Skip to content

Commit 69c9220

Browse files
Docs preview for PR #2709.
1 parent d7e26cb commit 69c9220

9 files changed

+249
-12
lines changed

pr-2709/applications/python/adapt-vqe.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -790,7 +790,7 @@ <h1>ADAPT-VQE<a class="headerlink" href="#ADAPT-VQE" title="Permalink to this he
790790
<p>7- Perform a VQE experiment to re-optimize all parameters in the ansatz.</p>
791791
<p>8- go to step 4</p>
792792
<p>Below is a Schematic depiction of the ADAPT-VQE algorithm</p>
793-
<div><p><img alt="e064efadf4be46a1ae95ce8c46741fc8" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 600px;" /></p>
793+
<div><p><img alt="9cd92a0584c14a569a636ab513f21b4f" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 600px;" /></p>
794794
</div><div class="nbinput docutils container">
795795
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[71]:
796796
</pre></div>

pr-2709/applications/python/adapt_qaoa.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -797,7 +797,7 @@ <h1>ADAPT-QAOA algorithm<a class="headerlink" href="#ADAPT-QAOA-algorithm" title
797797
parameter</p>
798798
<p>3- Optimize all parameters currently in the Ansatz <span class="math notranslate nohighlight">\(\beta_m, \gamma_m = 1, 2, ...k\)</span> such that <span class="math notranslate nohighlight">\(\braket{\psi (k)|H_C|\psi(k)}\)</span> is minimized, and return to the second step.</p>
799799
<p>Below is a schematic representation of the ADAPT-QAOA algorithm explained above.</p>
800-
<div><p><img alt="420d3eaf4127470791cabbd59b9f4f46" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 600px;" /></p>
800+
<div><p><img alt="2d46d8872d9a4d93bbae04f8753aeee6" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 600px;" /></p>
801801
</div><div class="nbinput nblast docutils container">
802802
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[ ]:
803803
</pre></div>

pr-2709/applications/python/deutschs_algorithm.html

+2-2
Original file line numberDiff line numberDiff line change
@@ -854,7 +854,7 @@ <h2>XOR <span class="math notranslate nohighlight">\(\oplus\)</span><a class="he
854854
</section>
855855
<section id="Quantum-oracles">
856856
<h2>Quantum oracles<a class="headerlink" href="#Quantum-oracles" title="Permalink to this heading"></a></h2>
857-
<p><img alt="e1cdbb021d224376b6285890bcfe1e78" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
857+
<p><img alt="61bee64bb2d841dab7b798f78bf258cc" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
858858
<p>Suppose we have <span class="math notranslate nohighlight">\(f(x): \{0,1\} \longrightarrow \{0,1\}\)</span>. We can compute this function on a quantum computer using oracles which we treat as black box functions that yield the output with an appropriate sequence of logical gates.</p>
859859
<p>Above you see an oracle represented as <span class="math notranslate nohighlight">\(U_f\)</span> which allows us to transform the state <span class="math notranslate nohighlight">\(\ket{x}\ket{y}\)</span> into:</p>
860860
<div class="math notranslate nohighlight">
@@ -902,7 +902,7 @@ <h2>Quantum parallelism<a class="headerlink" href="#Quantum-parallelism" title="
902902
<h2>Deutsch’s Algorithm:<a class="headerlink" href="#Deutsch's-Algorithm:" title="Permalink to this heading"></a></h2>
903903
<p>Our aim is to find out if <span class="math notranslate nohighlight">\(f: \{0,1\} \longrightarrow \{0,1\}\)</span> is a constant or a balanced function? If constant, <span class="math notranslate nohighlight">\(f(0) = f(1)\)</span>, and if balanced, <span class="math notranslate nohighlight">\(f(0) \neq f(1)\)</span>.</p>
904904
<p>We step through the circuit diagram below and follow the math after the application of each gate.</p>
905-
<p><img alt="e04267a5205b43e49da101304e4f771d" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
905+
<p><img alt="233ce56f0d72492d8a32f2f7464af38c" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
906906
<div class="math notranslate nohighlight">
907907
\[\ket{\psi_0} = \ket{01}
908908
\tag{1}\]</div>

pr-2709/applications/python/quantum_transformer.html

+5-5
Large diffs are not rendered by default.

pr-2709/examples/python/performance_optimizations.html

+2-2
Original file line numberDiff line numberDiff line change
@@ -782,9 +782,9 @@ <h1>Optimizing Performance<a class="headerlink" href="#Optimizing-Performance" t
782782
<section id="Gate-Fusion">
783783
<h2>Gate Fusion<a class="headerlink" href="#Gate-Fusion" title="Permalink to this heading"></a></h2>
784784
<p>Gate fusion is an optimization technique where consecutive gates are combined into a single gate operation to improve the efficiency of the simulation (See figure below). By targeting the <code class="docutils literal notranslate"><span class="pre">nvidia-mgpu</span></code> backend and setting the <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE</span></code> environment variable, you can select the degree of fusion that takes place. A full command line example would look like <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE=4</span> <span class="pre">python</span> <span class="pre">c2h2VQE.py</span> <span class="pre">--target</span> <span class="pre">nvidia</span> <span class="pre">--target-option</span> <span class="pre">fp64,mgpu</span></code></p>
785-
<p><img alt="936f4ffd35b64213bd7ecfa40cda3853" src="../../_images/gate-fuse.png" /></p>
785+
<p><img alt="422878f3ac97406a921e8c8055e435a4" src="../../_images/gate-fuse.png" /></p>
786786
<p>The importance of gate fusion is system dependent, but can have a large influence on the performance of the simulation. See the example below for a 24 qubit VQE experiment where changing the fusion level resulted in significant performance boosts.</p>
787-
<p><img alt="0d1b40f4df644873a5ecd53965027fb3" src="../../_images/gatefusion.png" /></p>
787+
<p><img alt="26a06d5117554c14b5c2c93b2f363d11" src="../../_images/gatefusion.png" /></p>
788788
</section>
789789
</section>
790790

pr-2709/searchindex.js

+1-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

pr-2709/sphinx/targets/cpp/pasqal.cpp

+70
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
// Compile and run with:
2+
// ```
3+
// nvq++ --target pasqal pasqal.cpp -o out.x
4+
// ./out.x
5+
// ```
6+
// Assumes a valid set of credentials (PASQAL_AUTH_TOKEN, PASQAL_PROJECT_ID)
7+
// have been set. To set PASQAL_AUTH_TOKEN from Pasqal Cloud username and
8+
// password, use pasqal_auth.py in this folder.
9+
10+
#include "cudaq/algorithms/evolve.h"
11+
#include "cudaq/dynamics_integrators.h"
12+
#include "cudaq/operators.h"
13+
#include "cudaq/schedule.h"
14+
#include <cmath>
15+
#include <map>
16+
#include <vector>
17+
18+
// This example illustrates how to use Pasqal's EMU_MPS emulator over Pasqal's
19+
// cloud via CUDA-Q. Contact Pasqal at [email protected] or through
20+
// https://community.pasqal.com for assistance.
21+
22+
int main() {
23+
// Topology initialization
24+
const double a = 5e-6;
25+
std::vector<std::pair<double, double>> register_sites;
26+
register_sites.push_back(std::make_pair(a, 0.0));
27+
register_sites.push_back(std::make_pair(2 * a, 0.0));
28+
register_sites.push_back(std::make_pair(3 * a, 0.0));
29+
30+
// Simulation Timing
31+
const double time_ramp = 0.000001; // seconds
32+
const double time_max = 0.000003; // seconds
33+
const double omega_max = 1000000; // rad/sec
34+
const double delta_end = 1000000;
35+
const double delta_start = 0.0;
36+
37+
std::vector<std::complex<double>> steps = {0.0, time_ramp,
38+
time_max - time_ramp, time_max};
39+
cudaq::schedule schedule(steps, {"t"}, {});
40+
41+
// Basic Rydberg Hamiltonian
42+
auto omega = cudaq::scalar_operator(
43+
[time_ramp, time_max,
44+
omega_max](const std::unordered_map<std::string, std::complex<double>>
45+
&parameters) {
46+
double t = std::real(parameters.at("t"));
47+
return std::complex<double>(
48+
(t > time_ramp && t < time_max) ? omega_max : 0.0, 0.0);
49+
});
50+
51+
auto phi = cudaq::scalar_operator(0.0);
52+
53+
auto delta = cudaq::scalar_operator(
54+
[time_ramp, time_max, delta_start,
55+
delta_end](const std::unordered_map<std::string, std::complex<double>>
56+
&parameters) {
57+
double t = std::real(parameters.at("t"));
58+
return std::complex<double>(
59+
(t > time_ramp && t < time_max) ? delta_end : delta_start, 0.0);
60+
});
61+
62+
auto hamiltonian =
63+
cudaq::rydberg_hamiltonian(register_sites, omega, phi, delta);
64+
65+
// Evolve the system
66+
auto result = cudaq::evolve(hamiltonian, schedule, 100);
67+
result.get_sampling_result()->dump();
68+
69+
return 0;
70+
}
+82
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,82 @@
1+
// Compile and run with:
2+
// ```
3+
// nvq++ --target quera quera_basic.cpp -o out.x
4+
// ./out.x
5+
// ```
6+
// Assumes a valid set of credentials have been stored.
7+
8+
#include "cudaq/algorithms/evolve.h"
9+
#include "cudaq/dynamics_integrators.h"
10+
#include "cudaq/schedule.h"
11+
#include <cmath>
12+
#include <map>
13+
#include <vector>
14+
15+
// NOTE: QuEra Aquila system is available via Amazon Braket.
16+
// Credentials must be set before running this program.
17+
// Amazon Braket costs apply.
18+
19+
// This example illustrates how to use QuEra's Aquila device on Braket with
20+
// CUDA-Q. It is a CUDA-Q implementation of the getting started materials for
21+
// Braket available here:
22+
// https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-hello-ahs.html
23+
24+
int main() {
25+
// Topology initialization
26+
const double a = 5.7e-6;
27+
std::vector<std::pair<double, double>> register_sites;
28+
29+
auto make_coord = [a](double x, double y) {
30+
return std::make_pair(x * a, y * a);
31+
};
32+
33+
register_sites.push_back(make_coord(0.5, 0.5 + 1.0 / std::sqrt(2)));
34+
register_sites.push_back(make_coord(0.5 + 1.0 / std::sqrt(2), 0.5));
35+
register_sites.push_back(make_coord(0.5 + 1.0 / std::sqrt(2), -0.5));
36+
register_sites.push_back(make_coord(0.5, -0.5 - 1.0 / std::sqrt(2)));
37+
register_sites.push_back(make_coord(-0.5, -0.5 - 1.0 / std::sqrt(2)));
38+
register_sites.push_back(make_coord(-0.5 - 1.0 / std::sqrt(2), -0.5));
39+
register_sites.push_back(make_coord(-0.5 - 1.0 / std::sqrt(2), 0.5));
40+
register_sites.push_back(make_coord(-0.5, 0.5 + 1.0 / std::sqrt(2)));
41+
42+
// Simulation Timing
43+
const double time_max = 4e-6; // seconds
44+
const double time_ramp = 1e-7; // seconds
45+
const double omega_max = 6.3e6; // rad/sec
46+
const double delta_start = -5 * omega_max;
47+
const double delta_end = 5 * omega_max;
48+
49+
std::vector<std::complex<double>> steps = {0.0, time_ramp,
50+
time_max - time_ramp, time_max};
51+
cudaq::schedule schedule(steps, {"t"}, {});
52+
53+
// Basic Rydberg Hamiltonian
54+
auto omega = cudaq::scalar_operator(
55+
[time_ramp, time_max,
56+
omega_max](const std::unordered_map<std::string, std::complex<double>>
57+
&parameters) {
58+
double t = std::real(parameters.at("t"));
59+
return std::complex<double>(
60+
(t > time_ramp && t < time_max) ? omega_max : 0.0, 0.0);
61+
});
62+
63+
auto phi = cudaq::scalar_operator(0.0);
64+
65+
auto delta = cudaq::scalar_operator(
66+
[time_ramp, time_max, delta_start,
67+
delta_end](const std::unordered_map<std::string, std::complex<double>>
68+
&parameters) {
69+
double t = std::real(parameters.at("t"));
70+
return std::complex<double>(
71+
(t > time_ramp && t < time_max) ? delta_end : delta_start, 0.0);
72+
});
73+
74+
auto hamiltonian =
75+
cudaq::rydberg_hamiltonian(register_sites, omega, phi, delta);
76+
77+
// Evolve the system
78+
auto result = cudaq::evolve_async(hamiltonian, schedule, 10).get();
79+
result.get_sampling_result()->dump();
80+
81+
return 0;
82+
}
+85
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,85 @@
1+
// Compile and run with:
2+
// ```
3+
// nvq++ --target quera quera_intro.cpp -o out.x
4+
// ./out.x
5+
// ```
6+
// Assumes a valid set of credentials have been stored.
7+
8+
#include "cudaq/algorithms/evolve.h"
9+
#include "cudaq/dynamics_integrators.h"
10+
#include "cudaq/operators.h"
11+
#include "cudaq/schedule.h"
12+
#include <cmath>
13+
#include <map>
14+
#include <vector>
15+
16+
// This example illustrates how to use QuEra's Aquila device on Braket with
17+
// CUDA-Q. It is a CUDA-Q implementation of the getting started materials for
18+
// Braket available here:
19+
// https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb
20+
21+
int main() {
22+
// Topology initialization
23+
const double separation = 5e-6;
24+
const double block_separation = 15e-6;
25+
const int k_max = 5;
26+
const int m_max = 5;
27+
28+
std::vector<std::pair<double, double>> register_sites;
29+
30+
for (int k = 0; k < k_max; ++k) {
31+
for (int m = 0; m < m_max; ++m) {
32+
register_sites.push_back(
33+
std::make_pair(block_separation * m,
34+
block_separation * k + separation / std::sqrt(3)));
35+
36+
register_sites.push_back(std::make_pair(
37+
block_separation * m - separation / 2,
38+
block_separation * k - separation / (2 * std::sqrt(3))));
39+
40+
register_sites.push_back(std::make_pair(
41+
block_separation * m + separation / 2,
42+
block_separation * k - separation / (2 * std::sqrt(3))));
43+
}
44+
}
45+
46+
// Simulation Timing
47+
const double omega_const = 1.5e7; // rad/sec
48+
const double time_ramp = 5e-8; // seconds
49+
const double time_plateau = 7.091995761561453e-08; // seconds
50+
const double time_max = 2 * time_ramp + time_plateau; // seconds
51+
52+
std::vector<std::complex<double>> steps = {
53+
0.0, time_ramp, time_ramp + time_plateau, time_max};
54+
cudaq::schedule schedule(steps, {"t"}, {});
55+
56+
// Rydberg Hamiltonian with trapezoidal omega
57+
auto omega = cudaq::scalar_operator(
58+
[time_ramp, time_plateau, time_max,
59+
omega_const](const std::unordered_map<std::string, std::complex<double>>
60+
&parameters) {
61+
double t = std::real(parameters.at("t"));
62+
double slope = omega_const / time_ramp;
63+
double y_intercept = slope * time_max;
64+
65+
if (t > 0 && t < time_ramp + time_plateau) {
66+
return std::complex<double>(slope * t, 0.0);
67+
} else if (t > time_ramp && t < time_max) {
68+
return std::complex<double>(omega_const, 0.0);
69+
} else if (t > time_ramp + time_plateau && t < time_max) {
70+
return std::complex<double>((-slope * t) + y_intercept, 0.0);
71+
}
72+
return std::complex<double>(0.0, 0.0);
73+
});
74+
auto phi = cudaq::scalar_operator(0.0);
75+
auto delta = cudaq::scalar_operator(0.0);
76+
77+
auto hamiltonian =
78+
cudaq::rydberg_hamiltonian(register_sites, omega, phi, delta);
79+
80+
// Evolve the system
81+
auto result = cudaq::evolve(hamiltonian, schedule);
82+
result.get_sampling_result()->dump();
83+
84+
return 0;
85+
}

0 commit comments

Comments
 (0)