|
2 | 2 | from dcpy.lifecycle import product_metadata |
3 | 3 | import pandas as pd |
4 | 4 |
|
| 5 | +from datetime import datetime |
| 6 | +from dateutil.parser import parse as dateutil_parse |
| 7 | +import re |
| 8 | + |
| 9 | + |
| 10 | +class FuzzyVersion: |
| 11 | + """A version string that supports fuzzy comparison including with various date formats.""" |
| 12 | + |
| 13 | + def __init__(self, version_string): |
| 14 | + self.original = version_string |
| 15 | + self.normalized = self._normalize() if version_string else version_string |
| 16 | + |
| 17 | + def probably_equals(self, other): |
| 18 | + if not isinstance(other, FuzzyVersion): |
| 19 | + raise TypeError("Can only compare with another FuzzyVersion") |
| 20 | + |
| 21 | + if not self.original or not other.original: |
| 22 | + return False |
| 23 | + |
| 24 | + # Direct string comparison (handles case differences) |
| 25 | + if self.original.lower().strip() == other.original.lower().strip(): |
| 26 | + return True |
| 27 | + |
| 28 | + # Compare normalized versions |
| 29 | + return self.normalized == other.normalized |
| 30 | + |
| 31 | + def _normalize(self): |
| 32 | + """ |
| 33 | + Convert various date formats to a standardized form (YYYYMM). |
| 34 | +
|
| 35 | + Returns: |
| 36 | + str: Normalized version string in YYYYMM format, or original if no pattern matches |
| 37 | + """ |
| 38 | + if not self.original: |
| 39 | + return self.original |
| 40 | + |
| 41 | + version = self.original.lower().strip() |
| 42 | + |
| 43 | + # Handle quarter notation (e.g., "25q1", "24q2") |
| 44 | + quarter_match = re.match(r"^(\d{2})q([1-4])$", version) |
| 45 | + if quarter_match: |
| 46 | + year_suffix = quarter_match.group(1) |
| 47 | + quarter = int(quarter_match.group(2)) |
| 48 | + # Convert 2-digit year to 4-digit (assuming 20XX) |
| 49 | + year = 2000 + int(year_suffix) |
| 50 | + # Quarter to month mapping: Q1=March, Q2=June, Q3=September, Q4=December |
| 51 | + month = quarter * 3 |
| 52 | + return f"{year:04d}{month:02d}" |
| 53 | + |
| 54 | + # Handle YYYYMMDD format |
| 55 | + if re.match(r"^\d{8}$", version): |
| 56 | + return version[:6] # Take first 6 digits (YYYYMM) |
| 57 | + |
| 58 | + # Handle YYYYMM format (already in target format) |
| 59 | + if re.match(r"^\d{6}$", version): |
| 60 | + return version |
| 61 | + |
| 62 | + # Handle month name + year using dateutil, but be selective |
| 63 | + # Only try to parse if it contains month names or reasonable date patterns |
| 64 | + if any( |
| 65 | + month in version |
| 66 | + for month in [ |
| 67 | + "january", |
| 68 | + "february", |
| 69 | + "march", |
| 70 | + "april", |
| 71 | + "may", |
| 72 | + "june", |
| 73 | + "july", |
| 74 | + "august", |
| 75 | + "september", |
| 76 | + "october", |
| 77 | + "november", |
| 78 | + "december", |
| 79 | + "jan", |
| 80 | + "feb", |
| 81 | + "mar", |
| 82 | + "apr", |
| 83 | + "may", |
| 84 | + "jun", |
| 85 | + "jul", |
| 86 | + "aug", |
| 87 | + "sep", |
| 88 | + "oct", |
| 89 | + "nov", |
| 90 | + "dec", |
| 91 | + ] |
| 92 | + ): |
| 93 | + try: |
| 94 | + parsed_date = dateutil_parse( |
| 95 | + version, fuzzy=True, default=datetime(2000, 1, 1) |
| 96 | + ) |
| 97 | + # Only return if the parsed date seems reasonable (not the default year) |
| 98 | + if parsed_date.year >= 2000: |
| 99 | + return f"{parsed_date.year:04d}{parsed_date.month:02d}" |
| 100 | + except (ValueError, TypeError): |
| 101 | + pass |
| 102 | + |
| 103 | + # Return original if no pattern matches |
| 104 | + return version |
| 105 | + |
| 106 | + def __str__(self): |
| 107 | + return self.original or "" |
| 108 | + |
| 109 | + def __repr__(self): |
| 110 | + return f"FuzzyVersion({self.original!r})" |
| 111 | + |
| 112 | + def __eq__(self, other): |
| 113 | + """Strict equality - delegates to probably_equals for fuzzy comparison.""" |
| 114 | + if isinstance(other, FuzzyVersion): |
| 115 | + return self.original == other.original |
| 116 | + return False |
| 117 | + |
| 118 | + def __hash__(self): |
| 119 | + return hash(self.original) |
| 120 | + |
| 121 | + |
| 122 | +def sort_by_outdated_products(df): |
| 123 | + """ |
| 124 | + Sort dataframe to show products with outdated datasets first. |
| 125 | + Products with any outdated datasets appear at the top. |
| 126 | + Also prioritizes products with open_data_versions over those with all blank versions. |
| 127 | + """ |
| 128 | + # Create a summary of outdated status by product |
| 129 | + product_status = ( |
| 130 | + df.groupby("product")["up_to_date"].agg(["all", "sum", "count"]).reset_index() |
| 131 | + ) |
| 132 | + product_status["has_outdated"] = ~product_status["all"] |
| 133 | + product_status["outdated_count"] = product_status["count"] - product_status["sum"] |
| 134 | + |
| 135 | + # Add flag for products that have any open_data_versions (not all blank/missing) |
| 136 | + product_has_data = ( |
| 137 | + df.groupby("product")["open_data_versions"] |
| 138 | + .apply( |
| 139 | + lambda x: x.apply( |
| 140 | + lambda v: bool(v and (v != [] if isinstance(v, list) else True)) |
| 141 | + ).any() |
| 142 | + ) |
| 143 | + .reset_index() |
| 144 | + ) |
| 145 | + product_has_data.columns = ["product", "has_open_data"] |
| 146 | + product_status = product_status.merge(product_has_data, on="product") |
| 147 | + |
| 148 | + # Sort products: |
| 149 | + # 1. Those with outdated datasets first |
| 150 | + # 2. Those with open data first |
| 151 | + # 3. Then by number of outdated datasets |
| 152 | + product_order = product_status.sort_values( |
| 153 | + ["has_outdated", "has_open_data", "outdated_count"], |
| 154 | + ascending=[False, False, False], |
| 155 | + )["product"].tolist() |
| 156 | + |
| 157 | + # Reorder the dataframe based on product order |
| 158 | + df_sorted = df.reset_index() |
| 159 | + df_sorted["product_order"] = df_sorted["product"].map( |
| 160 | + {prod: i for i, prod in enumerate(product_order)} |
| 161 | + ) |
| 162 | + df_sorted = df_sorted.sort_values(["product_order", "product", "dataset"]).drop( |
| 163 | + "product_order", axis=1 |
| 164 | + ) |
| 165 | + |
| 166 | + return df_sorted.set_index(["product", "dataset"]) |
| 167 | + |
5 | 168 |
|
6 | 169 | def get_all_open_data_keys(): |
7 | 170 | """retrieve all product.dataset.destination_ids""" |
@@ -40,21 +203,39 @@ def make_comparison_dataframe(bytes_versions, open_data_versions): |
40 | 203 | product, dataset, destination_id = key.split(".") |
41 | 204 | bytes_version = bytes_versions.get(f"{product}.{dataset}") |
42 | 205 | open_data_vers = open_data_versions.get(key, []) |
| 206 | + |
| 207 | + # Determine if versions are up to date using fuzzy comparison |
| 208 | + up_to_date = False |
| 209 | + try: |
| 210 | + up_to_date = FuzzyVersion(bytes_version).probably_equals( |
| 211 | + FuzzyVersion(open_data_vers) |
| 212 | + ) |
| 213 | + except Exception: |
| 214 | + pass |
| 215 | + |
43 | 216 | rows.append( |
44 | 217 | { |
45 | 218 | "product": product, |
46 | 219 | "dataset": dataset, |
47 | 220 | "destination_id": destination_id, |
48 | 221 | "bytes_version": bytes_version, |
49 | 222 | "open_data_versions": open_data_vers, |
| 223 | + "up_to_date": up_to_date, |
50 | 224 | } |
51 | 225 | ) |
52 | 226 | df = pd.DataFrame(rows).set_index(["product", "dataset"]).sort_index() |
| 227 | + |
| 228 | + # Add product-level up-to-date flag |
| 229 | + # A product is up-to-date if ALL its datasets are up-to-date |
| 230 | + product_status = df.groupby("product")["up_to_date"].all() |
| 231 | + df["product_up_to_date"] = df.index.get_level_values("product").map(product_status) |
| 232 | + |
53 | 233 | return df |
54 | 234 |
|
55 | 235 |
|
56 | 236 | def run(): |
57 | 237 | all_keys = get_all_open_data_keys() |
58 | 238 | open_data_versions = get_open_data_versions(all_keys) |
59 | 239 | bytes_versions = get_bytes_versions(all_keys) |
60 | | - return make_comparison_dataframe(bytes_versions, open_data_versions) |
| 240 | + df = make_comparison_dataframe(bytes_versions, open_data_versions) |
| 241 | + return sort_by_outdated_products(df) |
0 commit comments