a4a6cc4c62add1a6", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5e5698df59f540c7b595c290b6f435f0", "tabbable": null, "tooltip": null, "value": 22.0}}, "1a64fe9b45c64331960c2cdfa964bcba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e909f1bd75444d381eac91acd2364d2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7fda022966904de4bbaa881846ca38f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a64fe9b45c64331960c2cdfa964bcba", "placeholder": "\u200b", "style": "IPY_MODEL_5e909f1bd75444d381eac91acd2364d2", "tabbable": null, "tooltip": null, "value": "100%"}}, "24a04038997c4f3ab028884268deec8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccfa7057a81647bd9dd7448d74ab5c40": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "46f9ff995555479aa5aed0e501e94fe7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24a04038997c4f3ab028884268deec8c", "placeholder": "\u200b", "style": "IPY_MODEL_ccfa7057a81647bd9dd7448d74ab5c40", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200714.00it/s]"}}, "45e262d8166746f0943277ac948c4d51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b00b95e86e244dffad08eb85d7569483": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7fda022966904de4bbaa881846ca38f4", "IPY_MODEL_417df9da49da4e848d4929ce6f8021ce", "IPY_MODEL_46f9ff995555479aa5aed0e501e94fe7"], "layout": "IPY_MODEL_45e262d8166746f0943277ac948c4d51", "tabbable": null, "tooltip": null}}, "7d47cbbd3328479986cba8235a35bc9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20cd252b2ab542bb8c3a741347b0435b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cdf941fecc234b1e95ef2915f84bfdf0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d47cbbd3328479986cba8235a35bc9b", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_20cd252b2ab542bb8c3a741347b0435b", "tabbable": null, "tooltip": null, "value": 22.0}}, "d1ad97900e144755a68ae0d0daaca283": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79b21346a7de46b78400943ee4733db4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6f78647a21244fc2bf20db1fd88848da": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1ad97900e144755a68ae0d0daaca283", "placeholder": "\u200b", "style": "IPY_MODEL_79b21346a7de46b78400943ee4733db4", "tabbable": null, "tooltip": null, "value": "100%"}}, "ff014b3dfcca4ad3aa0a5931f0d7da9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "647b80127c624770825459d61e854e50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f3464eb3840a4d7e8a1e8cbed56d6fc2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff014b3dfcca4ad3aa0a5931f0d7da9e", "placeholder": "\u200b", "style": "IPY_MODEL_647b80127c624770825459d61e854e50", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200715.88it/s]"}}, "33e3686dce29443da3c2cebf6e313fce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fb51d363b7848c883f544820300f47b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6f78647a21244fc2bf20db1fd88848da", "IPY_MODEL_cdf941fecc234b1e95ef2915f84bfdf0", "IPY_MODEL_f3464eb3840a4d7e8a1e8cbed56d6fc2"], "layout": "IPY_MODEL_33e3686dce29443da3c2cebf6e313fce", "tabbable": null, "tooltip": null}}, "17fc26fd45fb4ca9a55dd8159dab1809": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c65fb77b0e94bcbb4cf545531223d99": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [400.0, 300.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_17fc26fd45fb4ca9a55dd8159dab1809", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_6a1e3e31f4424fbf8b0306582ce5dcef", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "b11c01637a024920a990aebe66ff84ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a1e3e31f4424fbf8b0306582ce5dcef": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_b11c01637a024920a990aebe66ff84ef", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "410b313272f64644a77e425753431f78": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "256b718c0d5d45e8809d6f4c1cb2e340": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8d4e6144fdb24568a7c0925c0b394faa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_410b313272f64644a77e425753431f78", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_256b718c0d5d45e8809d6f4c1cb2e340", "tabbable": null, "tooltip": null, "value": 22.0}}, "077e151dd1244b0da251be2006b3474e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fd544a96e3d4140b02358d5f16ad4d8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8abd110770d54ae3ba6fefc48d575faa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_077e151dd1244b0da251be2006b3474e", "placeholder": "\u200b", "style": "IPY_MODEL_7fd544a96e3d4140b02358d5f16ad4d8", "tabbable": null, "tooltip": null, "value": "100%"}}, "6f3fd3307dc741c2b89a43accfa2066f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2527dcbfb8847ab9d46434f9e85095c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2566ae14180e4d17808736f4b24f1924": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f3fd3307dc741c2b89a43accfa2066f", "placeholder": "\u200b", "style": "IPY_MODEL_d2527dcbfb8847ab9d46434f9e85095c", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200713.60it/s]"}}, "907c7b5e7e70476ebaecb363375467b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5778db12034844b189b0d58f278097a1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8abd110770d54ae3ba6fefc48d575faa", "IPY_MODEL_8d4e6144fdb24568a7c0925c0b394faa", "IPY_MODEL_2566ae14180e4d17808736f4b24f1924"], "layout": "IPY_MODEL_907c7b5e7e70476ebaecb363375467b2", "tabbable": null, "tooltip": null}}, "3b379821d08243ffbcc6690dfa22d4a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19c6ef3a3a5f4a15bff1922a5b1d2d22": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "37237d506ab147d2b392dfff1ab29600": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b379821d08243ffbcc6690dfa22d4a7", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_19c6ef3a3a5f4a15bff1922a5b1d2d22", "tabbable": null, "tooltip": null, "value": 22.0}}, "71e114bda1a144af823c6c4ee3e1fb70": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3ff3d283cb1402ba0dfaa620ca1c9f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "305267ff1d2c4fab9514608463ca4afc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71e114bda1a144af823c6c4ee3e1fb70", "placeholder": "\u200b", "style": "IPY_MODEL_e3ff3d283cb1402ba0dfaa620ca1c9f9", "tabbable": null, "tooltip": null, "value": "100%"}}, "6fa12a709846497cbdebf20f3f3b77e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42df1fc668554fe58d8474c53d35e17b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bf6592004eae48e7bd0c4ed763d61b69": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fa12a709846497cbdebf20f3f3b77e6", "placeholder": "\u200b", "style": "IPY_MODEL_42df1fc668554fe58d8474c53d35e17b", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200716.38it/s]"}}, "221fde51bc1e423690843d6a6a27254b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50508232a2cf4697a4a6e5a046c3dd8c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_305267ff1d2c4fab9514608463ca4afc", "IPY_MODEL_37237d506ab147d2b392dfff1ab29600", "IPY_MODEL_bf6592004eae48e7bd0c4ed763d61b69"], "layout": "IPY_MODEL_221fde51bc1e423690843d6a6a27254b", "tabbable": null, "tooltip": null}}, "b9da8670506641d08e3c04a38c18cd31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2fe247df70184a1aa4176669155ccac4": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [400.0, 800.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_b9da8670506641d08e3c04a38c18cd31", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_519ac382da404aa2a244448cf1722747", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "094f3a9778c04b148ffaab2dfe6e82ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "519ac382da404aa2a244448cf1722747": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_094f3a9778c04b148ffaab2dfe6e82ad", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e762ee9362dc4ac2a6bdb3c758b99119": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "946544963c1d4303922e7e5f61291b85": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_e762ee9362dc4ac2a6bdb3c758b99119", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_bbebe479f33e4c8591d7ff7a85da5c94", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "76ec780a8bf94aeeaecd871d74a0f198": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbebe479f33e4c8591d7ff7a85da5c94": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_76ec780a8bf94aeeaecd871d74a0f198", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "6ced46d2ee98436c801a7034974b00e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4e69a50f9b34fb5b9680b35db4c04ea": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_6ced46d2ee98436c801a7034974b00e0", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_015ebaeb0e8643eb9889078860fdae8c", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "250d9eab97df4b52831951a61f01b5c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "015ebaeb0e8643eb9889078860fdae8c": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_250d9eab97df4b52831951a61f01b5c1", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "b1a3e1160a524189970c1e67dfdd6a88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "717cc2d42d104aa19ab69bfbb8411400": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 200.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_b1a3e1160a524189970c1e67dfdd6a88", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_56607adb5a5b47e189e80aebb4e62000", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "a1a918b43f0040d583c602fc24b99101": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56607adb5a5b47e189e80aebb4e62000": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_a1a918b43f0040d583c602fc24b99101", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "94f75894111a4eb1aed9f551bcc60456": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2ca8b8b7f584250b4d73025c6ae0120": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_94f75894111a4eb1aed9f551bcc60456", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_3b7815c161b74eac818b7d4bc2d10f9d", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "8e4946d4ac88461a9ed038a1be9ac4b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b7815c161b74eac818b7d4bc2d10f9d": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_8e4946d4ac88461a9ed038a1be9ac4b9", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "0107f0fbca6841ebaaa909fae1316d4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b62ea5c5311466f908da6421fc28111": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1ac4836332f34161b10b64a8b486af67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0107f0fbca6841ebaaa909fae1316d4d", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4b62ea5c5311466f908da6421fc28111", "tabbable": null, "tooltip": null, "value": 22.0}}, "71dc6311395640ba872c4fd62ec76649": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1af916a2269e4bd2bf7e4dcab8c907c3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd2061c80a084ca1a4b8e8cec9490c59": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71dc6311395640ba872c4fd62ec76649", "placeholder": "\u200b", "style": "IPY_MODEL_1af916a2269e4bd2bf7e4dcab8c907c3", "tabbable": null, "tooltip": null, "value": "100%"}}, "dbd68a3b29a942b89c67405fc18d692d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93d5bf363b1b4a35ba3333a84a189282": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4316975640804245819d72d36e1d9d05": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dbd68a3b29a942b89c67405fc18d692d", "placeholder": "\u200b", "style": "IPY_MODEL_93d5bf363b1b4a35ba3333a84a189282", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:02<00:00,\u200717.00it/s]"}}, "4b1ea5bdfc35482988c3689284c06011": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eee87da028ce4cd183a65ebb977b31c9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bd2061c80a084ca1a4b8e8cec9490c59", "IPY_MODEL_1ac4836332f34161b10b64a8b486af67", "IPY_MODEL_4316975640804245819d72d36e1d9d05"], "layout": "IPY_MODEL_4b1ea5bdfc35482988c3689284c06011", "tabbable": null, "tooltip": null}}, "5e23e715b049407e8e87b17273428bc0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9210a4f62dc94d6ba08cb616d67c3e08": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b1cdb0159c7048d0a7174783eacd1c23": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e23e715b049407e8e87b17273428bc0", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9210a4f62dc94d6ba08cb616d67c3e08", "tabbable": null, "tooltip": null, "value": 22.0}}, "8d26cc65ca874500a27b724c2616cd91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93df4e1310064a68963ba59f7ac8b9bc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "96540b240fe5418fab93ce7fd4cb42fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d26cc65ca874500a27b724c2616cd91", "placeholder": "\u200b", "style": "IPY_MODEL_93df4e1310064a68963ba59f7ac8b9bc", "tabbable": null, "tooltip": null, "value": "100%"}}, "838c9662914f4303950473f43cb382c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0ed24f50faf45aa9e45a06fe4f420df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eb9cbcaf35c84ed38d396f462fd4d8e0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_838c9662914f4303950473f43cb382c1", "placeholder": "\u200b", "style": "IPY_MODEL_f0ed24f50faf45aa9e45a06fe4f420df", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200720.49it/s]"}}, "c8a041b503a94371802291ab43609f31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c066f487e2bc4919b63da5195b3ea034": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_96540b240fe5418fab93ce7fd4cb42fd", "IPY_MODEL_b1cdb0159c7048d0a7174783eacd1c23", "IPY_MODEL_eb9cbcaf35c84ed38d396f462fd4d8e0"], "layout": "IPY_MODEL_c8a041b503a94371802291ab43609f31", "tabbable": null, "tooltip": null}}, "2d5a3c465904489ea8e0dc73f53823a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d1b7bb26d704625b698261805726722": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_2d5a3c465904489ea8e0dc73f53823a5", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_0744a65266fb4ce0b64f1d4673d558d5", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "602172e013db4ef49fd287337472df42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0744a65266fb4ce0b64f1d4673d558d5": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_602172e013db4ef49fd287337472df42", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "a1c8c57073224df0ab1bd4408c3df50e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb56f9702e9e47b0b69f97b99059c046": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_a1c8c57073224df0ab1bd4408c3df50e", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_c9e91e68e2ec439aa5b8cebfa0b4a974", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "c6df679f950f4f1981ea292aa61e8234": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9e91e68e2ec439aa5b8cebfa0b4a974": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_c6df679f950f4f1981ea292aa61e8234", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "14888bac6bf246969dcc95910f0ad2b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e824953dae74b8f9d5638f00835f904": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 200.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_14888bac6bf246969dcc95910f0ad2b8", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_f633a7f740d34c21b4e32fba10935956", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "bf5d6d8f12484e05a2ec391acbe28c0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f633a7f740d34c21b4e32fba10935956": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_bf5d6d8f12484e05a2ec391acbe28c0e", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "4210e734f45c4373bc3c764264511e4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ca0e0c116f74220a13e5ec695bd68f7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5582cda0ebaf414abef934bac8d75b10": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4210e734f45c4373bc3c764264511e4a", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9ca0e0c116f74220a13e5ec695bd68f7", "tabbable": null, "tooltip": null, "value": 2.0}}, "86617dd789114cc28ac136f71dee9383": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fe3ce64372943588d8aab4ae560f2cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea3a59f726f4423bb570a5d3da349108": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_86617dd789114cc28ac136f71dee9383", "placeholder": "\u200b", "style": "IPY_MODEL_1fe3ce64372943588d8aab4ae560f2cc", "tabbable": null, "tooltip": null, "value": "100%"}}, "5e9cbddc40bf40ee88aa4fe0f1d45373": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "776b9ef4c2bc4822816b87dde72cf5ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a0025be893354f589d02b53bc1d907aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e9cbddc40bf40ee88aa4fe0f1d45373", "placeholder": "\u200b", "style": "IPY_MODEL_776b9ef4c2bc4822816b87dde72cf5ea", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u2007\u20072.43it/s]"}}, "740ae6a99c4b4e368adb4839136abe89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "feed82398ff744ab8fd98ddbffe86e57": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ea3a59f726f4423bb570a5d3da349108", "IPY_MODEL_5582cda0ebaf414abef934bac8d75b10", "IPY_MODEL_a0025be893354f589d02b53bc1d907aa"], "layout": "IPY_MODEL_740ae6a99c4b4e368adb4839136abe89", "tabbable": null, "tooltip": null}}, "db1b8388402a4274ba46cad9ee72c612": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "866cce4a82ee428da823804a48c67dc0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c4aec42ef9cd4cea953e1d8516214c1e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_db1b8388402a4274ba46cad9ee72c612", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_866cce4a82ee428da823804a48c67dc0", "tabbable": null, "tooltip": null, "value": 2.0}}, "56ae712066774b61b83812fda7838b44": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c207984cb79d474eb18cb03c383f5b0e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "af5e67dc09c54aa8a47d78cdd36245f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56ae712066774b61b83812fda7838b44", "placeholder": "\u200b", "style": "IPY_MODEL_c207984cb79d474eb18cb03c383f5b0e", "tabbable": null, "tooltip": null, "value": "100%"}}, "767e3ee930b141078422e56110f4932f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f3ad8a3c7104a2ea1599416e52834fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4e774fa68ae745b79bf714d06e22eb66": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_767e3ee930b141078422e56110f4932f", "placeholder": "\u200b", "style": "IPY_MODEL_6f3ad8a3c7104a2ea1599416e52834fb", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200728.30it/s]"}}, "146136625079486882422b5274fdc897": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "209a3b8095ce4be4b47264e8f1e46177": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_af5e67dc09c54aa8a47d78cdd36245f5", "IPY_MODEL_c4aec42ef9cd4cea953e1d8516214c1e", "IPY_MODEL_4e774fa68ae745b79bf714d06e22eb66"], "layout": "IPY_MODEL_146136625079486882422b5274fdc897", "tabbable": null, "tooltip": null}}, "fac83ffc1a8e415eb229b06caa2d46ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c010baeb70a24540a774cee5c0bb0986": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0c3298a3f98e4fbead4ed90653908370": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fac83ffc1a8e415eb229b06caa2d46ea", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c010baeb70a24540a774cee5c0bb0986", "tabbable": null, "tooltip": null, "value": 2.0}}, "6c89ceeccc6943dc97696964b1971010": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95af1b252bd34b2f9d54f3a480cf2050": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "247ea7da04424017a5020817c106788c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c89ceeccc6943dc97696964b1971010", "placeholder": "\u200b", "style": "IPY_MODEL_95af1b252bd34b2f9d54f3a480cf2050", "tabbable": null, "tooltip": null, "value": "100%"}}, "2391a727565c49f2bef726894ee5d1b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f23c371cb8b4455cb14e1e5eb99b11e5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ee127f79767a4950a7409ef2fe687c85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2391a727565c49f2bef726894ee5d1b7", "placeholder": "\u200b", "style": "IPY_MODEL_f23c371cb8b4455cb14e1e5eb99b11e5", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200730.49it/s]"}}, "a5e23b84ed034e6aada2d33828815284": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2298d890b37844439f6579c2fd0e16ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_247ea7da04424017a5020817c106788c", "IPY_MODEL_0c3298a3f98e4fbead4ed90653908370", "IPY_MODEL_ee127f79767a4950a7409ef2fe687c85"], "layout": "IPY_MODEL_a5e23b84ed034e6aada2d33828815284", "tabbable": null, "tooltip": null}}, "c0c2e207ba934839b9387c9fd60e5181": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec3ca26e8a9d49dcbe772a978d5619ee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9bee564f2ae6437f8c08313d90d709a8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c0c2e207ba934839b9387c9fd60e5181", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec3ca26e8a9d49dcbe772a978d5619ee", "tabbable": null, "tooltip": null, "value": 2.0}}, "ebf0861493f24daa806529668dd2460b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "988c8b0f6f5748a8b99652c2b9378061": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5b79bb37e424b24ac03f4f867fb0296": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ebf0861493f24daa806529668dd2460b", "placeholder": "\u200b", "style": "IPY_MODEL_988c8b0f6f5748a8b99652c2b9378061", "tabbable": null, "tooltip": null, "value": "100%"}}, "8b13a0c9defc416ca2866426007d7084": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de6c232e33bb4f34ab49430e9bda87c7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5aeed018bf9549818eca2d455d95701c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b13a0c9defc416ca2866426007d7084", "placeholder": "\u200b", "style": "IPY_MODEL_de6c232e33bb4f34ab49430e9bda87c7", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200728.54it/s]"}}, "f3d9b7843da74c0cba349b89bf52f2e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d113f6bc67e49eda7c653f0a7735c51": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a5b79bb37e424b24ac03f4f867fb0296", "IPY_MODEL_9bee564f2ae6437f8c08313d90d709a8", "IPY_MODEL_5aeed018bf9549818eca2d455d95701c"], "layout": "IPY_MODEL_f3d9b7843da74c0cba349b89bf52f2e9", "tabbable": null, "tooltip": null}}, "cec905e79f2d47c2a7d89b2e30a07379": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f88c3f31a894247991b3752642779e8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c62a8f2a1991483f9c68c34c2608009a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cec905e79f2d47c2a7d89b2e30a07379", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4f88c3f31a894247991b3752642779e8", "tabbable": null, "tooltip": null, "value": 2.0}}, "45bc00b4d55c49c7a4bbec970f4d8b3e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d83ab4acc254df9a47725734a56c830": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "423c3f02b49b4627abe64063845aa3cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_45bc00b4d55c49c7a4bbec970f4d8b3e", "placeholder": "\u200b", "style": "IPY_MODEL_4d83ab4acc254df9a47725734a56c830", "tabbable": null, "tooltip": null, "value": "100%"}}, "952e9ccd16454935ae3f2f6f0d837ec7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0bf87a212c343b5a3c015efd36fdb60": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d7e64532012f4d898c9035e6097b6094": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_952e9ccd16454935ae3f2f6f0d837ec7", "placeholder": "\u200b", "style": "IPY_MODEL_b0bf87a212c343b5a3c015efd36fdb60", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200727.65it/s]"}}, "a11e314893954784bb0bec5ebeb7c6ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "285d803a34884e70a24e9d370083e401": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_423c3f02b49b4627abe64063845aa3cc", "IPY_MODEL_c62a8f2a1991483f9c68c34c2608009a", "IPY_MODEL_d7e64532012f4d898c9035e6097b6094"], "layout": "IPY_MODEL_a11e314893954784bb0bec5ebeb7c6ae", "tabbable": null, "tooltip": null}}, "ea2972af7ac84b10b7535673ef0ee8f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d33cc8a2779d4aceb4e4313fecab0e09": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "749ca410a9f9450cbbb111ff2a669a64": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea2972af7ac84b10b7535673ef0ee8f3", "max": 4.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d33cc8a2779d4aceb4e4313fecab0e09", "tabbable": null, "tooltip": null, "value": 4.0}}, "d3dfa19798cf44689617b8bc2bb9d827": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c88d82036adf431e9cc81fa2b471f349": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b98a32dafdaf4e069accae564e730248": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3dfa19798cf44689617b8bc2bb9d827", "placeholder": "\u200b", "style": "IPY_MODEL_c88d82036adf431e9cc81fa2b471f349", "tabbable": null, "tooltip": null, "value": "100%"}}, "eb7bae71218944c3a86380e143838cd6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42a5a75e2bc14c3092b99661665130fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "115c5758b86f4d21b8aad575acf69dcf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb7bae71218944c3a86380e143838cd6", "placeholder": "\u200b", "style": "IPY_MODEL_42a5a75e2bc14c3092b99661665130fd", "tabbable": null, "tooltip": null, "value": "\u20074/4\u2007[00:00<00:00,\u200720.47it/s]"}}, "44a6dfe888d64a42ae4442519cdbab73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3066173146a646cab46d8e57d830b90d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b98a32dafdaf4e069accae564e730248", "IPY_MODEL_749ca410a9f9450cbbb111ff2a669a64", "IPY_MODEL_115c5758b86f4d21b8aad575acf69dcf"], "layout": "IPY_MODEL_44a6dfe888d64a42ae4442519cdbab73", "tabbable": null, "tooltip": null}}, "3329e21b964245cca01c80dfef3d616b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e955a5f024804ef888ef24413623cf4e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "52917532899f419392402a3e9e2ba9d3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3329e21b964245cca01c80dfef3d616b", "max": 4.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e955a5f024804ef888ef24413623cf4e", "tabbable": null, "tooltip": null, "value": 4.0}}, "46be0a4c57f446dfaf870a087a7aba51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1058a2dd99ac49089b13e43ddc52a4b7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3e36be13f288464880b059d6987f56ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46be0a4c57f446dfaf870a087a7aba51", "placeholder": "\u200b", "style": "IPY_MODEL_1058a2dd99ac49089b13e43ddc52a4b7", "tabbable": null, "tooltip": null, "value": "100%"}}, "547978abf21a44b0b20bdc6db40fc016": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "265d6a37dc1c45aea3b8c486f56d047c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f64ad7a50aa44432800ed8246e5ba8f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_547978abf21a44b0b20bdc6db40fc016", "placeholder": "\u200b", "style": "IPY_MODEL_265d6a37dc1c45aea3b8c486f56d047c", "tabbable": null, "tooltip": null, "value": "\u20074/4\u2007[00:00<00:00,\u200720.64it/s]"}}, "2bcd48766d4840f59d41eebefbe98958": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5da6ede4d5c740cf80405aff8c4b2825": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3e36be13f288464880b059d6987f56ea", "IPY_MODEL_52917532899f419392402a3e9e2ba9d3", "IPY_MODEL_f64ad7a50aa44432800ed8246e5ba8f4"], "layout": "IPY_MODEL_2bcd48766d4840f59d41eebefbe98958", "tabbable": null, "tooltip": null}}, "f28f3c1f100b43eba2ea81b7f1c540f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "214146e5e6ac4b0a929014f4315ccafa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bacd61db0ad54c9abd979c95e8c0c886": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f28f3c1f100b43eba2ea81b7f1c540f2", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_214146e5e6ac4b0a929014f4315ccafa", "tabbable": null, "tooltip": null, "value": 2.0}}, "163f50c234704954afc925dddc0ea99b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52894ab621804f8f9400ea2a581b4ed9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "28c7ee3099c34f0d82ddf1603ac98673": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_163f50c234704954afc925dddc0ea99b", "placeholder": "\u200b", "style": "IPY_MODEL_52894ab621804f8f9400ea2a581b4ed9", "tabbable": null, "tooltip": null, "value": "100%"}}, "216b11b016294ac7bb0035e0a547cd2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "366779b5dd084dc7a9b67e56c909e2d3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "72dc3311fad54e53be46977680177327": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_216b11b016294ac7bb0035e0a547cd2b", "placeholder": "\u200b", "style": "IPY_MODEL_366779b5dd084dc7a9b67e56c909e2d3", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200728.87it/s]"}}, "e51f50731bee4c738870405469e6498d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba6c0e12448749388a7d55984893686f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_28c7ee3099c34f0d82ddf1603ac98673", "IPY_MODEL_bacd61db0ad54c9abd979c95e8c0c886", "IPY_MODEL_72dc3311fad54e53be46977680177327"], "layout": "IPY_MODEL_e51f50731bee4c738870405469e6498d", "tabbable": null, "tooltip": null}}, "06530a2847e74725917726431b74cfd5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e03ea7e2c74846baa25fba552f975754": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d1984f04b8541b69db91dd073709efc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_06530a2847e74725917726431b74cfd5", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e03ea7e2c74846baa25fba552f975754", "tabbable": null, "tooltip": null, "value": 2.0}}, "62bc883560314c2da87553b8a22ee8da": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79bf7b54080d4670be49338e18650e65": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5d6a260e4144a0a901db6387487783f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_62bc883560314c2da87553b8a22ee8da", "placeholder": "\u200b", "style": "IPY_MODEL_79bf7b54080d4670be49338e18650e65", "tabbable": null, "tooltip": null, "value": "100%"}}, "8e76a048b7ab4e54b357b7b8e6a60edc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee89abe09c494270acbbc841d31302de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "da02936c80a945308a1853ebb78c2984": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e76a048b7ab4e54b357b7b8e6a60edc", "placeholder": "\u200b", "style": "IPY_MODEL_ee89abe09c494270acbbc841d31302de", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200726.53it/s]"}}, "81bff4e515d144dc85e35f44a2f13a13": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78b3d042110e4266a7b1d7f30a0cef8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f5d6a260e4144a0a901db6387487783f", "IPY_MODEL_4d1984f04b8541b69db91dd073709efc", "IPY_MODEL_da02936c80a945308a1853ebb78c2984"], "layout": "IPY_MODEL_81bff4e515d144dc85e35f44a2f13a13", "tabbable": null, "tooltip": null}}, "08a5903652f0447a94cfba20095ad30f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b2bf4ef989e4bee83a127cfa4ee02f3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "19bd2445e3694e06afc825aba2a5ebe0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_08a5903652f0447a94cfba20095ad30f", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2b2bf4ef989e4bee83a127cfa4ee02f3", "tabbable": null, "tooltip": null, "value": 2.0}}, "ea414ca2a8f04ed88f7bc9c5e65d8eec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75535be807d64b36bd6558298fa15878": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e97e56481b754fcdbc7202fa2b7bbb84": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea414ca2a8f04ed88f7bc9c5e65d8eec", "placeholder": "\u200b", "style": "IPY_MODEL_75535be807d64b36bd6558298fa15878", "tabbable": null, "tooltip": null, "value": "100%"}}, "8b3fd6c0f86a4c46aaf2926a87e8f09e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7cbb0223dfb14a719fccbb71e0e2f1e0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4baeb46628e74b9f8ae98d98c8dfa1a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b3fd6c0f86a4c46aaf2926a87e8f09e", "placeholder": "\u200b", "style": "IPY_MODEL_7cbb0223dfb14a719fccbb71e0e2f1e0", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200727.16it/s]"}}, "16ca902ab50943168abcc1161c5af62a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2fab18b68a2420eabcb46e5beaea18f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e97e56481b754fcdbc7202fa2b7bbb84", "IPY_MODEL_19bd2445e3694e06afc825aba2a5ebe0", "IPY_MODEL_4baeb46628e74b9f8ae98d98c8dfa1a7"], "layout": "IPY_MODEL_16ca902ab50943168abcc1161c5af62a", "tabbable": null, "tooltip": null}}, "b8ba21f21daf4e79bd4e810c1b0a569d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccd75d34d6c0450da455f3ec90556670": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2f1c79784ddc437587d796a991c35cc2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b8ba21f21daf4e79bd4e810c1b0a569d", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ccd75d34d6c0450da455f3ec90556670", "tabbable": null, "tooltip": null, "value": 2.0}}, "8bdf2af3586d4a599f498ddb448a213a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e658d4e56be041648a178c25e9982bb4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "251144b72d80488693ff5db593220f33": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8bdf2af3586d4a599f498ddb448a213a", "placeholder": "\u200b", "style": "IPY_MODEL_e658d4e56be041648a178c25e9982bb4", "tabbable": null, "tooltip": null, "value": "100%"}}, "496aa25285c54f4cb5531f761a998cf4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7456c6c3784442b9a1bcaeb2d635ffcf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "515b21d730334befa18583f47c7b5b39": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_496aa25285c54f4cb5531f761a998cf4", "placeholder": "\u200b", "style": "IPY_MODEL_7456c6c3784442b9a1bcaeb2d635ffcf", "tabbable": null, "tooltip": null, "value": "\u20072/2\u2007[00:00<00:00,\u200727.42it/s]"}}, "e966f6f42a5a4d9c8ee6c61575f7530f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e586469b811b4ed39ebb9f554d28d9ea": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_251144b72d80488693ff5db593220f33", "IPY_MODEL_2f1c79784ddc437587d796a991c35cc2", "IPY_MODEL_515b21d730334befa18583f47c7b5b39"], "layout": "IPY_MODEL_e966f6f42a5a4d9c8ee6c61575f7530f", "tabbable": null, "tooltip": null}}, "c1bc0c182a5a4b41961fcd89382b3182": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bcaad6d4dc34e0c8055801560a315bd": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_c1bc0c182a5a4b41961fcd89382b3182", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_469d72197c504083bb0354b16d24159e", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "249212564af741b1a629d3f144e24846": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "469d72197c504083bb0354b16d24159e": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_249212564af741b1a629d3f144e24846", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "da405730c6294924812c75a54e7589ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "972c3ecd98094a388c6ed8acbd3fda44": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_da405730c6294924812c75a54e7589ea", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_2e998bc614154a49bdff3c898c221591", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "9a4967742c56484b8e1b0a3bb5bf73de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e998bc614154a49bdff3c898c221591": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_9a4967742c56484b8e1b0a3bb5bf73de", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "3b0f9970b29444fd80e315a176564340": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce9ad488f982424582929d108d0126e1": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "d583a4d913354dae85b0204d1da06e1a": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntSliderView", "behavior": "drag-tap", "continuous_update": true, "description": "refid", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_3b0f9970b29444fd80e315a176564340", "max": 10, "min": 0, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_ce9ad488f982424582929d108d0126e1", "tabbable": null, "tooltip": null, "value": 6}}, "a52d306e31744ba78eea65118e7ea290": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a295c07b5b0494788bdad8efc65abf6": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "d0f1363ef48a41a38c9b79a24bec1e30": {"model_name": "IntRangeSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "IntRangeSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntRangeSliderView", "behavior": "drag-tap", "continuous_update": true, "description": "ranges", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_a52d306e31744ba78eea65118e7ea290", "max": 24988, "min": 1000, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_0a295c07b5b0494788bdad8efc65abf6", "tabbable": null, "tooltip": null, "value": [6380, 6700]}}, "76bf98df52e344759e90b816409a8b55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "591687fe578940859fc5e6b105fa2b86": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_d583a4d913354dae85b0204d1da06e1a", "IPY_MODEL_d0f1363ef48a41a38c9b79a24bec1e30", "IPY_MODEL_8daba303cbd04b7aa78ef4837fb9a6d9"], "layout": "IPY_MODEL_76bf98df52e344759e90b816409a8b55", "tabbable": null, "tooltip": null}}, "f173c55fab7e45aea1cdedbd0f8ba1f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8daba303cbd04b7aa78ef4837fb9a6d9": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f173c55fab7e45aea1cdedbd0f8ba1f7", "msg_id": "", "outputs": [], "tabbable": null, "tooltip": null}}, "9da2aa20bc444934aa3724817a09309d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d1c0b28004141d1863efccce51c50e1": {"model_name": "ButtonStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null}}, "83516ec9f8b64c4d8b3ec6cc9d47d4b2": {"model_name": "ButtonModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "apply", "disabled": false, "icon": "", "layout": "IPY_MODEL_9da2aa20bc444934aa3724817a09309d", "style": "IPY_MODEL_8d1c0b28004141d1863efccce51c50e1", "tabbable": null, "tooltip": null}}, "a74349a87576444a95ef3910cd45e4e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12bb23ac8a404d4ea2b7ac9ec7a0f903": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_a74349a87576444a95ef3910cd45e4e2", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_c0c585839a0343a8bf8b45efc1a6737b", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "d00ea9ea85f1472dbc97e594234e90b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0c585839a0343a8bf8b45efc1a6737b": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_d00ea9ea85f1472dbc97e594234e90b7", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "1b680aa930c745d497b6e07ff4d26958": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3011350e3edb4ac09dbc93588116a657": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [600.0, 400.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_1b680aa930c745d497b6e07ff4d26958", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_b960aab4d7f140dd8b61de48c62ec62c", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "6df7c43dd1834302a87239fdae3b75f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b960aab4d7f140dd8b61de48c62ec62c": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_6df7c43dd1834302a87239fdae3b75f3", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "ab7cfd8b6be4498ca00e7ffbc77b5fc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71127fe6689541828b840762b85145f9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "23a52f58a45f4546808aaa3e13e16ba1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab7cfd8b6be4498ca00e7ffbc77b5fc4", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_71127fe6689541828b840762b85145f9", "tabbable": null, "tooltip": null, "value": 22.0}}, "008fc9b79ae54d7ea55a89e4065f17b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9af3314382147e893be5dfceb88eab3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0733c7aed0e4fab870a2cd21b119524": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_008fc9b79ae54d7ea55a89e4065f17b6", "placeholder": "\u200b", "style": "IPY_MODEL_d9af3314382147e893be5dfceb88eab3", "tabbable": null, "tooltip": null, "value": "100%"}}, "f3ad47d2ecfa46a798ecae0ef94161c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b23c4835ee6a4134a57233f607f3a066": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c6032d30dc084d57913e0303a0209bae": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3ad47d2ecfa46a798ecae0ef94161c0", "placeholder": "\u200b", "style": "IPY_MODEL_b23c4835ee6a4134a57233f607f3a066", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200714.44it/s]"}}, "97fa17ed0be948289348ce47215309cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0943369db59d44f8857f645eafa83d71": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0733c7aed0e4fab870a2cd21b119524", "IPY_MODEL_23a52f58a45f4546808aaa3e13e16ba1", "IPY_MODEL_c6032d30dc084d57913e0303a0209bae"], "layout": "IPY_MODEL_97fa17ed0be948289348ce47215309cc", "tabbable": null, "tooltip": null}}, "bcd5cd8f1be1411cb1d4c3b40ce01952": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "882efeb8b8d84e37976b1f4ac7db9266": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a53d3f1316654555bf43c935210f3f6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcd5cd8f1be1411cb1d4c3b40ce01952", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_882efeb8b8d84e37976b1f4ac7db9266", "tabbable": null, "tooltip": null, "value": 22.0}}, "166c1721a5d84d888598c3e3fda21c39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "372c65edc55446f7908998d89f60a621": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "83c66597f09b4af690df0289e9e41356": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_166c1721a5d84d888598c3e3fda21c39", "placeholder": "\u200b", "style": "IPY_MODEL_372c65edc55446f7908998d89f60a621", "tabbable": null, "tooltip": null, "value": "100%"}}, "d9422225d11844f2b5a69e29b7358def": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "078aa399e2f84325b3005907df4d8e2a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bcb6467ac7384f6d8cf7ad73c83c122c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d9422225d11844f2b5a69e29b7358def", "placeholder": "\u200b", "style": "IPY_MODEL_078aa399e2f84325b3005907df4d8e2a", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200716.44it/s]"}}, "30d6c870e03f46e28b405940a16e01b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f806e1c47bd469bb7bd934107ecc7d9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_83c66597f09b4af690df0289e9e41356", "IPY_MODEL_a53d3f1316654555bf43c935210f3f6c", "IPY_MODEL_bcb6467ac7384f6d8cf7ad73c83c122c"], "layout": "IPY_MODEL_30d6c870e03f46e28b405940a16e01b4", "tabbable": null, "tooltip": null}}, "0cf71dd435124f67bbf5ae64ea1f5010": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99b7cacb8a8b43cda968dfc20757c592": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [400.0, 300.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_0cf71dd435124f67bbf5ae64ea1f5010", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_0fd0138b608443e688cd473276e1a8dc", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "f8dbe5bf7c7e4b76b46df3b49d100f41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fd0138b608443e688cd473276e1a8dc": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_f8dbe5bf7c7e4b76b46df3b49d100f41", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "249d61088bda4fc193256010408fd50f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce8c2090e9b74764839874d9b461136b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a3b5b4bb90464648a28a6de772aa01d1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_249d61088bda4fc193256010408fd50f", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ce8c2090e9b74764839874d9b461136b", "tabbable": null, "tooltip": null, "value": 22.0}}, "5ae1eefe7cfd4634ad69d4bca9bfc714": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f794ad7490244f8ca648b735d6f27d4b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b751e6c9651f4b0986245cacccb86ff0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ae1eefe7cfd4634ad69d4bca9bfc714", "placeholder": "\u200b", "style": "IPY_MODEL_f794ad7490244f8ca648b735d6f27d4b", "tabbable": null, "tooltip": null, "value": "100%"}}, "8ee62a75adbc47c0a1277553ba1e29e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c692e0f0a034080bde06462cf3df244": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "89b80a5f022f44b9b993aaf3f590d3d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ee62a75adbc47c0a1277553ba1e29e8", "placeholder": "\u200b", "style": "IPY_MODEL_1c692e0f0a034080bde06462cf3df244", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200713.69it/s]"}}, "49f482aeee044be8a15f4fea4928945b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "357386f45ee1429491c617a59654dbfd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b751e6c9651f4b0986245cacccb86ff0", "IPY_MODEL_a3b5b4bb90464648a28a6de772aa01d1", "IPY_MODEL_89b80a5f022f44b9b993aaf3f590d3d7"], "layout": "IPY_MODEL_49f482aeee044be8a15f4fea4928945b", "tabbable": null, "tooltip": null}}, "5da21bf909cd4fb08718e0b7874789bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f47733ad21584e689ee584232c265c1c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b4a3d3ac0a34495c8a82972c275726a7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5da21bf909cd4fb08718e0b7874789bd", "max": 22.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f47733ad21584e689ee584232c265c1c", "tabbable": null, "tooltip": null, "value": 22.0}}, "d5b138f724e343f789c39abdc6b18a60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2fa70654c8e246f99666dbdf03ec6ec7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "29acf7a33ce44955a1c65567eaada0c7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d5b138f724e343f789c39abdc6b18a60", "placeholder": "\u200b", "style": "IPY_MODEL_2fa70654c8e246f99666dbdf03ec6ec7", "tabbable": null, "tooltip": null, "value": "100%"}}, "953128a1fffe481fb71a0ba0d8d24a36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca3b2c360bcc4680a10139ccc2baeb40": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5f0014f19a3c47c09faf518d544b54a1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_953128a1fffe481fb71a0ba0d8d24a36", "placeholder": "\u200b", "style": "IPY_MODEL_ca3b2c360bcc4680a10139ccc2baeb40", "tabbable": null, "tooltip": null, "value": "\u200722/22\u2007[00:01<00:00,\u200716.71it/s]"}}, "d791dcc81754467a9bf51fd31d50efb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79c7cdea37ec4cdfae8ea5bb77a34683": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_29acf7a33ce44955a1c65567eaada0c7", "IPY_MODEL_b4a3d3ac0a34495c8a82972c275726a7", "IPY_MODEL_5f0014f19a3c47c09faf518d544b54a1"], "layout": "IPY_MODEL_d791dcc81754467a9bf51fd31d50efb4", "tabbable": null, "tooltip": null}}, "e05632bcadef4039accd0f57572e9b93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22a184513daa4b13bf9960efd6be6245": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [400.0, 800.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_e05632bcadef4039accd0f57572e9b93", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_2e0dde1b29ac4136937f81c2dfd7b344", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "f4727f3875d54654bf42d725fa7078f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e0dde1b29ac4136937f81c2dfd7b344": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_f4727f3875d54654bf42d725fa7078f0", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}}, "version_major": 2, "version_minor": 0}

diff --git a/sed/v1.0.0/tutorial/6_binning_with_time-stamped_data.html b/sed/v1.0.0/tutorial/6_binning_with_time-stamped_data.html new file mode 100644 index 0000000..439ee0a --- /dev/null +++ b/sed/v1.0.0/tutorial/6_binning_with_time-stamped_data.html @@ -0,0 +1,1224 @@ + + + + + + + + + + + Binning of temperature-dependent ARPES data using time-stamped external temperature data — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Binning of temperature-dependent ARPES data using time-stamped external temperature data#

+

In this example, we pull some temperature-dependent ARPES data from Zenodo, which was recorded as a continuous temperature ramp. We then add the respective temperature information from the respective timestamp/temperature values to the dataframe, and bin the data as function of temperature For performance reasons, best store the data on a locally attached storage (no network drive). This can also be achieved transparently using the included MirrorUtil class.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+import matplotlib.pyplot as plt
+import os
+import glob
+
+import sed
+from sed.dataset import dataset
+
+%matplotlib widget
+
+
+
+
+

Load Data#

+
+
[2]:
+
+
+
dataset.get("TaS2") # Put in Path to a storage of at least 20 GByte free space.
+data_path = dataset.dir
+scandir, caldir = dataset.subdirs # scandir contains the data, caldir contains the calibration files
+
+# correct timestamps if not correct timezone set
+tzoffset = os.path.getmtime(scandir + '/Scan0121_1.h5') - 1594998158.0
+if tzoffset:
+    for file in glob.glob(scandir +'/*.h5'):
+        os.utime(file, (os.path.getmtime(file)-tzoffset, os.path.getmtime(file)-tzoffset))
+
+
+
+
+
+
+
+
+INFO - Not downloading TaS2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/TaS2".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "TaS2": "/home/runner/work/sed/sed/docs/tutorial/datasets/TaS2"
+INFO - TaS2 data is already present.
+
+
+
+
[3]:
+
+
+
# create sed processor using the config file with time-stamps:
+sp = sed.SedProcessor(folder=scandir, user_config="../src/sed/config/mpes_example_config.yaml", system_config={}, time_stamps=True, verbose=True)
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - User config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+
+
+
+
[4]:
+
+
+
# Apply jittering to X, Y, t, ADC columns.
+sp.add_jitter()
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
+
+
+
+
[5]:
+
+
+
sp.bin_and_load_momentum_calibration(df_partitions=10, plane=33, width=3, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[6]:
+
+
+
features = np.array([[337., 242.], [289., 327.], [187., 344.], [137., 258.], [189., 161.], [289., 158.], [236.0, 250.0]])
+sp.define_features(features=features, rotation_symmetry=6, include_center=True, apply=True)
+sp.generate_splinewarp(include_center=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculated thin spline correction based on the following landmarks:
+pouter_ord: [[137. 258.]
+ [187. 344.]
+ [289. 327.]
+ [337. 242.]
+ [289. 158.]
+ [189. 161.]]
+pcent: (236.0, 250.0)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[7]:
+
+
+
# Adjust pose alignment, using stored distortion correction
+sp.pose_adjustment(xtrans=15, ytrans=8, angle=-5, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Applied translation with (xtrans=15.0, ytrans=8.0).
+INFO - Applied rotation with angle=-5.0.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[8]:
+
+
+
# Apply stored momentum correction
+sp.apply_momentum_correction()
+
+
+
+
+
+
+
+
+INFO - Adding corrected X/Y columns to dataframe:
+Calculating inverse deformation field, this might take a moment...
+INFO - Dask DataFrame Structure:
+                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym
+npartitions=97
+                float64  float64  float64  float64    float64    float64  float64  float64
+                    ...      ...      ...      ...        ...        ...      ...      ...
+...                 ...      ...      ...      ...        ...        ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...
+Dask Name: apply_dfield, 492 graph layers
+
+
+
+
[9]:
+
+
+
# Apply stored config momentum calibration
+sp.apply_momentum_calibration()
+
+
+
+
+
+
+
+
+INFO - Adding kx/ky columns to dataframe:
+INFO - Dask DataFrame Structure:
+                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym       kx       ky
+npartitions=97
+                float64  float64  float64  float64    float64    float64  float64  float64  float64  float64
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
+...                 ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...
+Dask Name: assign, 502 graph layers
+
+
+
+
[10]:
+
+
+
# Apply stored config energy correction
+sp.apply_energy_correction()
+
+
+
+
+
+
+
+
+INFO - Applying energy correction to dataframe...
+INFO - Dask DataFrame Structure:
+                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym       kx       ky       tm
+npartitions=97
+                float64  float64  float64  float64    float64    float64  float64  float64  float64  float64  float64
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
+...                 ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...
+Dask Name: assign, 516 graph layers
+
+
+
+
[11]:
+
+
+
# Load energy calibration EDCs
+scans = np.arange(127,136)
+voltages = np.arange(21,12,-1)
+files = [caldir + r'/Scan' + str(num).zfill(4) + '_1.h5' for num in scans]
+sp.load_bias_series(data_files=files, normalize=True, biases=voltages, ranges=[(64000, 76000)])
+rg = (65500, 66000)
+sp.find_bias_peaks(ranges=rg, ref_id=5, infer_others=True, apply=True)
+sp.calibrate_energy_axis(ref_energy=-0.5, energy_scale="kinetic", method="lmfit")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Use feature ranges: [(67180.0, 67780.0), (66820.0, 67384.0), (66436.0, 67012.0), (66088.0, 66652.0), (65764.0, 66316.0), (65500.0, 66004.0), (65188.0, 65704.0), (64864.0, 65416.0), (64624.0, 65140.0)].
+INFO - Extracted energy features: [[6.76360000e+04 4.47140008e-01]
+ [6.72520000e+04 4.41972464e-01]
+ [6.68800000e+04 4.45905387e-01]
+ [6.65320000e+04 4.43017632e-01]
+ [6.62080000e+04 4.37122852e-01]
+ [6.58960000e+04 4.28882003e-01]
+ [6.55960000e+04 4.22135979e-01]
+ [6.52960000e+04 4.13137674e-01]
+ [6.50320000e+04 4.00443912e-01]].
+INFO - [[Fit Statistics]]
+    # fitting method   = leastsq
+    # function evals   = 163
+    # data points      = 9
+    # variables        = 3
+    chi-square         = 0.00179088
+    reduced chi-square = 2.9848e-04
+    Akaike info crit   = -70.7004554
+    Bayesian info crit = -70.1087817
+[[Variables]]
+    d:   1.09335629 +/- 0.06668048 (6.10%) (init = 1)
+    t0:  7.6176e-07 +/- 1.3448e-08 (1.77%) (init = 1e-06)
+    E0: -48.0855611 +/- 1.25773261 (2.62%) (init = -21)
+[[Correlations]] (unreported correlations are < 0.100)
+    C(d, t0)  = -0.9998
+    C(d, E0)  = -0.9993
+    C(t0, E0) = +0.9985
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[12]:
+
+
+
# Apply stored config energy calibration
+#sp.append_energy_axis(bias_voltage=17)
+sp.append_energy_axis()
+
+
+
+
+
+
+
+
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 03/06/2025, 09:43:01
+INFO - Dask DataFrame Structure:
+                      X        Y        t      ADC timeStamps sampleBias       Xm       Ym       kx       ky       tm   energy
+npartitions=97
+                float64  float64  float64  float64    float64    float64  float64  float64  float64  float64  float64  float64
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
+...                 ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
+                    ...      ...      ...      ...        ...        ...      ...      ...      ...      ...      ...      ...
+Dask Name: assign, 531 graph layers
+
+
+
+
[13]:
+
+
+
# add time-stamped temperature data
+# either, directly retrieve data from EPICS archiver instance (within FHI network),
+#sp.add_time_stamped_data(dest_column="T_B", archiver_channel="trARPES:Carving:TEMP-B")
+# or use externally provided timestamp/data pairs
+import h5py
+with h5py.File(f"{data_path}/temperature_data.h5", "r") as file:
+    data = file["temperatures"][()]
+    time_stamps = file["timestamps"][()]
+sp.add_time_stamped_data(dest_column="sample_temperature", time_stamps=time_stamps, data=data)
+
+
+
+
+
+
+
+
+INFO - add_time_stamped_data: Added time-stamped data as column sample_temperature.
+
+
+
+
[14]:
+
+
+
# inspect calibrated event histogram
+axes = ['kx', 'ky', 'energy', 'sample_temperature']
+ranges = [[-3, 3], [-3, 3], [-6, 2], [10, 300]]
+sp.view_event_histogram(dfpid=80, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
+

Define the binning ranges and compute calibrated data volume#

+
+
[15]:
+
+
+
axes = ['kx', 'ky', 'energy', 'sample_temperature']
+bins = [100, 100, 300, 100]
+ranges = [[-2, 2], [-2, 2], [-6, 2], [20, 270]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="sample_temperature")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'sample_temperature'...
+
+
+
+
+
+
+
+
+
+
+

Some visualization:#

+
+
[16]:
+
+
+
fig, axs = plt.subplots(4, 1, figsize=(4, 12), constrained_layout=True)
+res.loc[{'energy':slice(-.1, 0)}].sum(axis=(2,3)).T.plot(ax=axs[0])
+res.loc[{'kx':slice(-.2, .2)}].sum(axis=(0,3)).T.plot(ax=axs[1])
+res.loc[{'ky':slice(-.2, .2)}].sum(axis=(1,3)).T.plot(ax=axs[2])
+res.loc[{'kx':slice(-.2, .2), 'ky':slice(-.2, .2), 'energy':slice(-2, 0.2)}].sum(axis=(0,1)).plot(ax=axs[3])
+
+
+
+
+
[16]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f2655700d60>
+
+
+
+
+
+
+
+
+
+
[17]:
+
+
+
# Inspect effect of histogram normalization
+fig, ax = plt.subplots(1,1)
+(sp._normalization_histogram/sp._normalization_histogram.sum()).plot(ax=ax)
+(sp._binned.sum(axis=(0,1,2))/sp._binned.sum(axis=(0,1,2,3))).plot(ax=ax)
+plt.show()
+
+
+
+
+
+
+
+
+
+
+
[18]:
+
+
+
# Remaining fluctuations are an effect of the varying count rate throughout the scan
+plt.figure()
+rate, secs = sp.loader.get_count_rate()
+plt.plot(secs, rate)
+
+
+
+
+
[18]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f26553fcaf0>]
+
+
+
+
+
+
+
+
+
+
[19]:
+
+
+
# Normalize for intensity around the Gamma point
+res_norm = res.copy()
+res_norm = res_norm/res_norm.loc[{'kx':slice(-.3, .3), 'ky':slice(-.3, .3)}].sum(axis=(0,1,2))
+
+
+
+
+
[20]:
+
+
+
fig, axs = plt.subplots(4, 1, figsize=(4, 12), constrained_layout=True)
+res_norm.loc[{'energy':slice(-.1, 0)}].sum(axis=(2,3)).T.plot(ax=axs[0])
+res_norm.loc[{'kx':slice(-.2, .2)}].sum(axis=(0,3)).T.plot(ax=axs[1])
+res_norm.loc[{'ky':slice(-.2, .2)}].sum(axis=(1,3)).T.plot(ax=axs[2])
+res_norm.loc[{'kx':slice(-.2, .2), 'ky':slice(-.2, .2), 'energy':slice(-2, 0.5)}].sum(axis=(0,1)).plot(ax=axs[3])
+
+
+
+
+
[20]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f2655376e00>
+
+
+
+
+
+
+
+
+
+
[21]:
+
+
+
# Lower Hubbard band intensity versus temperature
+plt.figure()
+res_norm.loc[{'kx':slice(-.2, .2), 'ky':slice(-.2, .2), 'energy':slice(-.6, 0.1)}].sum(axis=(0,1,2)).plot()
+
+
+
+
+
[21]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f2655182380>]
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/7_correcting_orthorhombic_symmetry.html b/sed/v1.0.0/tutorial/7_correcting_orthorhombic_symmetry.html new file mode 100644 index 0000000..0344d1a --- /dev/null +++ b/sed/v1.0.0/tutorial/7_correcting_orthorhombic_symmetry.html @@ -0,0 +1,937 @@ + + + + + + + + + + + Distortion correction with orthorhombic symmetry — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Distortion correction with orthorhombic symmetry#

+

This example showcases how to use the distortion correction workflow with landmarks that are not at symmetry-equivalent positions, such as for orthorhombic systems with different in-plane axis parameters.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+import matplotlib.pyplot as plt
+
+import sed
+from sed.dataset import dataset
+
+%matplotlib widget
+
+
+
+
+

Load Data#

+

For this example, we use the example data from WSe2. Even though the system is hexagonal, we will use it for demonstration.

+
+
[2]:
+
+
+
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
+data_path = dataset.dir # This is the path to the data
+scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
+
+
+
+
+
+
+
+
+INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
+INFO - WSe2 data is already present.
+
+
+
+
[3]:
+
+
+
# create sed processor using the config file with time-stamps:
+sp = sed.SedProcessor(folder=scandir, user_config="../src/sed/config/mpes_example_config.yaml", system_config={}, time_stamps=True, verbose=True)
+sp.add_jitter()
+
+
+
+
+
+
+
+
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - User config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
+INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
+
+
+

Get slice for momentum calibration

+
+
[4]:
+
+
+
sp.bin_and_load_momentum_calibration(df_partitions=100, plane=203, width=10, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Feature definition:#

+

We will describe the symmetry of the system with a 4-fold symmetry, and select two K points and two M points as symmetry points (as well as the Gamma point).

+
+
[5]:
+
+
+
features = np.array([[252., 355.], [361., 251.], [250., 144.], [156., 247.], [254., 247.]])
+sp.define_features(features=features, rotation_symmetry=4, include_center=True, apply=True)
+# Manual selection: Use a GUI tool to select peaks:
+# sp.define_features(rotation_symmetry=4, include_center=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Spline-warp generation:#

+

For the spline-warp generation, we need to tell the algorithm the difference in length of Gamma-K and Gamma-M. This we can do using the ascale parameter, which can either be a single number (the ratio), or a list of length rotation_symmetry defining the relative length of the respective vectors.

+
+
[6]:
+
+
+
gamma_m = np.pi/3.28
+gamma_k = 2/np.sqrt(3)*np.pi/3.28
+# Option 1: Ratio of the two distances:
+#sp.generate_splinewarp(include_center=True, ascale=gamma_k/gamma_m)
+# Option 2: List of distances:
+sp.generate_splinewarp(include_center=True, ascale=[gamma_m, gamma_k, gamma_m, gamma_k])
+
+
+
+
+
+
+
+
+INFO - Calculated thin spline correction based on the following landmarks:
+pouter_ord: [[252. 355.]
+ [361. 251.]
+ [250. 144.]
+ [156. 247.]]
+pcent: (254.0, 247.0)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[7]:
+
+
+
sp.pose_adjustment(xtrans=4, ytrans=7, angle=1, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Applied translation with (xtrans=4.0, ytrans=7.0).
+INFO - Applied rotation with angle=1.0.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[8]:
+
+
+
sp.apply_momentum_correction()
+
+
+
+
+
+
+
+
+INFO - Adding corrected X/Y columns to dataframe:
+Calculating inverse deformation field, this might take a moment...
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC timeStamps       Xm       Ym
+npartitions=100
+                 float64  float64  float64  float64    float64  float64  float64
+                     ...      ...      ...      ...        ...      ...      ...
+...                  ...      ...      ...      ...        ...      ...      ...
+                     ...      ...      ...      ...        ...      ...      ...
+                     ...      ...      ...      ...        ...      ...      ...
+Dask Name: apply_dfield, 206 graph layers
+
+
+
+
+

Momentum calibration with orthorhombic axes#

+

For the momentum calibration using symmetry points with non-equal distances, the option equiscale can be used:

+
+
[9]:
+
+
+
point_a = [256, 155]
+point_b = [370, 256]
+sp.calibrate_momentum_axes(point_a=point_a, point_b=point_b, k_coord_a=[0, gamma_m], k_coord_b=[gamma_k, 0], equiscale=False, apply=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[10]:
+
+
+
sp.apply_momentum_calibration()
+
+
+
+
+
+
+
+
+INFO - Adding kx/ky columns to dataframe:
+INFO - Using momentum calibration parameters generated on 03/06/2025, 09:48:38
+INFO - Dask DataFrame Structure:
+                       X        Y        t      ADC timeStamps       Xm       Ym       kx       ky
+npartitions=100
+                 float64  float64  float64  float64    float64  float64  float64  float64  float64
+                     ...      ...      ...      ...        ...      ...      ...      ...      ...
+...                  ...      ...      ...      ...        ...      ...      ...      ...      ...
+                     ...      ...      ...      ...        ...      ...      ...      ...      ...
+                     ...      ...      ...      ...        ...      ...      ...      ...      ...
+Dask Name: assign, 216 graph layers
+
+
+
+
+

Bin the top of the valence band#

+
+
[11]:
+
+
+
axes = ['kx', 'ky']
+bins = [100, 100]
+ranges = [[-2, 2], [-2, 2]]
+res = sp.compute(bins=bins, axes=axes, ranges=ranges, filter=[{"col":"t", "lower_bound": 66100, "upper_bound": 66300}])
+plt.figure()
+res.T.plot()
+
+
+
+
+
+
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f876b7932e0>
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/8_jittering_tutorial.html b/sed/v1.0.0/tutorial/8_jittering_tutorial.html new file mode 100644 index 0000000..6ea5008 --- /dev/null +++ b/sed/v1.0.0/tutorial/8_jittering_tutorial.html @@ -0,0 +1,1166 @@ + + + + + + + + + + + Correct use of Jittering — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Correct use of Jittering#

+

This tutorial discusses the background and correct use of the jittering/dithering method implemented in the package.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import matplotlib.pyplot as plt
+
+import sed
+from sed.dataset import dataset
+
+%matplotlib widget
+
+
+
+
+

Load Data#

+
+
[2]:
+
+
+
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
+data_path = dataset.dir # This is the path to the data
+scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
+
+
+
+
+
+
+
+
+INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
+INFO - WSe2 data is already present.
+
+
+
+
[3]:
+
+
+
# create sed processor using the config file:
+sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={})
+
+
+
+
+
+
+
+
+INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
+INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
+
+
+

After loading, the dataframe contains the four columns X, Y, t, ADC, which have all integer values. They originate from a time-to-digital converter, and correspond to digital “bins”.

+
+
[4]:
+
+
+
sp.dataframe.head()
+
+
+
+
+
[4]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
XYtADC
00.00.00.00.0
1365.01002.070101.06317.0
2761.0818.075615.06316.0
3692.0971.066455.06317.0
4671.0712.073026.06317.0
+
+
+

Let’s bin these data along the t dimension within a small range:

+
+
[5]:
+
+
+
axes = ['t']
+bins = [150]
+ranges = [[66000, 67000]]
+res01 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res01.plot()
+
+
+
+
+
+
+
+
+
+
+
[5]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f1e6b43ab00>]
+
+
+
+
+
+
+
+
+

We notice some oscillation ontop of the data. These are re-binning artifacts, originating from a non-integer number of machine-bins per bin, as we can verify by binning with a different number of steps:

+
+
[6]:
+
+
+
axes = ['t']
+bins = [100]
+ranges = [[66000, 67000]]
+res02 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res01.plot(label="6.66/bin")
+res02.plot(label="10/bin")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[6]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1e6b3dc460>
+
+
+
+
+
+
+
+
+

If we have a very detailed look, with step-sizes smaller than one, we see the digital nature of the original data behind this issue:

+
+
[7]:
+
+
+
axes = ['t']
+bins = [200]
+ranges = [[66600, 66605]]
+res11 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res11.plot()
+
+
+
+
+
+
+
+
+
+
+
[7]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f1e68b3b340>]
+
+
+
+
+
+
+
+
+

To mitigate this problem, we can add some randomness to the data, and re-distribute events into the gaps in-between bins. This is also termed dithering and e.g. known from image manipulation. The important factor is to add the right amount and right type of random distribution, to end up at a quasi-continuous uniform distribution, but not lose information.

+

We can use the add_jitter function for this. We can pass it the columns to add jitter to, and the amplitude of a uniform jitter. Importantly, this step should be taken in the very beginning as first step before any dataframe operations are added.

+

Let’s try with a value of 0.2 for the amplitude:

+
+
[8]:
+
+
+
df_backup = sp.dataframe
+sp.add_jitter(cols=["t"], amps=[0.2])
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['t'].
+
+
+

We see that the t column is no longer integer-valued:

+
+
[9]:
+
+
+
sp.dataframe.head()
+
+
+
+
+
[9]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
XYtADC
00.00.0-0.0179080.0
1365.01002.070101.1752396317.0
2761.0818.075615.1682486316.0
3692.0971.066454.8905236317.0
4671.0712.073026.0647776317.0
+
+
+
+
[10]:
+
+
+
axes = ['t']
+bins = [200]
+ranges = [[66600, 66605]]
+res12 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res11.plot(label="not jittered")
+res12.plot(label="amplitude 0.2")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[10]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1e72c9bee0>
+
+
+
+
+
+
+
+
+

This is clearly not enough jitter to close the gaps. The ideal (and default) amplitude is 0.5, which exactly fills the gaps:

+
+
[11]:
+
+
+
sp.dataframe = df_backup
+sp.add_jitter(cols=["t"], amps=[0.5])
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['t'].
+
+
+
+
[12]:
+
+
+
axes = ['t']
+bins = [200]
+ranges = [[66600, 66605]]
+res13 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res11.plot(label="not jittered")
+res12.plot(label="amplitude 0.2")
+res13.plot(label="amplitude 0.5")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[12]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1e68b20580>
+
+
+
+
+
+
+
+
+

This jittering fills the gaps, and produces a continuous uniform distribution. Let’s check again the longer-range binning that gave us the oscillations initially:

+
+
[13]:
+
+
+
axes = ['t']
+bins = [150]
+ranges = [[66000, 67000]]
+res03 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res01.plot(label="not jittered")
+res03.plot(label="jittered")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[13]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1e68b20550>
+
+
+
+
+
+
+
+
+

Now, the artifacts are absent, and similarly will they be in any dataframe columns derived from a column jittered in such a way. Note that this only applies to data present in digital (i.e. machine-binned) format, and not to data that are intrinsically continuous.

+

Also note that too large or not well-aligned jittering amplitudes will

+
    +
  • deteriorate your resolution along the jittered axis

  • +
  • will not solve the problem entirely:

  • +
+
+
[14]:
+
+
+
sp.dataframe = df_backup
+sp.add_jitter(cols=["t"], amps=[0.7])
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['t'].
+
+
+
+
[15]:
+
+
+
axes = ['t']
+bins = [200]
+ranges = [[66600, 66605]]
+res14 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res13.plot(label="Amplitude 0.5")
+res14.plot(label="Amplitude 0.7")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[15]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1e6b502fb0>
+
+
+
+
+
+
+
+
+

If the step-size of digitization is different from 1, the corresponding stepsize (half the distance between digitized values) can be adjusted as shown above.

+

Also, alternatively also normally distributed noise can be added, which is less sensitive to the exact right amplitude, but will lead to mixing of neighboring voxels, and thus loss of resolution. Also, normally distributed noise is substantially more computation-intensive to generate. It can nevertheless be helpful in situations where e.g. the stepsize is non-uniform.

+
+
[16]:
+
+
+
sp.dataframe = df_backup
+sp.add_jitter(cols=["t"], amps=[0.7], jitter_type="normal")
+
+
+
+
+
+
+
+
+INFO - add_jitter: Added jitter to columns ['t'].
+
+
+
+
[17]:
+
+
+
axes = ['t']
+bins = [200]
+ranges = [[66600, 66605]]
+res15 = sp.compute(bins=bins, axes=axes, ranges=ranges, df_partitions=20)
+plt.figure()
+res14.plot(label="Uniform, Amplitude 0.7")
+res15.plot(label="Normal, Amplitude 0.7")
+plt.legend()
+
+
+
+
+
+
+
+
+
+
+
[17]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f1e6b6c6f20>
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/sed/v1.0.0/tutorial/9_hextof_workflow_trXPD.html b/sed/v1.0.0/tutorial/9_hextof_workflow_trXPD.html new file mode 100644 index 0000000..1094d78 --- /dev/null +++ b/sed/v1.0.0/tutorial/9_hextof_workflow_trXPD.html @@ -0,0 +1,1378 @@ + + + + + + + + + + + Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization — SED 1.0.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +
+

Tutorial for trXPD for the HEXTOF instrument at FLASH with background normalization#

+
+

Preparation#

+
+

Import necessary libraries#

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+from pathlib import Path
+import os
+
+from sed import SedProcessor
+from sed.dataset import dataset
+import xarray as xr
+
+%matplotlib widget
+import matplotlib.pyplot as plt
+from scipy.ndimage import gaussian_filter
+
+
+
+
+
+

Get data paths#

+

If it is your beamtime, you can access both read the raw data and write to processed directory. For the public data, you can not write to processed directory.

+

The paths are such that if you are on Maxwell, it uses those. Otherwise data is downloaded in current directory from Zenodo: https://zenodo.org/records/12609441

+
+
[2]:
+
+
+
beamtime_dir = "/asap3/flash/gpfs/pg2/2023/data/11019101" # on Maxwell
+if os.path.exists(beamtime_dir) and os.access(beamtime_dir, os.R_OK):
+    path = beamtime_dir + "/raw/hdf/offline/fl1user3"
+    buffer_path = beamtime_dir + "/processed/tutorial/"
+else:
+    # data_path can be defined and used to store the data in a specific location
+    dataset.get("W110") # Put in Path to a storage of at least 10 GByte free space.
+    path = dataset.dir
+    buffer_path = path + "/processed/"
+
+
+
+
+
+
+
+
+INFO - Not downloading W110 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/W110".
+Set 'use_existing' to False if you want to download to a new location.
+INFO - Using existing data path for "W110": "/home/runner/work/sed/sed/docs/tutorial/datasets/W110"
+INFO - W110 data is already present.
+
+
+
+
+

Config setup#

+

Here we get the path to the config file and setup the relevant directories. This can also be done directly in the config file.

+
+
[3]:
+
+
+
# pick the default configuration file for hextof@FLASH
+config_file = Path('../src/sed/config/flash_example_config.yaml')
+assert config_file.exists()
+
+
+
+
+
[4]:
+
+
+
# here we setup a dictionary that will be used to override the path configuration
+config_override = {
+    "core": {
+        "beamtime_id": 11019101,
+        "paths": {
+            "raw": path,
+            "processed": buffer_path
+        },
+    },
+}
+
+
+
+
+
+

Prepare Energy Calibration#

+

Instead of making completely new energy calibration we can take existing values from the calibration made in the previous tutorial. This allows us to calibrate the conversion between the digital values of the dld and the energy.

+

For this we need to add all those parameters as a dictionary and use them during creation of the processor object.

+
+
[5]:
+
+
+
energy_cal = {
+    "energy": {
+        "calibration": {
+            "E0": -132.47100427179566,
+            "creation_date": '2024-11-30T20:47:03.305244',
+            "d": 0.8096677238144319,
+            "energy_scale": "kinetic",
+            "t0": 4.0148196706891397e-07,
+        },
+        "offsets":{
+            "constant": 1,
+            "creation_date": '2024-11-30T21:17:07.762199',
+            "columns": {
+                "monochromatorPhotonEnergy": {
+                    "preserve_mean": True,
+                    "weight": -1,
+                },
+                "tofVoltage": {
+                    "preserve_mean": True,
+                    "weight": -1,
+                },
+            },
+        },
+    },
+}
+
+
+
+
+
+
+

Read data#

+

Now we can use those parameters and load our trXPD data using additional config file

+
+
[6]:
+
+
+
run_number = 44498
+sp_44498 = SedProcessor(runs=[run_number], folder_config=energy_cal, config=config_override, system_config=config_file, verbose=True)
+sp_44498.add_jitter()
+
+
+
+
+
+
+
+
+INFO - System config loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/flash_example_config.yaml]
+INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
+INFO - Reading files: 0 new files of 14 total.
+loading complete in  0.13 s
+INFO - add_jitter: Added jitter to columns ['dldPosX', 'dldPosY', 'dldTimeSteps'].
+
+
+

We can inspect dataframe right after data readout

+
+
[7]:
+
+
+
sp_44498.dataframe.head()
+
+
+
+
+
[7]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
trainIdpulseIdelectronIddldPosXdldPosYdldTimeStepspulserSignAdcbamtimeStampmonochromatorPhotonEnergygmdBdadelayStagesampleBiastofVoltageextractorVoltageextractorCurrentcryoTemperaturesampleTemperaturedldTimeBinSizedldSectorID
0162802283010651.154674895.1546744595.15467432919.0-6187.968751.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763
1162802283011650.795029887.7950294595.79502932919.0-6187.968751.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205760
2162802283050681.824157671.8241574422.82415732914.0-6170.156251.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205766
3162802283051684.877689657.8776894424.87768932914.0-6170.156251.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205763
4162802283052669.901034686.9010344423.90103432914.0-6170.156251.677563e+09116.8582992.5214571448.60205172.99590319.9953566029.299805-0.07385749.20878.9899980.0205765
+
+
+

Now we will do energy calibration, add energy offset, jittering and dld sectors alignment

+
+
[8]:
+
+
+
sp_44498.align_dld_sectors()
+sp_44498.append_energy_axis()
+sp_44498.add_energy_offset()
+
+
+
+
+
+
+
+
+INFO - Aligning 8s sectors of dataframe
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...
+Dask Name: assign, 16 graph layers
+INFO - Adding energy column to dataframe:
+INFO - Using energy calibration parameters generated on 11/30/2024, 20:47:03
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 31 graph layers
+INFO - Adding energy offset to dataframe:
+INFO - Using energy offset parameters generated on 11/30/2024, 21:17:07
+INFO - Energy offset parameters:
+   Constant: 1.0
+   Column[monochromatorPhotonEnergy]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+   Column[tofVoltage]: Weight=-1.0, Preserve Mean: True, Reductions: None.
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float32    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 64 graph layers
+
+
+
+
[9]:
+
+
+
sp_44498.attributes.metadata['energy_calibration']
+
+
+
+
+
[9]:
+
+
+
+
+{'applied': True,
+ 'calibration': {'creation_date': datetime.datetime(2024, 11, 30, 20, 47, 3, 305244),
+  'd': 0.8096677238144319,
+  't0': 4.0148196706891397e-07,
+  'E0': -132.47100427179566,
+  'energy_scale': 'kinetic',
+  'calib_type': 'fit',
+  'fit_function': '(a0/(x0-a1))**2 + a2',
+  'coefficients': array([ 8.09667724e-01,  4.01481967e-07, -1.32471004e+02]),
+  'axis': 0.0},
+ 'tof': 0.0}
+
+
+

We can do the SASE jitter correction, using information from the bam column and do calibration of the pump-probe delay axis, we need to shift the delay stage values to center the pump-probe-time overlap time zero.

+
+
[10]:
+
+
+
sp_44498.add_delay_offset(
+    constant=-1448, # this is time zero position determined from side band fit
+    flip_delay_axis=True, # invert the direction of the delay axis
+    columns=['bam'], # use the bam to offset the values
+    weights=[-0.001], # bam is in fs, delay in ps
+    preserve_mean=True # preserve the mean of the delay axis to keep t0 position
+)
+
+
+
+
+
+
+
+
+INFO - Adding delay offset to dataframe:
+INFO - Delay offset parameters:
+   Column[bam]: Weight=-0.001, Preserve Mean: True, Reductions: None.
+   Constant: -1448
+   Flip delay axis: True
+INFO - Dask DataFrame Structure:
+               trainId pulseId electronId  dldPosX  dldPosY dldTimeSteps pulserSignAdc      bam timeStamp monochromatorPhotonEnergy   gmdBda delayStage sampleBias tofVoltage extractorVoltage extractorCurrent cryoTemperature sampleTemperature dldTimeBinSize dldSectorID   energy
+npartitions=14
+                uint32   int64      int64  float64  float64      float32       float32  float32   float64                   float32  float32    float64    float32    float32          float32          float32         float32           float32        float32        int8  float64
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+...                ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+                   ...     ...        ...      ...      ...          ...           ...      ...       ...                       ...      ...        ...        ...        ...              ...              ...             ...               ...            ...         ...      ...
+Dask Name: assign, 84 graph layers
+
+
+
+

bin in the calibrated energy and corrected delay axis#

+

Visualize trXPS data

+
+
[11]:
+
+
+
axes = ['energy', 'delayStage']
+ranges = [[-37.5,-27.5], [-1.5,1.5]]
+bins = [200,60]
+res_corr = sp_44498.compute(bins=bins, axes=axes, ranges=ranges, normalize_to_acquisition_time="delayStage")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+INFO - Calculate normalization histogram for axis 'delayStage'...
+
+
+
+
+
+
+
+
+
+
[12]:
+
+
+
fig,ax = plt.subplots(1,2,figsize=(6,2.25), layout='constrained')
+fig.suptitle(f"Run {run_number}: W 4f, side bands")
+res_corr.plot(robust=True, ax=ax[0], cmap='terrain')
+ax[0].set_title('raw')
+bg = res_corr.sel(delayStage=slice(-1.3,-1.0)).mean('delayStage')
+(res_corr-bg).plot(robust=True, ax=ax[1])
+ax[1].set_title('difference')
+
+
+
+
+
[12]:
+
+
+
+
+Text(0.5, 1.0, 'difference')
+
+
+
+
+
+
+
+
+
+
+
+

XPD from W4f core level#

+

Now we can bin not only in energy but also in both momentum directions to get XPD patterns of different core level line of tungsten.

+
+
[13]:
+
+
+
axes = ['energy', 'dldPosX', 'dldPosY']
+ranges = [[-38,-28], [420,900], [420,900]]
+bins = [100,240,240]
+res_kx_ky = sp_44498.compute(bins=bins, axes=axes, ranges=ranges)
+
+
+
+
+
+
+
+
+
+
+
[14]:
+
+
+
## EDC and integration region for XPD
+plt.figure()
+res_kx_ky.mean(('dldPosX', 'dldPosY')).plot()
+plt.vlines([-30.3,-29.9], 0, 2.4, color='r', linestyles='dashed')
+plt.vlines([-31.4,-31.2], 0, 2.4, color='orange', linestyles='dashed')
+plt.vlines([-33.6,-33.4], 0, 2.4, color='g', linestyles='dashed')
+plt.vlines([-37.0,-36.0], 0, 2.4, color='b', linestyles='dashed')
+plt.title('EDC and integration regions for XPD')
+plt.show()
+
+## XPD plots
+fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
+res_kx_ky.sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
+ax[0,0].set_title("XPD of $1^{st}$ order sidebands")
+res_kx_ky.sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
+ax[0,1].set_title("XPD of W4f 7/2 peak")
+res_kx_ky.sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
+ax[1,0].set_title("XPD of W4f 5/2 peak")
+res_kx_ky.sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
+ax[1,1].set_title("XPD of W5p 3/2 peak")
+
+
+
+
+
+
+
+
+
+
+
[14]:
+
+
+
+
+Text(0.5, 1.0, 'XPD of W5p 3/2 peak')
+
+
+
+
+
+
+
+
+

As we can see there is some structure visible, but it looks very similar to each other. We probably have to do some normalization to remove the detector structure/artefacts. The best option is to divide by a flat-field image. The flat-field image can be obtained from a sample that shows no structure under identical measurement conditions. Unfortunately, we don’t have such a flat-field image.

+

In this case, we can make a flat-field image from the actual dataset using several different approaches.

+

As a first option, we can integrate in energy over the whole region and use this image as a background. Additionally, we introduce the Gaussian Blur for comparison.

+
+
[15]:
+
+
+
## Background image
+bgd = res_kx_ky.mean(('energy'))
+
+## Apply Gaussian Blur to background image
+bgd_blur = xr.apply_ufunc(gaussian_filter, bgd, 15)
+
+fig,ax = plt.subplots(1,2,figsize=(6,2.7), layout='constrained')
+bgd.plot(robust=True, cmap='terrain', ax=ax[0])
+ax[0].set_title('Background image')
+bgd_blur.plot(cmap='terrain', ax=ax[1])
+ax[1].set_title('Gaussian Blur of background image')
+plt.show()
+
+
+
+
+
+
+
+
+
+
+
[16]:
+
+
+
## XPD normalized by background image
+fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
+(res_kx_ky/bgd).sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
+(res_kx_ky/bgd).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
+(res_kx_ky/bgd).sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
+(res_kx_ky/bgd).sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
+fig.suptitle(f'Run {run_number}: XPD patterns after background normalization',fontsize='11')
+
+## XPD normalized by Gaussian-blurred background image
+fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
+(res_kx_ky/bgd_blur).sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
+(res_kx_ky/bgd_blur).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
+(res_kx_ky/bgd_blur).sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
+(res_kx_ky/bgd_blur).sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
+fig.suptitle(f'Run {run_number}: XPD patterns after Gaussian-blurred background normalization',fontsize='11')
+
+## XPD normalized by Gaussian-blurred background image and blurred to improve contrast
+fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
+(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-30.3,-29.9)).mean('energy').plot(robust=True, ax=ax[0,0], cmap='terrain')
+(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0,1], cmap='terrain')
+(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-33.6,-33.4)).mean('energy').plot(robust=True, ax=ax[1,0], cmap='terrain')
+(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-37.0,-36.0)).mean('energy').plot(robust=True, ax=ax[1,1], cmap='terrain')
+fig.suptitle(f'Run {run_number}: resulting Gaussian-blurred XPD patterns',fontsize='11')
+
+
+
+
+
[16]:
+
+
+
+
+Text(0.5, 0.98, 'Run 44498: resulting Gaussian-blurred XPD patterns')
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Sometimes, after this division, you may not be happy with intensity distribution. Thus, other option for background correction is to duplicate the XPD pattern, apply large Gaussian blurring that eliminates the fine structures in the XPD pattern. Then divide the XPD pattern by its blurred version. This process sometimes enhances the visibility of the fine structures a lot.

+
+
[17]:
+
+
+
## XPD normalized by Gaussian-blurred background image
+
+### Define integration regions for XPD
+SB = res_kx_ky.sel(energy=slice(-30.3,-29.9)).mean('energy')
+W_4f_7 = res_kx_ky.sel(energy=slice(-31.4,-31.2)).mean('energy')
+W_4f_5 = res_kx_ky.sel(energy=slice(-33.6,-33.4)).mean('energy')
+W_5p = res_kx_ky.sel(energy=slice(-37.0,-36.0)).mean('energy')
+
+### Make corresponding Gaussian Blur background
+SB_blur = xr.apply_ufunc(gaussian_filter, SB, 15)
+W_4f_7_blur = xr.apply_ufunc(gaussian_filter, W_4f_7, 15)
+W_4f_5_blur = xr.apply_ufunc(gaussian_filter, W_4f_5, 15)
+W_5p_blur = xr.apply_ufunc(gaussian_filter, W_5p, 15)
+
+### Visualize results
+fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
+(SB/SB_blur).plot(robust=True, ax=ax[0,0], cmap='terrain')
+(W_4f_7/W_4f_7_blur).plot(robust=True, ax=ax[0,1], cmap='terrain')
+(W_4f_5/W_4f_5_blur).plot(robust=True, ax=ax[1,0], cmap='terrain')
+(W_5p/W_5p_blur).plot(robust=True, ax=ax[1,1], cmap='terrain')
+fig.suptitle(f'Run {run_number}: XPD patterns after Gaussian Blur normalization',fontsize='11')
+
+### Apply Gaussian Blur to resulted images to improve contrast
+SB_norm = xr.apply_ufunc(gaussian_filter, SB/SB_blur, 1)
+W_4f_7_norm = xr.apply_ufunc(gaussian_filter, W_4f_7/W_4f_7_blur, 1)
+W_4f_5_norm = xr.apply_ufunc(gaussian_filter, W_4f_5/W_4f_5_blur, 1)
+W_5p_norm = xr.apply_ufunc(gaussian_filter, W_5p/W_5p_blur, 1)
+
+### Visualize results
+fig,ax = plt.subplots(2,2,figsize=(6,4.7), layout='constrained')
+SB_norm.plot(robust=True, ax=ax[0,0], cmap='terrain')
+W_4f_7_norm.plot(robust=True, ax=ax[0,1], cmap='terrain')
+W_4f_5_norm.plot(robust=True, ax=ax[1,0], cmap='terrain')
+W_5p_norm.plot(robust=True, ax=ax[1,1], cmap='terrain')
+fig.suptitle(f'Run {run_number}: XPD patterns after Gauss Blur normalization',fontsize='11')
+
+
+
+
+
[17]:
+
+
+
+
+Text(0.5, 0.98, 'Run 44498: XPD patterns after Gauss Blur normalization')
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Third option for background normalization is to use the simultaneously acquired pre-core level region. As an example for W4f 7/2 peak, we define a region on the high energy side of it and integrate in energy to use as a background

+
+
[18]:
+
+
+
### Define peak and background region on the high energy side of the peak
+W_4f_7 = res_kx_ky.sel(energy=slice(-31.4,-31.2)).mean('energy')
+W_4f_7_bgd = res_kx_ky.sel(energy=slice(-32.0,-31.8)).mean('energy')
+
+### Make normalization by background, add Gaussian Blur to the resulting image
+W_4f_7_nrm1 = W_4f_7/(W_4f_7_bgd+W_4f_7_bgd.max()*0.00001)
+W_4f_7_nrm1_blur = xr.apply_ufunc(gaussian_filter, W_4f_7_nrm1, 1)
+
+### Add Gaussian Blur to the background image, normalize by it and add Gaussian Blur to the resulting image
+W_4f_7_bgd_blur = xr.apply_ufunc(gaussian_filter, W_4f_7_bgd, 15)
+W_4f_7_nrm2 = W_4f_7/W_4f_7_bgd_blur
+W_4f_7_nrm2_blur = xr.apply_ufunc(gaussian_filter, W_4f_7_nrm2, 1)
+
+### Visualize all steps
+fig,ax = plt.subplots(4,2,figsize=(6,8), layout='constrained')
+W_4f_7.plot(robust=True, ax=ax[0,0], cmap='terrain')
+W_4f_7_bgd.plot(robust=True, ax=ax[0,1], cmap='terrain')
+W_4f_7_nrm1.plot(robust=True, ax=ax[1,0], cmap='terrain')
+W_4f_7_nrm1_blur.plot(robust=True, ax=ax[1,1], cmap='terrain')
+W_4f_7_bgd_blur.plot(robust=True, ax=ax[2,0], cmap='terrain')
+W_4f_7_nrm2.plot(robust=True, ax=ax[2,1], cmap='terrain')
+W_4f_7_nrm2_blur.plot(robust=True, ax=ax[3,0], cmap='terrain')
+fig.suptitle(f'Run {run_number}: XPD patterns of W4f7/2 with pre-core level normalization',fontsize='11')
+
+
+
+
+
[18]:
+
+
+
+
+Text(0.5, 0.98, 'Run 44498: XPD patterns of W4f7/2 with pre-core level normalization')
+
+
+
+
+
+
+
+
+
+
[19]:
+
+
+
fig,ax = plt.subplots(1,3,figsize=(6,2), layout='constrained')
+(xr.apply_ufunc(gaussian_filter, res_kx_ky/bgd_blur, 1)).sel(energy=slice(-31.4,-31.2)).mean('energy').plot(robust=True, ax=ax[0], cmap='terrain')
+W_4f_7_norm.plot(robust=True, ax=ax[1], cmap='terrain')
+W_4f_7_nrm2_blur.plot(robust=True, ax=ax[2], cmap='terrain')
+fig.suptitle(f'Run {run_number}: comparison of different normalizations\nof XPD pattern for W4f 7/2 peak with Gaussian Blur',fontsize='11')
+
+
+
+
+
[19]:
+
+
+
+
+Text(0.5, 0.98, 'Run 44498: comparison of different normalizations\nof XPD pattern for W4f 7/2 peak with Gaussian Blur')
+
+
+
+
+
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/sed/latest/user_guide/config.html b/sed/v1.0.0/user_guide/config.html similarity index 99% rename from sed/latest/user_guide/config.html rename to sed/v1.0.0/user_guide/config.html index 185d0fa..7b6899b 100644 --- a/sed/latest/user_guide/config.html +++ b/sed/v1.0.0/user_guide/config.html @@ -8,7 +8,7 @@ - Configuration — SED 1.0.0a1.dev19+gf1bb527 documentation + Configuration — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/user_guide/index.html b/sed/v1.0.0/user_guide/index.html similarity index 98% rename from sed/latest/user_guide/index.html rename to sed/v1.0.0/user_guide/index.html index 7b109d5..b9476fe 100644 --- a/sed/latest/user_guide/index.html +++ b/sed/v1.0.0/user_guide/index.html @@ -9,7 +9,7 @@ - User Guide — SED 1.0.0a1.dev19+gf1bb527 documentation + User Guide — SED 1.0.0 documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/user_guide/installation.html b/sed/v1.0.0/user_guide/installation.html similarity index 98% rename from sed/latest/user_guide/installation.html rename to sed/v1.0.0/user_guide/installation.html index bcf8661..ae0d254 100644 --- a/sed/latest/user_guide/installation.html +++ b/sed/v1.0.0/user_guide/installation.html @@ -8,7 +8,7 @@ - Installation — SED 1.0.0a1.dev19+gf1bb527 documentation + Installation — SED 1.0.0 documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation

diff --git a/sed/latest/workflows/index.html b/sed/v1.0.0/workflows/index.html similarity index 98% rename from sed/latest/workflows/index.html rename to sed/v1.0.0/workflows/index.html index ca95ee8..2b436aa 100644 --- a/sed/latest/workflows/index.html +++ b/sed/v1.0.0/workflows/index.html @@ -9,7 +9,7 @@ - Workflows — SED 1.0.0a1.dev19+gf1bb527 documentation + Workflows — SED 1.0.0 documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

SED 1.0.0a1.dev19+gf1bb527 documentation

+

SED 1.0.0 documentation