-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmolecules.py
362 lines (309 loc) · 13.3 KB
/
molecules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import torch
import pickle
import torch.utils.data
import time
import os
import numpy as np
import csv
import dgl
from scipy import sparse as sp
import numpy as np
import networkx as nx
import hashlib
class MoleculeDGL(torch.utils.data.Dataset):
def __init__(self, data_dir, split, num_graphs=None):
self.data_dir = data_dir
self.split = split
self.num_graphs = num_graphs
with open(data_dir + "/%s.pickle" % self.split,"rb") as f:
self.data = pickle.load(f)
if self.num_graphs in [10000, 1000]:
# loading the sampled indices from file ./zinc_molecules/<split>.index
with open(data_dir + "/%s.index" % self.split,"r") as f:
data_idx = [list(map(int, idx)) for idx in csv.reader(f)]
self.data = [ self.data[i] for i in data_idx[0] ]
assert len(self.data)==num_graphs, "Sample num_graphs again; available idx: train/val/test => 10k/1k/1k"
self.graph_lists = []
self.graph_labels = []
self.n_samples = len(self.data)
self._prepare()
def _prepare(self):
print("preparing %d graphs for the %s set..." % (self.num_graphs, self.split.upper()))
for molecule in self.data:
node_features = molecule['atom_type'].long()
adj = molecule['bond_type']
edge_list = (adj != 0).nonzero() # converting adj matrix to edge_list
edge_idxs_in_adj = edge_list.split(1, dim=1)
edge_features = adj[edge_idxs_in_adj].reshape(-1).long()
# Create the DGL Graph
g = dgl.DGLGraph()
g.add_nodes(molecule['num_atom'])
g.ndata['feat'] = node_features
for src, dst in edge_list:
g.add_edges(src.item(), dst.item())
g.edata['feat'] = edge_features
self.graph_lists.append(g)
self.graph_labels.append(molecule['logP_SA_cycle_normalized'])
def __len__(self):
"""Return the number of graphs in the dataset."""
return self.n_samples
def __getitem__(self, idx):
return self.graph_lists[idx], self.graph_labels[idx]
class MoleculeDatasetDGL(torch.utils.data.Dataset):
def __init__(self, name='Zinc'):
t0 = time.time()
self.name = name
self.num_atom_type = 28
self.num_bond_type = 4
data_dir='./data/molecules'
if self.name == 'ZINC-full':
data_dir='./data/molecules/zinc_full'
self.train = MoleculeDGL(data_dir, 'train', num_graphs=220011)
self.val = MoleculeDGL(data_dir, 'val', num_graphs=24445)
self.test = MoleculeDGL(data_dir, 'test', num_graphs=5000)
else:
self.train = MoleculeDGL(data_dir, 'train', num_graphs=10000)
self.val = MoleculeDGL(data_dir, 'val', num_graphs=1000)
self.test = MoleculeDGL(data_dir, 'test', num_graphs=1000)
print("Time taken: {:.4f}s".format(time.time()-t0))
def self_loop(g):
new_g = dgl.DGLGraph()
new_g.add_nodes(g.number_of_nodes())
new_g.ndata['feat'] = g.ndata['feat']
src, dst = g.all_edges(order="eid")
src = dgl.backend.zerocopy_to_numpy(src)
dst = dgl.backend.zerocopy_to_numpy(dst)
non_self_edges_idx = src != dst
nodes = np.arange(g.number_of_nodes())
new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx])
new_g.add_edges(nodes, nodes)
new_g.edata['feat'] = torch.zeros(new_g.number_of_edges())
return new_g
def make_full_graph(g):
full_g = dgl.from_networkx(nx.complete_graph(g.number_of_nodes()))
full_g.ndata['feat'] = g.ndata['feat']
full_g.edata['feat'] = torch.zeros(full_g.number_of_edges()).long()
try:
full_g.ndata['lap_pos_enc'] = g.ndata['lap_pos_enc']
except:
pass
try:
full_g.ndata['wl_pos_enc'] = g.ndata['wl_pos_enc']
except:
pass
return full_g
def laplacian_positional_encoding(g, pos_enc_dim):
A = g.adjacency_matrix(return_edge_ids=False).astype(float)
N = sp.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1) ** -0.5, dtype=float)
L = sp.eye(g.number_of_nodes()) - N * A * N
EigVal, EigVec = np.linalg.eig(L.toarray())
idx = EigVal.argsort() # increasing order
EigVal, EigVec = EigVal[idx], np.real(EigVec[:,idx])
g.ndata['lap_pos_enc'] = torch.from_numpy(EigVec[:,1:pos_enc_dim+1]).float()
return g
def wl_positional_encoding(g):
max_iter = 2
node_color_dict = {}
node_neighbor_dict = {}
edge_list = torch.nonzero(g.adj().to_dense() != 0, as_tuple=False).numpy()
node_list = g.nodes().numpy()
# setting init
for node in node_list:
node_color_dict[node] = 1
node_neighbor_dict[node] = {}
for pair in edge_list:
u1, u2 = pair
if u1 not in node_neighbor_dict:
node_neighbor_dict[u1] = {}
if u2 not in node_neighbor_dict:
node_neighbor_dict[u2] = {}
node_neighbor_dict[u1][u2] = 1
node_neighbor_dict[u2][u1] = 1
# WL recursion
iteration_count = 1
exit_flag = False
while not exit_flag:
new_color_dict = {}
for node in node_list:
neighbors = node_neighbor_dict[node]
neighbor_color_list = [node_color_dict[neb] for neb in neighbors]
color_string_list = [str(node_color_dict[node])] + sorted([str(color) for color in neighbor_color_list])
color_string = "_".join(color_string_list)
hash_object = hashlib.md5(color_string.encode())
hashing = hash_object.hexdigest()
new_color_dict[node] = hashing
color_index_dict = {k: v+1 for v, k in enumerate(sorted(set(new_color_dict.values())))}
for node in new_color_dict:
new_color_dict[node] = color_index_dict[new_color_dict[node]]
if node_color_dict == new_color_dict or iteration_count == max_iter:
exit_flag = True
else:
node_color_dict = new_color_dict
iteration_count += 1
g.ndata['wl_pos_enc'] = torch.LongTensor(list(node_color_dict.values()))
return g
# ogbg-molbace
# ogbg-molbbbp
# ogbg-molclintox
# ogbg-molmuv
# ogbg-molpcba
# ogbg-molsider
# ogbg-moltox21
# ogbg-moltoxcast
# ogbg-molhiv
# ogbg-molesol
# ogbg-molfreesolv
# ogbg-mollipo
# ogbg-molchembl
# ogbg-ppa
# ogbg-code2
class MoleculeDataset(torch.utils.data.Dataset):
def __init__(self,dataset, name):
start = time.time()
print("[I] Loading dataset %s..." % (name))
self.name = name
if self.name == 'FreeSolv': # 642 #classes 1
self.train = dataset[:380]
self.val = dataset[380:500]
self.test = dataset[500:]
self.data_all = dataset
if self.name == 'pre_training':
self.data_all = dataset
elif self.name == 'ESOL': # 1128 #classes 1
self.train = dataset[:650]
self.test = dataset[650:850]
self.val = dataset[850:]
self.data_all = dataset
elif self.name == 'SIDER': # 1297
# self.train = dataset[:100]
# self.test = dataset[120:150]
# self.val = dataset[150:200]
self.train = dataset[:1000]
self.test = dataset[1000: ]
self.val = dataset[1000:]
self.data_all = dataset
elif self.name == 'ToxCast': #8566
self.train = dataset[:5400]
self.test = dataset[5400:7200]
self.val = dataset[7200:]
self.data_all = dataset
elif self.name == 'ClinTox':# 1469
self.train = dataset[:900]
self.test = dataset[900:1200]
self.val = dataset[1200: ]
self.data_all = dataset
elif self.name == 'Tox21': # 7778
self.train = dataset[:4800]
self.test = dataset[4800:6400]
self.val = dataset[6400: ]
self.data_all = dataset
elif self.name == 'BACE': # 1513
self.train = dataset[:900]
self.test = dataset[900:1200]
self.val = dataset[1200: ]
self.data_all = dataset
elif self.name == 'BBBP': #1998
self.train = dataset[:1200]
self.test = dataset[1200:1600]
self.val = dataset[1600:]
self.data_all = dataset
############################################
elif self.name == 'PROTEINS': #1113
self.train = dataset[:700]
self.val = dataset[700:900]
self.test = dataset[900: ]
self.data_all = dataset
elif self.name == 'Mutagenicity': #1113
self.train = dataset[:2800]
self.test= dataset[2800:3600]
self.val = dataset[3600: ]
self.data_all = dataset
elif self.name == 'ENZYMES': #599
self.train = dataset[:480]
self.test = dataset[480:540]
self.val = dataset[540:]
self.data_all = dataset
elif self.name == 'NCI1': # 4110
self.train = dataset[:2400]
self.test = dataset[2400:3200]
self.val = dataset[3200:]
self.data_all = dataset
elif self.name == 'NCI109':
self.train = dataset[:2400]
self.test = dataset[2400:3200]
self.val = dataset[3200:]
self.data_all = dataset
elif self.name == 'Lipo':
self.train = dataset[:2400]
self.test = dataset[2400:3200]
self.val = dataset[3200:]
self.data_all = dataset
############################################Name
elif self.name == 'ZINC': # ZINC Subset 10,000 ~23.2 ~49.8 1 1 ZINC Full 249,456
self.train = dataset[:10000]
self.test = dataset[10000:11000]
self.val = dataset[11000:]
# self.train = dataset[:150000]
# self.test = dataset[150000:200000]
# self.val = dataset[200000: ]
self.data_all = dataset
elif self.name == 'Peptides-func': # 15,535 10
# self.train = dataset[:150]
# self.test = dataset[150:200]
# self.val = dataset[150: ]
self.train = dataset[:10000]
self.test = dataset[10000:12500]
self.val = dataset[12500:]
self.data_all = dataset
elif self.name == 'MUV': # 93,087 ~24.2 ~52.6 9 17
self.train = dataset[:60000]
self.test = dataset[60000 :80000]
self.val = dataset[80000 :]
self.data_all = dataset
elif self.name == 'Peptides-struct': # 15,535 11
# self.train = dataset[:150]
# self.test = dataset[150:200]
# self.val = dataset[150:]
self.train = dataset[:10000]
self.test = dataset[10000:12500]
self.val = dataset[12500:]
self.data_all = dataset
############################################
elif self.name == 'QM9': # 130830
self.train = dataset[:78000]
self.test = dataset[78000:104000]
self.val = dataset[104000: ]
self.data_all = dataset
elif self.name == 'ogbg-molpcba': # Graphs 437,929 #Tasks 128
# self.train = dataset[:150]
# self.test = dataset[150:200]
# self.val = dataset[150:200]
self.train = dataset[:240000]
self.test = dataset[240000:320000]
self.val = dataset[320000: ]
self.data_all = dataset
elif self.name == 'ogbg-molhiv': #Graphs 39386 41,127 #Tasks 1
# self.train = dataset[:200]
# self.test = dataset[200:250]
# self.val = dataset[250:300]
self.train = dataset[:24000]
self.test = dataset[24000:32000]
self.val = dataset[32000:]
self.data_all = dataset
if self.name != 'pre_training':
print('train, val test, sizes :',len(self.train),len(self.test),len(self.val))
print("[I] Finished loading.")
print("[I] Data load time: {:.4f}s".format(time.time()-start))
def collate(self, samples):
# The input samples is a list of pairs (graph, label). self.graphs[i], self.labels[i], self.trans_logM[i], self.B[i], self.adj[i]
#graphs, labels, trans_logM, B, adj, sim, phi = map(list, zip(*samples))
graphs, labels, subgraphs , trans_logM = map(list, zip(*samples))
#labels = torch.tensor(np.array(labels)).unsqueeze(1)
labels = torch.stack(labels)
#for modulenet:
# print(f"DEBUG labels: {labels}")
# raise SystemExit()
#labels = torch.tensor(labels).unsqueeze(1)
batched_graph = dgl.batch(graphs)
#return batched_graph, labels, trans_logM, B, adj, sim, phi
return batched_graph, labels, subgraphs, trans_logM