-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_writing.py
431 lines (322 loc) · 17.8 KB
/
model_writing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 15 11:38:49 2021
@author: gastoncavallo
"""
import tensorflow as tf
from tensorflow.keras import applications
#Define a function to create models
#Modellos de aplicación similar
default_optimizer = tf.keras.optimizers.SGD(lr = 0.005, momentum = 0.1)
default_loss = 'categorical_crossentropy'
def create_model1():
cnn_model1 = tf.keras.models.Sequential()
cnn_model1.add(tf.keras.layers.Conv1D(8, 4, padding = 'valid', activation = 'relu', strides = 1, input_shape = (512, 4)))
cnn_model1.add(tf.keras.layers.Conv1D(4, 16, padding = 'valid', activation = 'relu', strides = 1))
cnn_model1.add(tf.keras.layers.Flatten())
cnn_model1.add(tf.keras.layers.Dense(2, activation='softmax'))
cnn_model1.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model1.summary()
return cnn_model1
def create_model2():
cnn_model2 = tf.keras.models.Sequential()
cnn_model2.add(tf.keras.layers.Conv1D(8, 4, padding = 'valid', activation = 'relu', strides = 1, input_shape = (512, 4)))
cnn_model2.add(tf.keras.layers.Conv1D(4, 16, padding = 'valid', activation = 'relu', strides = 1))
cnn_model2.add(tf.keras.layers.Flatten())
cnn_model2.add(tf.keras.layers.Dense(3, activation='softmax'))
cnn_model2.add(tf.keras.layers.Dense(2, activation='softmax'))
cnn_model2.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model2.summary()
return cnn_model2
def create_model3():
cnn_model3 = tf.keras.models.Sequential()
cnn_model3.add(tf.keras.layers.Conv1D(10, 4, padding = 'valid', activation = 'relu', strides = 1, input_shape = (512, 4)))
cnn_model3.add(tf.keras.layers.Conv1D(50, 13, padding = 'valid', activation = 'relu', strides = 13))
cnn_model3.add(tf.keras.layers.Flatten())
cnn_model3.add(tf.keras.layers.Dense(100, activation='softmax'))
cnn_model3.add(tf.keras.layers.Dense(2, activation='softmax'))
cnn_model3.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model3.summary()
return cnn_model3
def create_model12():
cnn_model12 = tf.keras.models.Sequential()
cnn_model12.add(tf.keras.layers.Conv1D(64, 3, padding = 'same', input_shape = (512,4)))
cnn_model12.add(tf.keras.layers.BatchNormalization())
cnn_model12.add(tf.keras.layers.ReLU())
cnn_model12.add(tf.keras.layers.Conv1D(64, 3, padding = 'same'))
cnn_model12.add(tf.keras.layers.BatchNormalization())
cnn_model12.add(tf.keras.layers.ReLU())
cnn_model12.add(tf.keras.layers.Conv1D(64, 3, padding = 'same'))
cnn_model12.add(tf.keras.layers.BatchNormalization())
cnn_model12.add(tf.keras.layers.ReLU())
cnn_model12.add(tf.keras.layers.GlobalAveragePooling1D())
cnn_model12.add(tf.keras.layers.Dense(2, activation="softmax"))
cnn_model12.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model12.summary()
return cnn_model12
# --- Modelos para transfer learning ---
def create_model4():
model_transfer1 = applications.vgg16.VGG16(include_top = False,
input_shape = (512, 128, 3),
pooling = "avg") #El pooling se puede variar entre avg o max
cnn_model4 = tf.keras.models.Sequential()
for layer in model_transfer1.layers:
layer.trainable = False #congelo las capas que no deben ser entrenadas
for capa in model_transfer1.layers:
cnn_model4.add(capa)
cnn_model4.add(tf.keras.layers.Flatten()) #debe ser añadida para no tener incompatibilidades de dimensiones
#cnn_model4.add(tf.keras.layers.Dense(10, activation = 'softmax')) #capa densa opcional - Parametros entrenables se va a 5152
cnn_model4.add(tf.keras.layers.Dense(2, activation = 'softmax')) #para clasificar 2 clases
cnn_model4.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model4.summary()
return cnn_model4
def create_model5():
model_transfer2 = applications.resnet50.ResNet50(include_top = False,
input_shape = (512,128,3),
pooling = "avg")
for layer in model_transfer2.layers:
layer.trainable = False
cnn_model5 = tf.keras.models.Sequential()
cnn_model5.add(model_transfer2)
cnn_model5.add(tf.keras.layers.Flatten())
#cnn_model5.add(tf.keras.layers.Dense(5, activation = 'softmax')) #capa densa opcional
cnn_model5.add(tf.keras.layers.Dense(2, activation = 'softmax'))
cnn_model5.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model5.summary()
return cnn_model5
def create_model6():
model_transfer3 = applications.inception_v3.InceptionV3(include_top = False,
input_shape = (512,128,3),
pooling = "avg")
for layer in model_transfer3.layers:
layer.trainable = False
cnn_model6 = tf.keras.models.Sequential()
cnn_model6.add(model_transfer3)
cnn_model6.add(tf.keras.layers.Flatten())
#cnn_model6.add(tf.keras.layers.Dense(5, activation = 'softmax')) #capa densa opcional
cnn_model6.add(tf.keras.layers.Dense(2, activation = 'softmax'))
cnn_model6.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model6.summary()
return cnn_model6
def create_model7():
model_transfer4 = applications.xception.Xception(include_top = False,
input_shape = (512,128,3),
pooling = "avg")
for layer in model_transfer4.layers:
layer.trainable = False
cnn_model7 = tf.keras.models.Sequential()
cnn_model7.add(model_transfer4)
cnn_model7.add(tf.keras.layers.Flatten())
#cnn_model7.add(tf.keras.layers.Dense(5, activation = 'softmax')) #capa densa opcional
cnn_model7.add(tf.keras.layers.Dense(2, activation = 'softmax'))
cnn_model7.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model7.summary()
return cnn_model7
def create_model8():
model_transfer5 = applications.mobilenet.MobileNet(include_top = False,
input_shape = (512, 128, 3),
pooling = "avg")
for layer in model_transfer5.layers:
layer.trainable = False
cnn_model8 = tf.keras.models.Sequential()
cnn_model8.add(model_transfer5)
cnn_model8.add(tf.keras.layers.Flatten())
cnn_model8.add(tf.keras.layers.Dense(5, activation = 'softmax')) #capa densa opcional
cnn_model8.add(tf.keras.layers.Dense(2, activation = 'softmax'))
cnn_model8.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model8.summary()
return cnn_model8
# --- Modelos propios
def create_model9():
regularizer = tf.keras.regularizers.l2(0.01) # kernel_regularizer = regularizer,
cnn_model9 = tf.keras.models.Sequential()
cnn_model9.add(tf.keras.layers.Conv1D(8, 32, padding = 'valid', activation = 'relu', strides = 1, kernel_regularizer = regularizer, input_shape = (512, 4)))
cnn_model9.add(tf.keras.layers.Dropout(0.3))
cnn_model9.add(tf.keras.layers.MaxPooling1D(pool_size = 2, strides = None))
cnn_model9.add(tf.keras.layers.Conv1D(16, 16, padding = 'valid', activation = 'relu', strides = 1, kernel_regularizer = regularizer))
cnn_model9.add(tf.keras.layers.Dropout(0.2))
cnn_model9.add(tf.keras.layers.Flatten())
cnn_model9.add(tf.keras.layers.Dense(2, activation='softmax'))
cnn_model9.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model9.summary()
return cnn_model9
def create_model10():
regularizer = tf.keras.regularizers.l2(0.01) # kernel_regularizer = regularizer,
cnn_model10 = tf.keras.models.Sequential()
cnn_model10.add(tf.keras.layers.Conv1D(8, 32, padding = 'valid', activation = 'relu', strides = 1, kernel_regularizer = regularizer, input_shape = (512, 4)))
cnn_model10.add(tf.keras.layers.Dropout(0.3))
cnn_model10.add(tf.keras.layers.MaxPooling1D(pool_size = 4, strides = 2))
cnn_model10.add(tf.keras.layers.Conv1D(16, 16, padding = 'valid', activation = 'relu', strides = 1, kernel_regularizer = regularizer))
cnn_model10.add(tf.keras.layers.Dropout(0.3))
cnn_model10.add(tf.keras.layers.Flatten())
cnn_model10.add(tf.keras.layers.Dense(2, activation='softmax'))
cnn_model10.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model10.summary()
return cnn_model10
def create_model11():
cnn_model11 = tf.keras.models.Sequential()
cnn_model11.add(tf.keras.layers.Conv1D(8, 32, padding = 'valid', activation = 'relu', strides = 1, input_shape = (512, 4)))
cnn_model11.add(tf.keras.layers.MaxPooling1D(pool_size = 2, strides = None))
cnn_model11.add(tf.keras.layers.Conv1D(16, 16, padding = 'valid', activation = 'relu', strides = 1))
cnn_model11.add(tf.keras.layers.Dropout(0.3))
cnn_model11.add(tf.keras.layers.MaxPooling1D(pool_size = 4, strides = 2))
cnn_model11.add(tf.keras.layers.Flatten())
cnn_model11.add(tf.keras.layers.Dense(5, activation='softmax'))
cnn_model11.add(tf.keras.layers.Dense(2, activation='softmax'))
cnn_model11.compile(optimizer = default_optimizer, loss = default_loss, metrics = ['accuracy'])
cnn_model11.summary()
return cnn_model11
#Modelos propios creados con keras tuner
def model_create1():
model1 = tf.keras.models.Sequential()
model1.add(tf.keras.layers.Conv1D(filters = 8,
kernel_size = 28,
strides = 3,
activation = "relu",
padding = "same", input_shape = (512, 4)))
model1.add(tf.keras.layers.Dropout(rate = 0.1))
model1.add(tf.keras.layers.Conv1D(filters = 32,
kernel_size = 24,
strides = 1,
activation = "relu",
padding = "same"))
model1.add(tf.keras.layers.Conv1D(filters = 32,
kernel_size = 8,
strides = 4,
activation = "relu",
padding = "same"))
model1.add(tf.keras.layers.Dropout(rate = 0.2))
model1.add(tf.keras.layers.MaxPooling1D(pool_size = 4,
strides = 2))
model1.add(tf.keras.layers.Conv1D(filters = 16,
kernel_size = 24,
strides = 2,
activation = "relu",
padding = "same"))
model1.add(tf.keras.layers.Flatten())
model1.add(tf.keras.layers.Dense(2, activation='softmax'))
optimizer = tf.keras.optimizers.SGD(learning_rate = 0.002 ,
momentum = 3/10)
loss = 'categorical_crossentropy'
model1.compile(optimizer, loss, metrics = ['accuracy'])
model1.summary()
return model1
def model_create2():
model2 = tf.keras.models.Sequential()
model2.add(tf.keras.layers.Conv1D(filters = 64,
kernel_size = 28,
strides = 4,
activation = "relu",
padding = "same",
input_shape = (512, 4)))
model2.add(tf.keras.layers.MaxPooling1D(pool_size = 2,
strides = 1))
model2.add(tf.keras.layers.Conv1D(filters = 16,
kernel_size = 4,
strides = 4,
activation = "relu",
padding = "same"))
model2.add(tf.keras.layers.Dropout(rate = 0.2))
model2.add(tf.keras.layers.MaxPooling1D(pool_size = 4,
strides = 1))
model2.add(tf.keras.layers.Flatten())
model2.add(tf.keras.layers.Dense(units = 4,
activation='softmax'))
model2.add(tf.keras.layers.Dense(2, activation='softmax'))
optimizer = tf.keras.optimizers.SGD(learning_rate = 0.0005 ,
momentum = 2/10)
loss = 'categorical_crossentropy'
model2.compile(optimizer, loss, metrics = ['accuracy'])
model2.summary()
return model2
def model_create3():
model3 = tf.keras.models.Sequential()
model3.add(tf.keras.layers.Conv1D(filters = 8,
kernel_size = 28,
strides = 4,
activation = "relu",
padding = "same", input_shape = (512, 4)))
model3.add(tf.keras.layers.Dropout(rate = 0.2))
model3.add(tf.keras.layers.Conv1D(filters = 16,
kernel_size = 24,
strides = 3,
activation = "relu",
padding = "same"))
model3.add(tf.keras.layers.Dropout(rate = 0.2))
model3.add(tf.keras.layers.Conv1D(filters = 64,
kernel_size = 12,
strides = 4,
activation = "relu",
padding = "same"))
model3.add(tf.keras.layers.Dropout(rate = 0.1))
model3.add(tf.keras.layers.Flatten())
model3.add(tf.keras.layers.Dense(units = 5,
activation='softmax'))
model3.add(tf.keras.layers.Dense(2, activation='softmax'))
optimizer = tf.keras.optimizers.SGD(learning_rate = 0.0003 ,
momentum = 9/10)
loss = 'categorical_crossentropy'
model3.compile(optimizer, loss, metrics = ['accuracy'])
model3.summary()
return model3
def model_create6():
model6 = tf.keras.models.Sequential()
model6.add(tf.keras.layers.Conv1D(filters = 64,
kernel_size = 20,
strides = 3,
activation = "relu",
padding = "same", input_shape = (512, 4)))
model6.add(tf.keras.layers.MaxPooling1D(pool_size = 2,
strides = 1))
model6.add(tf.keras.layers.Conv1D(filters = 8,
kernel_size = 12,
strides = 4,
activation = "relu",
padding = "same"))
model6.add(tf.keras.layers.MaxPooling1D(pool_size = 4,
strides = 2))
model6.add(tf.keras.layers.Flatten())
model6.add(tf.keras.layers.Dense(units = 6,
activation='softmax'))
model6.add(tf.keras.layers.Dense(2, activation='softmax'))
optimizer = tf.keras.optimizers.SGD(learning_rate = 0.0004 ,
momentum = 7/10)
loss = 'categorical_crossentropy'
model6.compile(optimizer, loss, metrics = ['accuracy'])
model6.summary()
return model6
#Create a basic model instance
model_appsim1 = create_model1()
model_appsim2 = create_model2()
model_appsim3 = create_model3()
model_appsim4 = create_model12()
modeltl_vgg16 = create_model4()
modeltl_resnet50 = create_model5()
modeltl_inceptionv3 = create_model6()
modeltl_xception = create_model7()
modeltl_mobilenet = create_model8()
model_own1 = create_model9()
model_own2 = create_model10()
model_own3 = create_model11()
model_own4 = model_create1()
model_own5 = model_create2()
model_own6 = model_create3()
model_own7 = model_create6()
#Save the model architecture
model_appsim1.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_appsim1')
model_appsim2.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_appsim2')
model_appsim3.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_appsim3')
model_appsim4.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_appsim4')
modeltl_vgg16.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/modeltl_vgg16')
modeltl_resnet50.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/modeltl_resnet50')
modeltl_inceptionv3.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/modeltl_inceptionv3')
modeltl_xception.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/modeltl_xception')
modeltl_mobilenet.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/modeltl_mobilenet')
model_own1.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own1')
model_own2.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own2')
model_own3.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own3')
model_own4.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own4')
model_own5.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own5')
model_own6.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own6')
model_own7.save('/Users/gastoncavallo/Desktop/Facultad/PI/untrained_models/model_own7')