-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
506 lines (464 loc) · 22.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import pandas as pd
import plotly.express as px
import plotly.subplots as sp
import plotly.graph_objs as go
import sklearn.model_selection as ms
from pandas.api.types import CategoricalDtype
from sklearn.linear_model import LinearRegression
COL_NAME_HTL = 'Hotel'
COL_NAME_LEAD_TIME = 'Lead Time'
COL_NAME_ARR_DATE_D = 'Arrival Date Day'
COL_NAME_ARR_DATE_M = 'Arrival Date Month'
COL_NAME_ARR_DATE_Y = 'Arrival Date Year'
COL_NAME_ARR_DATE = 'Arrival Date'
COL_NAME_WKDAY = 'Weekday'
COL_NAME_ADT = 'Adults'
COL_NAME_CHLDN = 'Children'
COL_NAME_CNTRY = 'Country'
COL_NAME_MKT_SEG = 'Market Segment'
COL_NAME_AGT = 'Agent'
COL_NAME_CUST_TYPE = 'Customer Type'
COL_NAME_AVG_DLY_RATE = 'Average Daily Rate'
COL_NAME_CNTRY_NAME = 'Country Name'
month_ord = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
wkday_ord = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
htl_base_clr = ['#636EFA', '#EF553B']
df = pd.read_csv('https://media.githubusercontent.com/media/Nihgi-DA08/Capstone-Project/main/data_valid.csv')
cntry_codes_df = pd.read_csv('https://media.githubusercontent.com/media/Nihgi-DA08/Capstone-Project/main/country_codes_list.csv')
merged_df = pd.merge(df,
cntry_codes_df,
on=COL_NAME_CNTRY,
how='left')
# Create dropdown list
def crt_ddl(col_name):
list = df[col_name].unique().tolist()
list.append('All')
return list
df[COL_NAME_ARR_DATE_Y] = df[COL_NAME_ARR_DATE_Y].astype(str)
merged_df[COL_NAME_ARR_DATE_Y] = merged_df[COL_NAME_ARR_DATE_Y].astype(str)
# Univariate mod dataframe
def uv_mod_df(year, mkt_seg, cust_type):
fltr_df = df if year == 'All' else df[df[COL_NAME_ARR_DATE_Y] == year]
fltr_df = fltr_df if mkt_seg == 'All' else fltr_df[fltr_df[COL_NAME_MKT_SEG] == mkt_seg]
return fltr_df if cust_type == 'All' else fltr_df[fltr_df[COL_NAME_CUST_TYPE] == cust_type]
# Univariate Hotel
def uv_htl(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_HTL].value_counts()
return go.Pie(labels=cnts.index,
values=cnts.values,
hole=.5,
name='Hotel')
# Univariate Lead Time
def uv_lead_time(year, mkt_seg, cust_type):
return go.Histogram(x=uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_LEAD_TIME],
nbinsx=30,
name='Day')
# Univariate Arrival Date Day
def uv_arr_date_day(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_ARR_DATE_D].value_counts().sort_index()
return go.Bar(x=cnts.index,
y=cnts.values,
name='Day')
# Univariate Weekday
def uv_wkday(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_WKDAY].astype(CategoricalDtype(categories=wkday_ord,
ordered=True)).value_counts().sort_index()
return go.Bar(x=cnts.index.str[:3],
y=cnts.values,
hovertext=wkday_ord,
name='Weekday')
# Univariate Arrival Date Month
def uv_arr_date_month(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_ARR_DATE_M].astype(CategoricalDtype(categories=month_ord,
ordered=True)).value_counts().sort_index()
return go.Bar(x=cnts.index.str[:3],
y=cnts.values,
hovertext=month_ord,
name='Month')
# Univariate Arrival Date Year
def uv_arr_date_year(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_ARR_DATE_Y].value_counts().sort_index()
return go.Pie(labels=cnts.index,
values=cnts.values,
hole=.5,
name='Year')
# Univariate Country
def uv_cntry(year, mkt_seg, cust_type):
new_df = pd.merge(cntry_codes_df,
uv_mod_df(year, mkt_seg, cust_type).groupby([COL_NAME_CNTRY]).size().reset_index(name='Count'),
how='inner')
return go.Choropleth(locations=new_df[COL_NAME_CNTRY],
z=new_df['Count'],
hovertext=new_df[COL_NAME_CNTRY_NAME],
colorscale='reds',
showscale=False,
name='Country')
# Univariate Adults
def uv_adt(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_ADT].value_counts().sort_index()
return go.Pie(labels=cnts.index,
values=cnts.values,
hole=.5,
rotation=315,
name='N.O. Adults')
# Univariate Children
def uv_chldn(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_CHLDN].value_counts().sort_index()
return go.Pie(labels=cnts.index,
values=cnts.values,
hole=.5,
rotation=270,
name='N.O. Children')
# Univariate Market Segment
def uv_mrk_seg(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_MKT_SEG].value_counts().sort_index()
return go.Pie(labels=cnts.index,
values=cnts.values,
hole=.5,
rotation=315,
name='Name')
# Univariate Agent
def uv_agt(year, mkt_seg, cust_type):
return go.Histogram(x=uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_AGT],
name='ID')
# Univariate Customer Type
def uv_cust_type(year, mkt_seg, cust_type):
cnts = uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_CUST_TYPE].value_counts().sort_index()
return go.Pie(labels=cnts.index,
values=cnts.values,
hole=.5,
rotation=270,
name='Type')
# Average Daily Rate
def uv_avg_dly_rate(year, mkt_seg, cust_type):
return go.Histogram(x=uv_mod_df(year, mkt_seg, cust_type)[COL_NAME_AVG_DLY_RATE],
nbinsx=50,
name='USD')
# Multivariate mod dataframe
def mv_mod_df(year, expand=False):
fltr_df = merged_df if expand else df
return fltr_df if year == 'All' else fltr_df[fltr_df[COL_NAME_ARR_DATE_Y] == year]
# Multivariate Hotel & Arrival Date Day
def mv_htl_arr_date_day(year):
grped_df = mv_mod_df(year).groupby([COL_NAME_HTL, COL_NAME_ARR_DATE_D]).size().reset_index(name='Booking Count')
fig = go.Figure()
for htl in grped_df[COL_NAME_HTL].unique():
htl_df = grped_df[grped_df[COL_NAME_HTL] == htl]
fig.add_trace(go.Scatter(x=htl_df[COL_NAME_ARR_DATE_D],
y=htl_df['Booking Count'],
mode='lines',
name=htl))
return fig
# Multivariate Hotel & Weekday
def mv_htl_wkday(year):
grped_df = mv_mod_df(year).groupby([COL_NAME_HTL, COL_NAME_WKDAY]).size().reset_index(name='Booking Count')
grped_df[COL_NAME_WKDAY] = pd.Categorical(grped_df[COL_NAME_WKDAY],
categories=wkday_ord,
ordered=True)
grped_df = grped_df.sort_values([COL_NAME_WKDAY])
grped_df[COL_NAME_WKDAY] = grped_df[COL_NAME_WKDAY].apply(lambda x: x[:3])
fig = go.Figure()
for htl in grped_df[COL_NAME_HTL].unique():
htl_df = grped_df[grped_df[COL_NAME_HTL] == htl]
fig.add_trace(go.Scatter(x=htl_df[COL_NAME_WKDAY],
y=htl_df['Booking Count'],
hovertext=wkday_ord,
mode='lines',
name=htl))
return fig
# Multivariate Hotel & Arrival Date Month
def mv_htl_arr_date_month(year):
grped_df = mv_mod_df(year).groupby([COL_NAME_HTL, COL_NAME_ARR_DATE_M]).size().reset_index(name='Booking Count')
grped_df[COL_NAME_ARR_DATE_M] = pd.Categorical(grped_df[COL_NAME_ARR_DATE_M],
categories=month_ord,
ordered=True)
grped_df = grped_df.sort_values([COL_NAME_ARR_DATE_M])
grped_df[COL_NAME_ARR_DATE_M] = grped_df[COL_NAME_ARR_DATE_M].apply(lambda x: x[:3])
fig = go.Figure()
for htl in grped_df[COL_NAME_HTL].unique():
htl_df = grped_df[grped_df[COL_NAME_HTL] == htl]
fig.add_trace(go.Scatter(x=htl_df[COL_NAME_ARR_DATE_M],
y=htl_df['Booking Count'],
hovertext=month_ord,
mode='lines',
name=htl))
return fig
# Multivariate Hotel & guest
def mv_htl_guest(year):
mod_df = mv_mod_df(year)
chldn_df = mod_df.groupby([COL_NAME_HTL])[COL_NAME_CHLDN].sum().reset_index(name=f'Total Children')
adt_df = mod_df.groupby([COL_NAME_HTL])[COL_NAME_ADT].sum().reset_index(name=f'Total Adults')
fig = sp.make_subplots(1, 2,
specs=[[{'type': 'domain'}, {'type': 'domain'}]])
fig.add_trace(go.Pie(values=chldn_df[f'Total Children'],
labels=chldn_df[COL_NAME_HTL],
name=COL_NAME_CHLDN,
hole=.4,
texttemplate=' %{percent:.1%} ',
marker=dict(line=dict(color='#ffffff',
width=1),
colors=htl_base_clr)), 1, 1)
fig.add_trace(go.Pie(values=adt_df[f'Total Adults'],
labels=adt_df[COL_NAME_HTL],
name=COL_NAME_ADT,
hole=.7,
texttemplate='%{percent:.1%}',
marker=dict(line=dict(color='#ffffff',
width=1),
colors=htl_base_clr)), 1, 1)
return fig
# Multivariate Hotel & Country
def mv_htl_cntry(year):
mod_df = mv_mod_df(year, True)
grped_df = mod_df.groupby([COL_NAME_HTL, COL_NAME_CNTRY_NAME]).size().reset_index(name='Booking Count')
return px.bar(grped_df[grped_df[COL_NAME_CNTRY_NAME].isin(mod_df.groupby(COL_NAME_CNTRY_NAME).size().nlargest(5).index)],
x=COL_NAME_CNTRY_NAME,
y='Booking Count',
category_orders={COL_NAME_HTL: sorted(mod_df[COL_NAME_HTL].unique())},
color=COL_NAME_HTL)
# Multivariate Hotel & Market Segment
def mv_htl_mkt_seg(year):
mod_df = mv_mod_df(year)
return px.bar(mod_df.groupby([COL_NAME_HTL, COL_NAME_MKT_SEG]).size().reset_index(name='Booking Count'),
x=COL_NAME_MKT_SEG,
y='Booking Count',
category_orders={COL_NAME_HTL: sorted(mod_df[COL_NAME_HTL].unique())},
color=COL_NAME_HTL)
# Multivariate Hotel & Agent
def mv_htl_agt(year):
mod_df = mv_mod_df(year)
mod_df[COL_NAME_AGT] = mod_df[COL_NAME_AGT].astype(str)
grped_df = mod_df.groupby([COL_NAME_HTL, COL_NAME_AGT]).size().reset_index(name='Booking Count')
return px.bar(grped_df[grped_df[COL_NAME_AGT].isin(mod_df.groupby(COL_NAME_AGT).size().nlargest(5).index)],
x=COL_NAME_AGT,
y='Booking Count',
category_orders={COL_NAME_HTL: sorted(mod_df[COL_NAME_HTL].unique())},
color=COL_NAME_HTL)
# Multivariate Hotel & Customer Type
def mv_htl_cust_type(year):
mod_df = mv_mod_df(year)
return px.bar(mod_df.groupby([COL_NAME_HTL, COL_NAME_CUST_TYPE]).size().reset_index(name='Booking Count'),
x=COL_NAME_CUST_TYPE,
y='Booking Count',
category_orders={COL_NAME_HTL: sorted(mod_df[COL_NAME_HTL].unique())},
color=COL_NAME_HTL)
# Multivariate Hotel & Average Daily Rate
def mv_htl_avg_dly_rate(year):
mod_df = mv_mod_df(year)
fig = sp.make_subplots(1, 1,
shared_yaxes=True)
for htl in mod_df[COL_NAME_HTL].sort_index(ascending=False).unique():
fig.add_trace(go.Violin(x=mod_df[COL_NAME_HTL][mod_df[COL_NAME_HTL] == htl],
y=mod_df[COL_NAME_AVG_DLY_RATE][mod_df[COL_NAME_HTL] == htl],
name=htl,
box_visible=True,
meanline_visible=True,
jitter=.05), 1, 1)
return fig
# Multivariate Hotel & Lead Time & Average Daily Rate
def mv_htl_lead_time_avg_dly_rate(year):
reverse_clr = htl_base_clr[:][::-1]
return px.scatter(mv_mod_df(year),
x=COL_NAME_LEAD_TIME,
y=COL_NAME_AVG_DLY_RATE,
opacity=.7,
color_discrete_sequence=reverse_clr,
color=COL_NAME_HTL)
predict_df = df.drop(['Unnamed: 0'], axis=1)
new_df = pd.DataFrame({
COL_NAME_LEAD_TIME : predict_df[COL_NAME_LEAD_TIME],
COL_NAME_ADT: predict_df[COL_NAME_ADT],
COL_NAME_ARR_DATE_D: predict_df[COL_NAME_ARR_DATE_D],
COL_NAME_CHLDN: predict_df[COL_NAME_CHLDN],
COL_NAME_AVG_DLY_RATE: predict_df[COL_NAME_AVG_DLY_RATE],
})
# Predictive dashboard
def predict_db(y_test, y_pred):
fig = go.Figure()
fig.add_trace(go.Scatter(y=y_test,
name='Actual'))
fig.add_trace(go.Scatter(y=y_pred,
name='Predicted'))
fig.update_layout(title='Predictive model',
xaxis_title='Booking Sample',
yaxis_title=COL_NAME_AVG_DLY_RATE)
return fig
# Build predictive model
X = predict_df.drop(COL_NAME_AVG_DLY_RATE, axis=1)
X = pd.get_dummies(X, drop_first=True) # one-hot encoding
y = predict_df[COL_NAME_AVG_DLY_RATE]
X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=.3, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Import packages
from dash import Dash, html, dcc, callback, Output, Input
# Initialize the app
app = Dash(__name__)
server = app.server
# App layout
app.layout = html.Div([
html.Div(children='EDA Analysis'),
html.Hr(),
html.Div(children=[
html.Div(children=[
html.Div(children=[
html.Div(children=[
html.Label('Year'),
dcc.Dropdown(crt_ddl(COL_NAME_ARR_DATE_Y),
value='All',
id='controls-and-dropdown-y')
],
style={'width': '30%', 'margin': '0 auto', 'text-align': 'center'}),
html.Div(children=[
html.Label('Market Segment'),
dcc.Dropdown(crt_ddl(COL_NAME_MKT_SEG),
value='All',
id='controls-and-dropdown-ms')
],
style={'width': '30%', 'margin': '0 auto', 'text-align': 'center'}),
html.Div(children=[
html.Label('Customer Type'),
dcc.Dropdown(crt_ddl(COL_NAME_CUST_TYPE),
value='All',
id='controls-and-dropdown-ct')
],
style={'width': '30%', 'margin': '0 auto', 'text-align': 'center'}),
], style={'display': 'flex', 'flex-direction': 'row'}),
dcc.Graph(figure={},
id='controls-and-graph-uv')
],
style={'width': '50%', 'display': 'inline-block'}),
html.Div(children=[
html.Div(children=[
html.Div(children=[
html.Label('Year'),
dcc.Dropdown(crt_ddl(COL_NAME_ARR_DATE_Y),
value='All',
id='controls-and-dropdown-year')
],
style={'width': '30%', 'margin': '0 auto', 'text-align': 'center'})
],
style={'display': 'flex', 'flex-direction': 'row'}),
dcc.Graph(figure={},
id='controls-and-graph-mv')
],
style={'width': '50%', 'display': 'inline-block'})
]),
html.Div(children='Predictive Analysis'),
html.Hr(),
dcc.Graph(
figure=px.scatter_matrix(new_df, title="Scatter Matrix"),
style={'height': '900px'}
),
html.Div(children=[
html.Div(children=[
dcc.Graph(figure=go.Figure(data=go.Heatmap(z=new_df.corr(),
x=new_df.columns,
y=new_df.columns,
colorscale='Viridis',
colorbar=dict(title="Correlation")),
layout=go.Layout(title=dict(text="Correlation Heatmap"))))
],
style={'width': '50%', 'display': 'inline-block'}),
html.Div(children=[
html.Div([
dcc.Graph(figure=predict_db(y_test.values, y_pred))
])
],
style={'width': '50%', 'display': 'inline-block'})
])
])
# Add controls to build the interaction
@callback(
Output(component_id='controls-and-graph-uv',
component_property='figure'),
Input(component_id='controls-and-dropdown-y',
component_property='value'),
Input(component_id='controls-and-dropdown-ms',
component_property='value'),
Input(component_id='controls-and-dropdown-ct',
component_property='value')
)
# Univariate dashboard
def uv_db(year='All', mkt_seg='All', cust_type='All'):
figs = sp.make_subplots(7, 4,
specs=[[{'type': 'pie', 'rowspan': year == 'All' and 1 or 2, 'colspan': 1}, {'type': 'pie'}, {'type': 'pie'}, {}],
[{'type': 'pie'}, {}, {}, {}],
[{'rowspan': 1, 'colspan': mkt_seg == 'All'and 1 or 2}, {'type': 'pie'}, {'type': cust_type == 'All' and 'pie' or 'histogram', 'rowspan': 1, 'colspan': cust_type == 'All' and 1 or 2}, {}],
[{'type': 'choropleth', 'rowspan': 4, 'colspan': 4}, None, None, None],
[None, None, None, None],
[None, None, None, None],
[None, None, None, None]],
subplot_titles=[COL_NAME_HTL, COL_NAME_ADT, COL_NAME_CHLDN, COL_NAME_AVG_DLY_RATE,
year == 'All' and COL_NAME_ARR_DATE_Y or '', COL_NAME_ARR_DATE_M, COL_NAME_WKDAY, COL_NAME_ARR_DATE_D,
COL_NAME_LEAD_TIME, mkt_seg == 'All' and COL_NAME_MKT_SEG or '', cust_type == 'All' and COL_NAME_CUST_TYPE or COL_NAME_AGT, cust_type == 'All' and COL_NAME_AGT or '',
COL_NAME_CNTRY])
figs.add_trace(uv_htl(year, mkt_seg, cust_type), 1, 1)
figs.add_trace(uv_adt(year, mkt_seg, cust_type), 1, 2)
figs.add_trace(uv_chldn(year, mkt_seg, cust_type), 1, 3)
figs.add_trace(uv_avg_dly_rate(year, mkt_seg, cust_type), 1, 4)
if year == 'All':
figs.add_trace(uv_arr_date_year(year, mkt_seg, cust_type), 2, 1)
figs.add_trace(uv_arr_date_month(year, mkt_seg, cust_type), 2, 2)
figs.add_trace(uv_wkday(year, mkt_seg, cust_type), 2, 3)
figs.add_trace(uv_arr_date_day(year, mkt_seg, cust_type), 2, 4)
figs.add_trace(uv_lead_time(year, mkt_seg, cust_type), 3, 1)
if mkt_seg == 'All':
figs.add_trace(uv_mrk_seg(year, mkt_seg, cust_type), 3, 2)
if cust_type == 'All':
figs.add_trace(uv_cust_type(year, mkt_seg, cust_type), 3, 3)
figs.add_trace(uv_agt(year, mkt_seg, cust_type), 3, cust_type == 'All' and 4 or 3)
figs.add_trace(uv_cntry(year, mkt_seg, cust_type), 4, 1)
figs.update_layout(height=1000,
title_text='Univariate Analysis for Portugal Hotel Booking',
showlegend=False)
return figs
# Add controls to build the interaction
@callback(
Output(component_id='controls-and-graph-mv',
component_property='figure'),
Input(component_id='controls-and-dropdown-year',
component_property='value')
)
# Multivariate dashboard
def mv_db(year='All'):
figs = sp.make_subplots(5, 4,
specs=[[{'type': 'pie', 'rowspan': 2, 'colspan': 1}, {}, {'rowspan': 1, 'colspan': 2}, None],
[None, {}, {'rowspan': 1, 'colspan': 2}, None], [{}, {}, {'rowspan': 1, 'colspan': 2}, None],
[{'rowspan': 2, 'colspan': 2}, None, {'rowspan': 2, 'colspan': 2}, None],
[None, None, None, None]],
subplot_titles=[f'{COL_NAME_ADT} & {COL_NAME_CHLDN}', COL_NAME_AGT, COL_NAME_ARR_DATE_M,
COL_NAME_CUST_TYPE, COL_NAME_WKDAY,
COL_NAME_CNTRY, COL_NAME_MKT_SEG, COL_NAME_ARR_DATE_D,
f'{COL_NAME_LEAD_TIME} ', f'{COL_NAME_AVG_DLY_RATE} & {COL_NAME_LEAD_TIME}'])
for trace in mv_htl_guest(year).data:
figs.add_trace(trace, 1, 1)
for trace in mv_htl_agt(year).data:
figs.add_trace(trace, 1, 2)
for trace in mv_htl_arr_date_month(year).data:
figs.add_trace(trace, 1, 3)
for trace in mv_htl_cust_type(year).data:
figs.add_trace(trace, 2, 2)
for trace in mv_htl_wkday(year).data:
figs.add_trace(trace, 2, 3)
for trace in mv_htl_cntry(year).data:
figs.add_trace(trace, 3, 1)
for trace in mv_htl_mkt_seg(year).data:
figs.add_trace(trace, 3, 2)
for trace in mv_htl_arr_date_day(year).data:
figs.add_trace(trace, 3, 3)
for trace in mv_htl_avg_dly_rate(year).data:
figs.add_trace(trace, 4, 1)
for trace in mv_htl_lead_time_avg_dly_rate(year).data:
figs.add_trace(trace, 4, 3)
figs.update_layout(height=950,
title_text='Multivariate Analysis for Portugal Hotel Booking',
showlegend=False,
barmode='stack',
xaxis6=dict(tickangle=30),
colorway=htl_base_clr)
return figs
# Run the app
if __name__ == '__main__':
app.run_server(debug=True)