-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplasmid_mod.py
245 lines (207 loc) · 6.38 KB
/
plasmid_mod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import json
import regex
import string
import random
from Bio import SeqIO
from Bio import SearchIO
from Bio import Entrez
from Bio.Seq import Seq
from Bio import pairwise2
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import IUPAC
from Bio.Alphabet import generic_dna
from Bio.Align import MultipleSeqAlignment
from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
with open('enz_list.json') as data_file:
enz_list = json.load(data_file)
#OPEN SEQUENCE FILE
for record in SeqIO.parse("pCYAko.fasta","fasta"):
plasmid = record
seq = plasmid.seq
comseq = seq.complement()
full_seq = seq + comseq
full_seq_str = str(full_seq).upper()
# LOCATE ORFs
stop_codon_list = []
stop_codon = regex.finditer(r'(?!TGG)(T[AG][AG])', full_seq_str, overlapped=True)
for match in stop_codon:
stop_codon_list.append(match)
frame1 = []
frame2 = []
frame3 = []
plasmid_range = range(len(full_seq_str) / 3)
for p in plasmid_range:
frame1.append(0 + (p * 3))
frame2.append(1 + (p * 3))
frame3.append(2 + (p * 3))
f1_codon = []
f2_codon = []
f3_codon = []
for stop in stop_codon_list:
if stop.start() in frame1:
f1_codon.append(stop)
if stop.start() in frame2:
f2_codon.append(stop)
if stop.start() in frame3:
f3_codon.append(stop)
orf_list = []
for i in range(len(f1_codon) - 1):
orf = (f1_codon[i+1].start() - f1_codon[i].start())
if orf >= 300:
o = [f1_codon[i],orf]
orf_list.append(o)
for i in range(len(f2_codon) - 1):
orf = (f2_codon[i+1].start() - f2_codon[i].start())
if orf >= 300:
o = [f2_codon[i],orf]
orf_list.append(o)
for i in range(len(f3_codon) - 1):
orf = (f3_codon[i+1].start() - f3_codon[i].start())
if orf >= 300:
o = [f3_codon[i],orf]
orf_list.append(o)
orfs = []
for orf in orf_list:
o = full_seq_str[orf[0].end() : (orf[0].end() + orf[1])]
o_seq = Seq(o)
orfs1 = [orf[0].end()+1, orf[1], o_seq, o_seq.translate(table=11)]
orfs.append(orfs1)
# SeqFeature FROM ORF
orf_features = []
for orf in orfs:
orf_feature = SeqFeature(FeatureLocation(orf[0], orf[0] + orf[1]), type='ORF')
orf_features.append(orf_feature)
plasmid.features = orf_features
# TARGET CODE CHANGE
init_site = []
target_enz =[]
target_site = []
cut = []
rm_site = []
meth_sites = []
re_sites = []
nick_sites = []
homing = []
rm_loc = []
target_list = []
for i in enz_list:
if 'Synechocystis species PCC 6803' in i[0]:
if '?' not in i[2]:
init_site.append(i)
for i in init_site:
print i[2]
i[2] = i[2].replace('R', '[GA]')
i[2] = i[2].replace('Y', '[CT]')
i[2] = i[2].replace('M', '[AC]')
i[2] = i[2].replace('K', '[GT]')
i[2] = i[2].replace('S', '[GC]')
i[2] = i[2].replace('W', '[AT]')
i[2] = i[2].replace('B', '[GCT]')
i[2] = i[2].replace('D', '[AGT]')
i[2] = i[2].replace('H', '[ACT]')
i[2] = i[2].replace('V', '[ACG]')
i[2] = i[2].replace('N', '[ACGT]')
i[2] = i[2].replace('^', '')
i[2] = i[2].replace('\r', '')
target_enz.append(i)
target_list.append(i[2])
for i in target_enz:
cut_site = regex.finditer(i[2], full_seq_str, overlapped=True)
for c in cut_site:
target_site.append(c)
for t in target_site:
for i in target_enz:
if i[2] in str(t.re):
rm_hit = [i[1], i[3], t.group(0), t.start(), t.end()]
# rm_hit = [Enzyme name, Enzyme type, target sequence, target start, target end]
rm_site.append(rm_hit)
for rm in rm_site:
rm_loc.append(rm[3])
rm_loc1 = list(set(rm_loc))
# RM SITE IN ORF
rm_orf = []
rm_nonc = []
orf_ranges = []
for orf in orfs:
for i in range((orf[0]-1), (orf[0]-1)+orf[1]):
orf_ranges.append(i)
for rm in rm_loc1:
if rm == i:
rm_o = [rm, orf]
rm_orf.append(rm_o)
# rm_orf = [rm target site, ORF]
# RM SITE IN NON-CODING PLASMID
orf_bp = list(set(orf_ranges))
non_coding = list(range(len(full_seq_str) - 1))
for x in orf_bp:
non_coding.remove(x)
for nc in non_coding:
for rm in rm_loc1:
if rm == nc:
rm_nonc.append(rm)
# IN-FRAME RM SEQUENCE/LOCATION
site = []
for n in rm_orf:
x = (n[0])-(n[1][0])
for i in range(1,4):
if (x + i) % 3 == 0:
seq = n[1][2][(x-(3-i)):((x-(3-i))+15)]
aa = n[1][3][((x-(3-i))/3):((x-(3-i))/3)+5]
for rm in rm_site:
if n[0] == rm[3]:
site1 = [rm[0], rm[1], rm[2], seq, n[0]-(3-i), 3-i]
# site1 = [Enzyme name, Enzyme type, Recognition bp, In-frame bp, In-frame target loc]
site.append(site1)
# SEQUENCE MODIFICATION
loc = []
ran_ins = []
mod_inserts = []
for s in site:
if s[4] not in loc:
random_seq = ''.join(random.SystemRandom().choice('ACTG') for _ in range(len(s[2])))
random_ins = str(s[3]).replace(s[2], random_seq)
x = regex.search("(" + ")|(".join(target_list) + ")", random_ins, overlapped=True)
ins_perm = []
while Seq(random_ins).translate() != s[3].translate() or x != None:
random_seq = ''.join(random.SystemRandom().choice('ACTG') for _ in range(len(s[2])))
ins_perm.append(random_seq)
random_ins = str(s[3]).replace(s[2], random_seq)
x = regex.search("(" + ")|(".join(target_list) + ")", random_ins, overlapped=True)
if len(list(set(ins_perm))) == 4**len(s[2]):
mod_insert = [str(s[3]), s[3], s[2], s[4]]
mod_inserts.append(mod_insert)
loc.append(s[4])
break
else:
mod_insert = [random_ins, s[3], s[2], s[4]]
mod_inserts.append(mod_insert)
loc.append(s[4])
unmod_seq = full_seq_str
for mod in mod_inserts:
full_seq_str = full_seq_str.replace(full_seq_str[mod[3]-1:mod[3]+len(mod[0])-1], mod[0])
# alignment = pairwise2.align.globalxx(Seq(unmod_seq), Seq(full_seq_str))
# print(pairwise2.format_alignment(*alignment[0]))
# print len(mod_inserts)
# print unmod_seq
# print full_seq_str
# PLASMID DIAGRAM
# gd_diagram = GenomeDiagram.Diagram("pCYAko")
# gd_track_for_features = gd_diagram.new_track(1, name="ORFs")
# gd_feature_set = gd_track_for_features.new_set()
#
# for orfs in plasmid.features:
# if orfs.type == "ORF":
# color = colors.blue
# else:
# color = colors.lightblue
# gd_feature_set.add_feature(orfs, color=color, label=True)
#
# gd_diagram.draw(format="linear", orientation="landscape", pagesize='A4',
# fragments=4, start=0, end=len(full_seq_str))
# gd_diagram.write("plasmid_linear.pdf", "PDF")
# gd_diagram.draw(format="circular", circular=True, pagesize=(20*cm,20*cm),
# start=0, end=len(plasmid), circle_core=0.7)
# gd_diagram.write("plasmid_circular.pdf", "PDF")