-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp_moleculenet.py
409 lines (346 loc) · 17.5 KB
/
exp_moleculenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import copy
import logging
import math
import time
from pathlib import Path
from torch_geometric.utils import to_networkx
import networkx as nx
import numpy as np
import scipy.sparse as sp
import torch
from tqdm import tqdm
from sklearn.preprocessing import normalize
import os
import random
import dgl
import warnings
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings('ignore', category=RuntimeWarning, message='scipy._lib.messagestream.MessageStream')
from gnnutils import make_masks, train, test, add_original_graph, load_webkb, load_planetoid, load_wiki, load_bgp, \
load_film, load_airports, load_amazon, load_coauthor, load_WikiCS, load_crocodile, load_Cora_ML
from util import get_B_sim_phi, getM_logM, load_dgl, get_A_D, load_dgl_fromPyG
from models import Transformer, Mainmodel, Mainmodel_finetuning
# from script_classification import run_node_classification, run_epoch_node_classification, update_evaluation_value, run_node_clustering
from script_classification import run_node_classification, run_node_clustering, update_evaluation_value
np.seterr(divide = 'ignore')
def collate(self, samples):
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(np.array(labels)).unsqueeze(1)
batched_graph = dgl.batch(graphs)
return batched_graph, labels
def filter_rels(data, r):
data = copy.deepcopy(data)
mask = data.edge_color <= r
data.edge_index = data.edge_index[:, mask]
data.edge_weight = data.edge_weight[mask]
data.edge_color = data.edge_color[mask]
return data
from torch.utils.data import DataLoader
from models import Transformer, Mainmodel, Mainmodel_finetuning, Mainmodel_domainadapt
def run_domain_adaptation( file_name, pre_train_loader, optimizer, batch_size, device):
model = Mainmodel_domainadapt(args, args.num_features ,hidden_dim=args.dims,num_layers=args.num_layers,
num_heads=args.num_heads, k_transition = args.k_transition, num_classes = args.num_classes, cp_filename =file_name , encoder = args.encoder ).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-5)
best_model = model
best_loss = 100000000
best_epoch = 0
num_adapt = args.adapt_epoches
for epoch in range(1, num_adapt):
epoch_train_loss, reconstruction_loss = train_epoch_domainadaptation(model, args, optimizer, device, pre_train_loader, epoch, 1, batch_size)
if best_loss >= epoch_train_loss:
best_model = model
best_epoch = epoch
best_loss = epoch_train_loss
if epoch - best_epoch > 20:
break
msg = "Epoch:%d |Best_epoch:%d |Train_loss:%0.4f |reconstruction_loss:%0.4f " % (epoch, best_epoch, epoch_train_loss, reconstruction_loss )
print(msg)
return best_model, best_epoch
def run_pretraining(model, pre_train_loader, optimizer, batch_size, device):
best_model = model
best_loss = 100000000
for epoch in range(1, args.pt_epoches):
epoch_train_loss, KL_Loss, contrastive_loss, reconstruction_loss = train_epoch(model, args, optimizer, device, pre_train_loader, epoch, 1, batch_size)
if best_loss >= epoch_train_loss:
best_model = model
best_epoch = epoch
best_loss = epoch_train_loss
if epoch - best_epoch > 50:
break
# msg1 = "out_degree1: SP %0.4f, Std %0.4f , EO %0.4f, Std %0.4f " % (SP.mean(), SP.std(),EO.mean(), EO.std())
msg = "Epoch:%d |Best_epoch:%d |Train_loss:%0.4f |KL_Loss:%0.4f |contrastive_loss:%0.4f |reconstruction_loss:%0.4f " \
% (epoch, best_epoch,epoch_train_loss, KL_Loss, contrastive_loss, reconstruction_loss )
print(msg)
return best_model
def run(i, dataset_full, num_features, num_classes ):
model = Mainmodel(args, num_features, hidden_dim=args.dims,num_layers=args.num_layers,
num_heads=args.num_heads, k_transition = args.k_transition, encoder = args.encoder).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-5)
best_model = model
best_loss = 100000000
trainset, valset, testset = dataset_full.train, dataset_full.val, dataset_full.test
data_all = dataset_full.data_all
print("\nTraining Graphs: ", len(trainset))
print("Validation Graphs: ", len(valset))
print("Test Graphs: ", len(testset))
batch_size = args.batch_size
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True, collate_fn = dataset_full.collate)
val_loader = DataLoader(valset, batch_size=batch_size, shuffle=False, collate_fn = dataset_full.collate)
test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False, collate_fn = dataset_full.collate)
pre_train_loader = DataLoader(data_all, batch_size= batch_size, shuffle=True, collate_fn = dataset_full.collate ) #Pre-training model
# transfer learning
file_name_cpt = args.output_path + f'{args.dataset}_{args.encoder}_{args.dims}_{args.num_layers}_{args.k_transition}.pt'
# if pretained is true, only run pretraining
if args.pretrained_mode == 1:
if not os.path.exists(file_name_cpt):
best_model, best_epoch = run_pretraining(model, pre_train_loader, optimizer, batch_size, device)
torch.save(best_model,file_name_cpt)
update_evaluation_value(args.file_name, 'Best_epoch', args.index_excel, best_epoch)
print(f"\nFinished pre-trained model ...")
else:
print(f"\nexists pretrained model, quiting ...")
raise SystemExit()
# for domain adapt and fine tunning
else:
ds = args.pretrained_ds
file_name_cpt = args.output_path + f'{ds}_{args.encoder}_{args.dims}_{args.num_layers}_{args.k_transition}.pt'
if args.domain_adapt == 1:
file_domain_adapt = args.output_path + f'{ds}_{args.encoder}_{args.dims}_{args.num_layers}_{args.k_transition}_{args.dataset}.pt'
if not os.path.exists(file_domain_adapt):
print(f"\nDomain adaptation starting ...")
best_model, best_epoch = run_domain_adaptation( file_name_cpt, pre_train_loader, optimizer, batch_size, device)
file_name_cpt = args.output_path + f'{ds}_{args.encoder}_{args.dims}_{args.num_layers}_{args.k_transition}_{args.dataset}.pt'
torch.save(best_model,file_name_cpt)
file_name_cpt = file_domain_adapt
print(f"\nDomain adaptation finished ...")
print(f"\nFine tunning the pre-trained model ...")
time.sleep(0.1)
# end transfer learning
runs_acc = []
for i in tqdm(range(3)):
print(f'\nrun time: {i}')
acc = run_epoch_graph_classification(best_model, train_loader, val_loader,test_loader,num_features, file_name_cpt, batch_size = batch_size )
runs_acc.append(acc)
time.sleep(0.1)
runs_acc = np.array(runs_acc) * 100
final_msg = "Graph classification: Mean %0.4f, Std %0.4f" % (runs_acc.mean(), runs_acc.std())
print(final_msg)
return 0
from train_moleculenet import train_epoch, evaluate_network, train_epoch_graph_classification, train_epoch_domainadaptation
def run_epoch_graph_classification(model, train_loader, val_loader,test_loader,num_features, file_name, batch_size):
model = Mainmodel_finetuning(args, num_features,hidden_dim=args.dims,num_layers=args.num_layers,
num_heads=args.num_heads, k_transition = args.k_transition, num_classes = args.num_classes, cp_filename =file_name , encoder = args.encoder ).to(device)
best_model = model
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
best_loss = 100000000
t0 = time.time()
per_epoch_time = []
epoch_train_AUCs, epoch_val_AUCs, epoch_test_AUCs = [], [], []
epoch_train_losses, epoch_val_losses = [], []
for epoch in range(1, args.ft_epoches):
start = time.time()
epoch_train_loss, epoch_train_auc, optimizer = train_epoch_graph_classification(args, model, optimizer, device, train_loader, epoch,batch_size)
epoch_val_loss, epoch_val_auc = evaluate_network(args, model, optimizer, device, val_loader, epoch, batch_size) # (model, device, val_loader, epoch)
_, epoch_test_auc = evaluate_network(args, model, optimizer, device, test_loader, epoch, batch_size) # (model, device, test_loader, epoch)
epoch_train_losses.append(epoch_train_loss)
epoch_val_losses.append(epoch_val_loss)
epoch_train_AUCs.append(epoch_train_auc)
epoch_val_AUCs.append(epoch_val_auc)
epoch_test_AUCs.append(epoch_test_auc)
if best_loss >= epoch_train_loss:
best_model = model; best_epoch = epoch; best_loss = epoch_train_loss
if epoch - best_epoch > 50:
print(f"Finish epoch - best_epoch > 100")
break
if epoch % 1 == 0:
print(f'Epoch: {epoch} |Best_epoch: {best_epoch} |Train_loss: {np.round( epoch_train_loss, 6)} |Val_loss: {np.round(epoch_val_loss, 6)} | Train_auc: {np.round(epoch_train_auc,6)} | Val_auc: {np.round(epoch_val_auc, 6) } | epoch_test_auc: {np.round(epoch_test_auc, 6) } ')
per_epoch_time.append(time.time()-start)
# Stop training after params['max_time'] hours
if time.time()-t0 > 48 * 3600:
print('-' * 89)
print("Max_time for training elapsed")
break
_, test_acc = evaluate_network(args, best_model, optimizer, device, test_loader, epoch, batch_size)# (best_model, device, test_loader, epoch)
index = epoch_val_AUCs.index(max(epoch_val_AUCs))
test_auc = epoch_test_AUCs[index]
train_auc = epoch_train_AUCs[index]
print("Train AUC: {:.4f}".format(train_auc))
print("Test AUC: {:.4f}".format(test_auc))
print("Convergence Time (Epochs): {:.4f}".format(epoch))
print("TOTAL TIME TAKEN: {:.4f}s".format(time.time()-t0))
print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time)))
return test_acc
##################################################################################################################################
##################################################################################################################################
##################################################################################################################################
##################################################################################################################################
import collections
from collections import defaultdict
from ogb.graphproppred import PygGraphPropPredDataset
from torch_geometric.datasets import TUDataset, ZINC, MoleculeNet
from dgl.data.utils import save_graphs, load_graphs
def main():
timestr = time.strftime("%Y%m%d-%H%M%S")
log_file = args.dataset + "-" + timestr + ".log"
Path("./exp_logs").mkdir(parents=True, exist_ok=True)
logging.basicConfig(filename="exp_logs/" + log_file, filemode="w", level=logging.INFO)
logging.info("Starting on device: %s", device)
logging.info("Config: %s ", args)
graph_lists = []
graph_labels = []
print(f'Checking dataset {args.dataset}')
if args.dataset in [ "BACE", "BBBP", "SIDER", "Tox21", "ToxCast", "ClinTox"]:
dataset = MoleculeNet(root='original_datasets/' + args.dataset, name = args.dataset)
args.num_classes = dataset.num_classes #dataset.num_tasks
args.num_features = dataset.num_features
num_features = args.num_features
num_classes = args.num_classes
else:
raise NotImplementedError
raise SystemExit()
path = "pts/"+ args.dataset + "_k_transition_" + str(args.k_transition) + ".bin"
if not os.path.exists(path):
print(f"# 1. Constructing pts...")
graph_ds = generate_graphs(dataset, args.k_transition)
save_graphs("pts/"+ args.dataset + "_k_transition_" + str(args.k_transition) + ".bin" , graph_ds.graph_lists, graph_ds.graph_labels)
print(f"# 2. Loading graphs and labels...")
graph_lists, graph_labels = load_graphs("pts/"+ args.dataset + "_k_transition_" + str(args.k_transition) + ".bin" )
else:
print(f"# 3 Loading graphs and labels...")
graph_lists, graph_labels = load_graphs("pts/"+ args.dataset + "_k_transition_" + str(args.k_transition) + ".bin" )
print(f"DEGUB generated graph process")
print(f"# 4 Loading subgraphs ...")
subgraph_lists = torch.load("pts/"+ args.dataset + "_subgraphs_khop_" + str(args.k_transition) + ".pt") #
subgraph_lists = subgraph_lists['set_subgraphs']
print(f"len(graph_lists): {len(graph_lists)}| len(subgraph_lists): {len(subgraph_lists)}")
print(f"# 5 Loading transition matrices...")
dic = torch.load("pts/"+ args.dataset + "_M_khop_" + str(args.k_transition) + ".pt")
trans_logMs = dic['trans_logMs']
if args.testmode ==1:
print(f"Only generating dataset ...")
raise SystemExit()
samples_all = []
num_features = args.num_features
print(f'num_features: {num_features}, args.num_classes: {args.num_classes} ')
samples_all = []
checking_label = []
num_node_list = []
for i in range(len(graph_lists)):
# if i >= 200:
# print(f" testing small dataset")
# break
current_graph = graph_lists[i]
current_label = graph_labels['glabel'][i]
checking_label.append(current_label)
num_node_list.append(current_graph.num_nodes())
current_subgraphs = subgraph_lists[i]
current_trans_logM = trans_logMs[i]
pair = (current_graph, current_label, current_subgraphs, current_trans_logM)
samples_all.append(pair)
random.shuffle(samples_all)
dataset_full = LoadData(samples_all, args.dataset)
runs_acc = []
for i in tqdm(range(args.run_times)):
acc = run(i, dataset_full, num_features, num_classes )
runs_acc.append(acc)
from molecules import MoleculeDataset
def LoadData(samples_all, DATASET_NAME):
return MoleculeDataset(samples_all, DATASET_NAME)
def generate_graphs(dataset, k_hop):
graph_ds = GraphClassificationDataset()
graph_labels = []
set_subgraphs = []
trans_logMs = []
miss = 0
checking = []
for i in range(len(dataset)):
# if i >= 200:
# print(f" testing small dataset")
# break
if i % 10 ==0:
print(f'Processing graph_th: {i}')
time.sleep(0.1)
data = dataset[i]
path = "pts/" + args.dataset + "_kstep_" + str(args.k_transition) + ".pt"
try:
g = load_dgl_fromPyG(data)
if not os.path.exists(path):
M, logM = load_bias(g)
trans_logM = torch.from_numpy(np.array(logM)).float()
graph_ds.graph_lists.append(g)
trans_logMs.append(trans_logM)
graph_labels+= data.y # not append
####adding set subgraphs:
node_ids = g.nodes()
all_subgraphs = [dgl.khop_in_subgraph(g, individual_node, k= 1)[0] for individual_node in node_ids]
set_subgraphs.append(all_subgraphs)
except:
miss+=1
print(f'Missing loading dgl graph: {i}')
print(f"total DGL missing: {miss}")
graph_labels = torch.stack(graph_labels)
# print(graph_labels)
graph_ds.graph_labels = {"glabel": torch.tensor(graph_labels)}
torch.save({"set_subgraphs": set_subgraphs}, "pts/"+ args.dataset + "_subgraphs_khop_"+ str(k_hop) +".pt")
torch.save({"trans_logMs": trans_logMs}, "pts/"+ args.dataset + "_M_khop_" + str(k_hop) + ".pt")
return graph_ds
################ checking
# num_tasks=dataset.num_tasks
class GraphClassificationDataset:
def __init__(self):
self.graph_lists = [] # A list of DGLGraph objects
self.graph_labels = []
self.subgraphs = []
def add(self, g):
self.graph_lists.append(g)
def __len__(self):
return len(self.graphs)
def __getitem__(self, i):
# Get the i^th sample and label
#return self.graphs[i], self.labels[i], self.trans_logM[i], self.B[i], self.adj[i], self.sim[i], self.phi[i]
return self.graphs[i], self.labels[i], self.subgraphs[i]
def load_bias(g):
M, logM = getM_logM(g, kstep=args.k_transition)
return M, logM
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Experiments")
#
parser.add_argument("--dataset", default="BACE", help="Dataset")
parser.add_argument("--model", default="Mainmodel", help="GNN Model")
parser.add_argument("--run_times", type=int, default=1)
parser.add_argument("--drop", type=float, default=0.1, help="dropout")
parser.add_argument("--custom_masks", default=True, action='store_true', help="custom train/val/test masks")
# adding args
parser.add_argument("--device", default="cuda:0", help="GPU ids")
parser.add_argument("--batch_size", type=int, default= 4)
parser.add_argument("--testmode", type=int, default= 0)
#transfer learning
parser.add_argument("--pretrained_mode", type=int, default= 0)
parser.add_argument("--domain_adapt", type=int, default= 0)
parser.add_argument("--pretrained_ds", default="pre_training_v1", help="Loading pretrained model ")
parser.add_argument("--d_transfer", type=int, default= 32)
parser.add_argument("--layer_relax", type=int, default= 0)
parser.add_argument("--readout_f", default="sum" ) # mean set2set sum
parser.add_argument("--adapt_epoches", type=int, default= 50)
#transfer learning
parser.add_argument("--lr", type=float, default = 1e-3, help="learning rate")
parser.add_argument("--pt_epoches", type=int, default= 5)
parser.add_argument("--ft_epoches", type=int, default= 5)
parser.add_argument("--useAtt", type=int, default= 1)
parser.add_argument("--dims", type=int, default=64, help="hidden dims")
parser.add_argument("--task", default="graph_regression" )
parser.add_argument("--encoder", default="GCN" )
parser.add_argument("--recons_type", default="adj" )
parser.add_argument("--k_transition", type=int, default = 3)
parser.add_argument("--num_layers", type=int, default = 4)
parser.add_argument("--num_heads", type=int, default = 4)
parser.add_argument("--output_path", default="outputs/", help="outputs model")
parser.add_argument("--pre_training", default = "1", help="pre_training or not")
parser.add_argument("--index_excel", type=int, default="-1", help="index_excel")
parser.add_argument("--file_name", default="outputs_excels.xlsx", help="file_name dataset")
################################################################################################
args = parser.parse_args()
print(args)
device = torch.device(args.device)
main()