|
| 1 | +# Import packages |
| 2 | +import os |
| 3 | +import json |
| 4 | +import platform |
| 5 | +import cv2 |
| 6 | +import numpy as np |
| 7 | +import sys |
| 8 | +import time |
| 9 | +from threading import Thread |
| 10 | +import importlib.util |
| 11 | +from loguru import logger |
| 12 | + |
| 13 | +system_info = platform.system() |
| 14 | +if system_info == 'Linux': |
| 15 | + logger.info("Detected Linux system | Now using tflite_runtime") |
| 16 | + from tflite_runtime.interpreter import Interpreter |
| 17 | +else: |
| 18 | + logger.info("Detected non-Linux system | Now using tensorflow.lite") |
| 19 | + from tensorflow.lite.python.interpreter import Interpreter |
| 20 | + |
| 21 | + |
| 22 | +# Define VideoStream class to handle streaming of video from webcam in separate processing thread |
| 23 | +class VideoStream: |
| 24 | + """Camera object that controls video streaming from the Picamera""" |
| 25 | + def __init__(self,resolution=(640,480),framerate=30): |
| 26 | + # Initialize the PiCamera and the camera image stream |
| 27 | + self.stream = cv2.VideoCapture(0) |
| 28 | + if self.stream.isOpened(): |
| 29 | + logger.info("Hi") |
| 30 | + else: |
| 31 | + logger.error("No camera found") |
| 32 | + |
| 33 | + ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) |
| 34 | + ret = self.stream.set(3,resolution[0]) |
| 35 | + ret = self.stream.set(4,resolution[1]) |
| 36 | + |
| 37 | + # Read first frame from the stream |
| 38 | + (self.grabbed, self.frame) = self.stream.read() |
| 39 | + |
| 40 | + # Variable to control when the camera is stopped |
| 41 | + self.stopped = False |
| 42 | + |
| 43 | + def start(self): |
| 44 | + # Start the thread that reads frames from the video stream |
| 45 | + Thread(target=self.update,args=()).start() |
| 46 | + return self |
| 47 | + |
| 48 | + def update(self): |
| 49 | + # Keep looping indefinitely until the thread is stopped |
| 50 | + while True: |
| 51 | + # If the camera is stopped, stop the thread |
| 52 | + if self.stopped: |
| 53 | + # Close camera resources |
| 54 | + self.stream.release() |
| 55 | + return |
| 56 | + |
| 57 | + # Otherwise, grab the next frame from the stream |
| 58 | + (self.grabbed, self.frame) = self.stream.read() |
| 59 | + |
| 60 | + def read(self): |
| 61 | + # Return the most recent frame |
| 62 | + return self.frame |
| 63 | + |
| 64 | + def stop(self): |
| 65 | + # Indicate that the camera and thread should be stopped |
| 66 | + self.stopped = True |
| 67 | + |
| 68 | +class TFMane: |
| 69 | + def __init__(self, sysmame): |
| 70 | + |
| 71 | + self.sysmane = sysmame |
| 72 | + self.model_config = self.sysmane.getCurrentModelConfig() |
| 73 | + self.model = self.model_config.get("model_file") |
| 74 | + self.labels = self.model_config.get("model_classes") |
| 75 | + |
| 76 | + self.system_info = None |
| 77 | + self.interpreter = None |
| 78 | + |
| 79 | + self.imageWidth = self.model_config.get("config","image_width") |
| 80 | + self.imageHeight = self.model_config.get("config","image_height") |
| 81 | + self.framerate = self.model_config.get("config","framerate") |
| 82 | + |
| 83 | + self.video = None |
| 84 | + self.camera =[] |
| 85 | + |
| 86 | + self.current_status = { |
| 87 | + "frame" : None, |
| 88 | + "confident_score" : 0, |
| 89 | + "classes" : "", |
| 90 | + "result_frame" : None, |
| 91 | + "detect_flag" : False, |
| 92 | + "fps" : 0 |
| 93 | + } |
| 94 | + |
| 95 | + self.run() |
| 96 | + |
| 97 | + def run(self): |
| 98 | + logger.info("TFMane is running") |
| 99 | + self.camera=self.checkAvaiableCamera() |
| 100 | + logger.info("Camara index: {}".format(self.camera)) |
| 101 | + |
| 102 | + if self.camera==[]: |
| 103 | + logger.info("No camera avaliable right now, Please plug in the usb camera or picam ") |
| 104 | + |
| 105 | + else: |
| 106 | + self.setup() |
| 107 | + self.detect() |
| 108 | + |
| 109 | + def setup(self): |
| 110 | + logger.info("Loading model: {}".format(self.sysmane.getModelPath(self.sysmane.getCurrentModel()))) |
| 111 | + self.interpreter = Interpreter(model_path=self.sysmane.getFullModelPath(self.sysmane.getCurrentModel())) |
| 112 | + self.interpreter.allocate_tensors() |
| 113 | + |
| 114 | + # Get model details |
| 115 | + self.input_details = self.interpreter.get_input_details() |
| 116 | + self.output_details = self.interpreter.get_output_details() |
| 117 | + self.height = self.input_details[0]['shape'][1] |
| 118 | + self.width = self.input_details[0]['shape'][2] |
| 119 | + self.floating_model = (self.input_details[0]['dtype'] == np.float32) |
| 120 | + logger.info("Model loaded: {}".format(self.sysmane.getModelPath(self.sysmane.getCurrentModel()))) |
| 121 | + logger.info("Height: {} | Width: {}".format(self.height, self.width)) |
| 122 | + # Check output layer name to determine if this model was created with TF2 or TF1, |
| 123 | + # because outputs are ordered differently for TF2 and TF1 models |
| 124 | + self.outname = self.output_details[0]['name'] |
| 125 | + |
| 126 | + if ('StatefulPartitionedCall' in self.outname): # This is a TF2 model |
| 127 | + self.boxes_idx, self.classes_idx, self.scores_idx = 1, 3, 0 |
| 128 | + else: # This is a TF1 model |
| 129 | + self.boxes_idx, self.classes_idx, self.scores_idx = 0, 1, 2 |
| 130 | + |
| 131 | + def checkAvaiableCamera(self): |
| 132 | + # checks the first 10 indexes. |
| 133 | + index = 0 |
| 134 | + arr = [] |
| 135 | + i = 10 |
| 136 | + while i > 0: |
| 137 | + logger.info("Trying to open camera index: {}".format(index)) |
| 138 | + cap = cv2.VideoCapture(index) |
| 139 | + if cap.read()[0]: |
| 140 | + arr.append(index) |
| 141 | + cap.release() |
| 142 | + index += 1 |
| 143 | + i -= 1 |
| 144 | + return arr |
| 145 | + |
| 146 | + def getcurrentStatus(self): |
| 147 | + return self.current_status |
| 148 | + |
| 149 | + def closeDetect(self): |
| 150 | + self.close = True |
| 151 | + |
| 152 | + def detect(self): |
| 153 | + self.close = False |
| 154 | + self.video = VideoStream(resolution=(self.imageWidth,self.imageHeight),framerate=self.framerate).start() |
| 155 | + # Initialize frame rate calculation |
| 156 | + frame_rate_calc = 1 |
| 157 | + freq = cv2.getTickFrequency() |
| 158 | + # Initialize video stream |
| 159 | + |
| 160 | + #for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True): |
| 161 | + while True: |
| 162 | + |
| 163 | + # Start timer (for calculating frame rate) |
| 164 | + t1 = cv2.getTickCount() |
| 165 | + |
| 166 | + # Grab frame from video stream |
| 167 | + frame1 = self.video.read() |
| 168 | + |
| 169 | + # Acquire frame and resize to expected shape [1xHxWx3] |
| 170 | + frame = frame1.copy() |
| 171 | + self.current_status['frame'] = frame |
| 172 | + frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
| 173 | + frame_resized = cv2.resize(frame_rgb, (self.width, self.height)) |
| 174 | + input_data = np.expand_dims(frame_resized, axis=0) |
| 175 | + |
| 176 | + # Normalize pixel values if using a floating model (i.e. if model is non-quantized) |
| 177 | + if self.floating_model: |
| 178 | + input_data = (np.float32(input_data) - self.model_config.get("config","input_mean")) / self.model_config.get("config","input_std") |
| 179 | + |
| 180 | + # Perform the actual detection by running the model with the image as input |
| 181 | + self.interpreter.set_tensor(self.input_details[0]['index'],input_data) |
| 182 | + self.interpreter.invoke() |
| 183 | + |
| 184 | + # Retrieve detection results |
| 185 | + boxes = self.interpreter.get_tensor(self.output_details[self.boxes_idx]['index'])[0] # Bounding box coordinates of detected objects |
| 186 | + classes = self.interpreter.get_tensor(self.output_details[self.classes_idx]['index'])[0] # Class index of detected objects |
| 187 | + scores = self.interpreter.get_tensor(self.output_details[self.scores_idx]['index'])[0] # Confidence of detected objects |
| 188 | + |
| 189 | + # Loop over all detections and draw detection box if confidence is above minimum threshold |
| 190 | + for i in range(len(scores)): |
| 191 | + if ((scores[i] > self.model_config.get("config","min_conf_threshold")) and (scores[i] <= 1.0)): |
| 192 | + self.current_status['detect_flag'] = True |
| 193 | + # Get bounding box coordinates and draw box |
| 194 | + # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min() |
| 195 | + ymin = int(max(1,(boxes[i][0] * self.imageHeight))) |
| 196 | + xmin = int(max(1,(boxes[i][1] * self.imageWidth))) |
| 197 | + ymax = int(min(self.imageHeight,(boxes[i][2] * self.imageHeight))) |
| 198 | + xmax = int(min(self.imageWidth,(boxes[i][3] * self.imageWidth))) |
| 199 | + |
| 200 | + cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2) |
| 201 | + |
| 202 | + # Draw label |
| 203 | + object_name = self.labels[int(classes[i])] # Look up object name from "labels" array using class index |
| 204 | + self.current_status['classes'] = object_name |
| 205 | + persent_scores = int(scores[i]*100)# 0.72 to 72%' |
| 206 | + self.current_status['confident_score'] = persent_scores |
| 207 | + label = '%s: %d%%' % (object_name, persent_scores) # Example: 'person: 72%' |
| 208 | + labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size |
| 209 | + label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window |
| 210 | + cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in |
| 211 | + cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text |
| 212 | + |
| 213 | + else: |
| 214 | + self.current_status['detect_flag'] = False |
| 215 | + |
| 216 | + # Calculate framerate |
| 217 | + t2 = cv2.getTickCount() |
| 218 | + time1 = (t2-t1)/freq |
| 219 | + frame_rate_calc= 1/time1 |
| 220 | + self.current_status['fps'] = frame_rate_calc |
| 221 | + |
| 222 | + # Draw framerate in corner of frame |
| 223 | + cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA) |
| 224 | + self.current_status['result_frame'] = frame |
| 225 | + |
| 226 | + # All the results have been drawn on the frame, so it's time to display it. |
| 227 | + cv2.imshow('Object detector', frame) |
| 228 | + |
| 229 | + # Press 'q' to quit |
| 230 | + if cv2.waitKey(1) == ord('q'): |
| 231 | + #f self.close : |
| 232 | + break |
| 233 | + # Clean up |
| 234 | + cv2.destroyAllWindows() |
| 235 | + self.video.stop() |
0 commit comments