forked from AdityaGudimella/Bayesian-Statistics
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pather.py
53 lines (38 loc) · 1.87 KB
/
er.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from pymc3 import *
import numpy as np
import pandas as pd
from numpy.ma import masked_values
# Import data, filling missing values with sentinels (-999)
test_scores = pd.read_csv('test_scores.csv').fillna(-999)
# Extract variables: test score, gender, number of siblings, previous disability, age,
# mother with HS education or better, hearing loss identified by 3 months of age
(score, male, siblings, disability,
age, mother_hs, early_ident) = test_scores[['score', 'male', 'siblings',
'prev_disab', 'age_test',
'mother_hs', 'early_ident']].astype(float).values.T
with Model() as model:
# Impute missing values
sib_mean = Exponential('sib_mean', 1)
siblings_imp = Poisson('siblings_imp', sib_mean, observed=masked_values(siblings, value=-999))
p_disab = Beta('p_disab', 1, 1)
disability_imp = Bernoulli('disability_imp', p_disab, observed=masked_values(disability, value=-999))
p_mother = Beta('p_mother', 1, 1)
mother_imp = Bernoulli('mother_imp', p_mother, observed=masked_values(mother_hs, value=-999))
s = HalfCauchy('s', 5, testval=5)
beta = Laplace('beta', 0, 100, shape=7, testval=.1)
expected_score = (beta[0] + beta[1]*male + beta[2]*siblings_imp + beta[3]*disability_imp +
beta[4]*age + beta[5]*mother_imp + beta[6]*early_ident)
observed_score = Normal('observed_score', expected_score, s ** -2, observed=score)
with model:
start = find_MAP()
step1 = NUTS([beta, s, p_disab, p_mother, sib_mean], scaling=start)
step2 = Metropolis([mother_imp.missing_values,
disability_imp.missing_values,
siblings_imp.missing_values])
def run(n=5000):
if n == 'short':
n = 100
with model:
trace = sample(n, [step1, step2], start)
if __name__ == '__main__':
run()