-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsave_excel.py
73 lines (57 loc) · 2.97 KB
/
save_excel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pandas
import os
def create_excel_files(output_path, filename):
data = []
dataset = "Balance_800"
embed_dim = 300
relation_dim = 300
gat_dim = 256
num_dim = True
txt_dim = True
columns = ["Aggregator", "Number Layers", "Learning Rate", "Dropout", "Convolutional Dim", "Batch Size", "Best Pretrain", "Best Finetune", "Accuracy"]
lr_list = [0.0001, 0.001, 0.01]
batch_size_list = [2048]
dropout_list = [ 0.1, 0.5]
n_layer_list = [2, 4, 8]
n_dim_list = [16, 32]
for i in batch_size_list:
for j in n_dim_list:
for k in dropout_list:
for v in lr_list:
for x in n_layer_list:
default_best_pretrain = -1
default_best_finetune = -1
default_accuracy = 0
aggregator = "gcn"
source_path = f"trained_model/LiteralKG/{dataset}/embed-dim{embed_dim}_relation-dim{relation_dim}_{aggregator}_n-layers{x}_gat{gat_dim}_conv{j}_bs{i}_num{num_dim}_txt{txt_dim}_lr{v}_dropout{k}_pretrain0/run/"
# Loop all the folder to get the log files
for path, subdirs, files in os.walk(source_path):
for name in files:
file_name = os.path.join(path, name)
filename_split = file_name.split(".pth")[0].split("pre-training_model_epoch")
print(filename_split[0])
if len(filename_split) > 1:
try:
if default_best_pretrain < int(filename_split[1]):
default_best_pretrain = int(filename_split[1])
except:
pass
else:
filename_split = filename.split(".pth")[0].split("training_model_epoch")
if len(filename_split) > 1:
try:
if default_best_finetune < int(filename_split[1]):
default_best_finetune = int(filename_split[1])
except:
pass
case = f"{aggregator} {x} {v} {k} {j} {i} {default_best_pretrain} {default_best_finetune} {default_accuracy}"
row = case.split(" ")
data.append(row)
df = pandas.DataFrame(data, columns=columns)
df.to_excel(f'{output_path}/{filename}', sheet_name='data')
def main():
output_path = "outputs"
filename = "evaluation_gcn_248.xlsx"
create_excel_files(output_path, filename)
if __name__ == '__main__':
main()