-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (42 loc) · 1.58 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from flask import Flask, request, render_template
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from src.pipeline.predict_pipeline import PredictPipeline, CustomData
# Defining the Flask application
application = Flask(__name__)
app=application
# Route to handle the home page
@app.route('/')
def index():
"""
Main method to render the home page.
"""
return render_template('index.html')
@app.route('/home', methods=['GET', 'POST'])
def predict_datapoint():
"""
Method to predict the data point.
"""
if request.method == 'GET':
return render_template('home.html')
else:
# Get the data from the form
data=CustomData(
gender=request.form.get('gender'),
race_ethnicity=request.form.get('ethnicity'),
parental_level_of_education=request.form.get('parental_level_of_education'),
lunch=request.form.get('lunch'),
test_preparation_course=request.form.get('test_preparation_course'),
reading_score=float(request.form.get('reading_score')),
writing_score=float(request.form.get('writing_score'))
)
# Get the data as dataframe
pred_df = data.get_data_as_df()
print(pred_df)
# Predict the data point and return the results
predict_pipeline = PredictPipeline()
results=predict_pipeline.predict(pred_df)
return render_template('home.html', results=results[0])
if __name__ == '__main__':
app.run(host="0.0.0.0")