-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtruncated_linear.py
96 lines (85 loc) · 3.21 KB
/
truncated_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# -*- coding: utf-8 -*-
"""
@Time : 2023/1/12/012 12:57
@Author : NDWX
@File : truncated_linear.py
@Software: PyCharm
"""
import numpy as np
from osgeo import gdal
# 读取tif数据集
def readTif(fileName, xoff=0, yoff=0, data_width=0, data_height=0):
dataset = gdal.Open(fileName)
if dataset == None:
print(fileName + "文件无法打开")
# 栅格矩阵的列数
width = dataset.RasterXSize
# 栅格矩阵的行数
height = dataset.RasterYSize
# 波段数
bands = dataset.RasterCount
# 获取数据
if (data_width == 0 and data_height == 0):
data_width = width
data_height = height
data = dataset.ReadAsArray(xoff, yoff, data_width, data_height)
# 获取仿射矩阵信息
geotrans = dataset.GetGeoTransform()
# 获取投影信息
proj = dataset.GetProjection()
return width, height, bands, data, geotrans, proj
# 保存tif文件函数
def writeTiff(im_data, im_geotrans, im_proj, path):
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
elif len(im_data.shape) == 2:
im_data = np.array([im_data])
im_bands, im_height, im_width = im_data.shape
# 创建文件
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(path, int(im_width), int(im_height), int(im_bands), datatype)
if (dataset != None):
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
dataset.SetProjection(im_proj) # 写入投影
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
del dataset
def truncated_linear_stretch(image, truncated_value, max_out=255, min_out=0, most_common=True):
image[np.isnan(image)] = 0
def gray_process(gray):
if most_common:
# 对应global mapper中的most common拉伸
most_common_value = np.argmax(np.bincount(gray[gray != 0].astype(np.int64).flatten()))
gray = gray / most_common_value * max_out
truncated_down = np.percentile(gray, truncated_value)
truncated_up = np.percentile(gray, 100 - truncated_value)
gray = (gray - truncated_down) / (truncated_up - truncated_down) * (max_out - min_out) + min_out
gray = np.clip(gray, min_out, max_out)
if (max_out <= 255):
gray = np.uint8(gray)
elif (max_out <= 65535):
gray = np.uint16(gray)
return gray
# 如果是多波段
if (len(image.shape) == 3):
image_stretch = []
for i in range(image.shape[0]):
gray = gray_process(image[i])
image_stretch.append(gray)
image_stretch = np.array(image_stretch)
# 如果是单波段
else:
image_stretch = gray_process(image)
return image_stretch
if __name__ == '__main__':
fileName = "ChangYang.tif"
SaveName = "ChangYang_8bit.tif"
width, height, bands, data, geotrans, proj = readTif(fileName)
data_stretch = truncated_linear_stretch(data, 2, most_common=True)
writeTiff(data_stretch, geotrans, proj, SaveName)