-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
534 lines (414 loc) · 20.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import torch
import torch.nn as nn
import torch.nn.functional as F
from gate import Gate, GateMul
import math
def _L2_loss_mean(x):
return torch.mean(torch.sum(torch.pow(x, 2), dim=1, keepdim=False) / 2.)
class Aggregator(nn.Module):
def __init__(self, in_dim, out_dim, dropout, aggregator_type, use_residual=False, args=None):
super(Aggregator, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.dropout = dropout
self.aggregator_type = aggregator_type
self.use_residual = use_residual
self.weight = nn.Parameter(torch.FloatTensor(self.in_dim, self.in_dim))
if use_residual:
self.linear_h0 = nn.Linear(args.embed_dim, self.in_dim)
nn.init.xavier_uniform_(self.linear_h0.weight)
self.reset_parameters()
self.message_dropout = nn.Dropout(dropout)
self.activation = nn.LeakyReLU()
self.layer_normalize = nn.LayerNorm(self.out_dim)
if self.aggregator_type == 'gcn':
self.linear = nn.Linear(
self.in_dim, self.out_dim)
nn.init.xavier_uniform_(self.linear.weight)
elif self.aggregator_type == 'graphsage':
if self.use_residual:
self.linear_h = nn.Linear(
self.in_dim * 2, self.in_dim)
nn.init.xavier_uniform_(self.linear_h.weight)
self.linear = nn.Linear(
self.in_dim, self.out_dim)
nn.init.xavier_uniform_(self.linear.weight)
else:
self.linear = nn.Linear(
self.in_dim * 2, self.out_dim)
nn.init.xavier_uniform_(self.linear.weight)
elif self.aggregator_type == 'bi-interaction':
self.linear1 = nn.Linear(
self.in_dim, self.out_dim)
self.linear2 = nn.Linear(
self.in_dim, self.out_dim)
nn.init.xavier_uniform_(self.linear1.weight)
nn.init.xavier_uniform_(self.linear2.weight)
elif self.aggregator_type == 'gin':
hidden_dim = args.mlp_hidden_dim
self.num_layers = args.n_mlp_layers
self.weight = nn.Parameter(torch.FloatTensor(hidden_dim, hidden_dim))
self.linear_h0 = nn.Linear(args.embed_dim, hidden_dim)
nn.init.xavier_uniform_(self.linear_h0.weight)
if self.num_layers == 1:
# Linear model
self.linear = nn.Linear(self.in_dim, self.out_dim)
else:
# Multi-layer model
self.inp_linear = torch.nn.Linear(self.in_dim, hidden_dim)
self.linears = torch.nn.ModuleList()
self.mlp_layer_norms = torch.nn.ModuleList()
for layer in range(self.num_layers - 1):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.out_linear = nn.Linear(hidden_dim, self.out_dim)
for layer in range(self.num_layers - 1):
self.mlp_layer_norms.append(nn.LayerNorm(hidden_dim))
else:
raise NotImplementedError
def reset_parameters(self):
stdv = 1. / math.sqrt(self.out_dim)
self.weight.data.uniform_(-stdv, stdv)
def residual_connection(self, hi, h0, lamda, alpha, l):
if self.use_residual:
h0 = self.linear_h0(h0)
residual = (1 - alpha) * hi + alpha * h0
beta = math.log(lamda / l + 1)
identity_mapping = (1 - beta) + beta * self.weight
return torch.mm(residual, identity_mapping)
else:
return hi
def forward(self, ego_embeddings, A_in, all_layers, lamda, alpha, l):
"""
ego_embeddings: (n_heads + n_tails, in_dim)
A_in: (n_heads + n_tails, n_heads + n_tails), torch.sparse.FloatTensor
"""
side_embeddings = torch.matmul(A_in, ego_embeddings)
if self.aggregator_type == 'gcn':
hi = ego_embeddings + side_embeddings
embeddings = self.residual_connection(hi, all_layers[0], lamda, alpha, l)
embeddings = self.activation(self.linear(embeddings))
elif self.aggregator_type == 'graphsage':
hi = torch.cat([ego_embeddings, side_embeddings], dim=1)
if self.use_residual:
hi = self.linear_h(hi)
embeddings = self.residual_connection(hi, all_layers[0], lamda, alpha, l)
else:
embeddings = hi
embeddings = self.activation(self.linear(embeddings))
elif self.aggregator_type == 'bi-interaction':
hi_1 = ego_embeddings + side_embeddings
sum_embeddings = self.residual_connection(hi_1, all_layers[0], lamda, alpha, l)
sum_embeddings =self.activation(self.linear1(sum_embeddings))
hi_2 = ego_embeddings * side_embeddings
bi_embeddings = self.residual_connection(hi_2, all_layers[0], lamda, alpha, l)
bi_embeddings = self.activation(self.linear2(bi_embeddings))
embeddings = bi_embeddings + sum_embeddings
elif self.aggregator_type == 'gin':
hi = ego_embeddings + side_embeddings
h = self.inp_linear(ego_embeddings)
layer_embeds = [h]
if self.num_layers == 1:
# Linear model
hi = self.linear(hi)
layer_embeds.append(hi)
else:
# If MLP
h = self.inp_linear(hi)
for layer in range(self.num_layers - 1):
h = self.mlp_layer_norms[layer](self.activation(self.linears[layer](h)))
layer_embeds.append(h)
X = torch.sum(torch.stack(layer_embeds), dim=0)
X = self.residual_connection(X, all_layers[0], lamda, alpha, l)
embeddings = self.activation(self.out_linear(X))
if len(all_layers) > 1:
layer_embeds = [self.layer_normalize(embeddings)]
for index, layer in enumerate(all_layers):
if index != 0:
layer_embeds.append(layer)
embeddings = torch.sum(torch.stack(layer_embeds), dim=0)
# (n_heads + n_tails, out_dim)
embeddings = self.message_dropout(self.layer_normalize(embeddings))
return embeddings
class LiteralKG(nn.Module):
def __init__(self, args, n_entities, n_relations, A_in=None, numerical_literals=None, text_literals=None):
super(LiteralKG, self).__init__()
self.use_pretrain = args.use_pretrain
self.args = args
self.device = args.device
self.n_entities = n_entities
self.n_relations = n_relations
self.embed_dim = args.embed_dim
self.relation_dim = args.relation_dim
self.scale_gat_dim = args.scale_gat_dim
# Use residual connection
self.use_residual = args.use_residual
self.alpha = args.alpha
self.lamda = args.lamda
self.aggregation_type = args.aggregation_type
self.n_layers = args.n_conv_layers
# self.conv_dim_list = [args.embed_dim] + eval(args.conv_dim_list)
self.conv_dim_list = [args.embed_dim] + [args.conv_dim]*self.n_layers
self.total_conv_dim = sum([self.conv_dim_list[i] for i in range(self.n_layers + 1)])
#self.mess_dropout = eval(args.mess_dropout)
self.mess_dropout = [args.mess_dropout]*self.n_layers
self.kg_l2loss_lambda = args.kg_l2loss_lambda
self.prediction_l2loss_lambda = args.fine_tuning_l2loss_lambda
self.pre_training_neg_rate = args.pre_training_neg_rate
self.fine_tuning_neg_rate = args.fine_tuning_neg_rate
# Num. Literal
# num_ent x n_num_lit
# self.numerical_literals = Variable(torch.from_numpy(numerical_literals)).cuda()
self.n_num_lit = args.num_lit_dim
# Txt. Literal
# num_ent x n_txt_lit
# self.text_literals = Variable(torch.from_numpy(text_literals)).cuda()
self.n_txt_lit = args.txt_lit_dim
self.entity_embed = nn.Embedding(
self.n_entities, self.embed_dim)
self.relation_embed = nn.Embedding(self.n_relations, self.relation_dim)
# self.trans_M = nn.Parameter(torch.Tensor(
# self.n_relations, self.embed_dim, self.relation_dim))
if self.scale_gat_dim is not None:
self.linear_gat = nn.Linear(self.total_conv_dim, self.scale_gat_dim)
self.gat_activation = nn.LeakyReLU()
nn.init.xavier_uniform_(self.linear_gat.weight)
self.gat_trans_M = nn.Parameter(torch.Tensor(
self.n_relations, self.scale_gat_dim, self.relation_dim))
else:
self.gat_trans_M = nn.Parameter(torch.Tensor(
self.n_relations,
self.total_conv_dim,
self.relation_dim))
nn.init.xavier_uniform_(self.entity_embed.weight)
nn.init.xavier_uniform_(self.relation_embed.weight)
# nn.init.xavier_uniform_(self.trans_M)
nn.init.xavier_uniform_(self.gat_trans_M)
self.aggregator_layers = nn.ModuleList()
self.numerical_literals_embed = numerical_literals
self.text_literals_embed = text_literals
# LiteralE's g
if self.args.use_num_lit and self.args.use_txt_lit:
self.emb_mul_lit = GateMul(self.embed_dim, self.n_num_lit, self.n_txt_lit)
elif self.args.use_num_lit:
self.emb_num_lit = Gate(self.embed_dim, self.n_num_lit)
elif self.args.use_txt_lit:
self.emb_txt_lit = Gate(self.embed_dim, self.n_txt_lit)
for k in range(self.n_layers):
self.aggregator_layers.append(
Aggregator(self.conv_dim_list[k], self.conv_dim_list[k + 1], self.mess_dropout[k],
self.aggregation_type, self.use_residual, args))
self.A_in = nn.Parameter(
torch.sparse.FloatTensor(self.n_entities, self.n_entities))
if A_in is not None:
self.A_in.data = A_in
self.A_in.requires_grad = False
self.milestone_score = args.milestone_score
def gate_embeddings(self):
ent_emb = self.entity_embed.weight
if self.args.use_num_lit and self.args.use_txt_lit:
self.numerical_literals_embed = self.numerical_literals_embed.to(self.device)
self.text_literals_embed = self.text_literals_embed.to(self.device)
return self.emb_mul_lit(ent_emb, self.numerical_literals_embed, self.text_literals_embed)
elif self.args.use_num_lit:
self.numerical_literals_embed = self.numerical_literals_embed.to(self.device)
return self.emb_num_lit(ent_emb, self.numerical_literals_embed)
elif self.args.use_txt_lit:
self.text_literals_embed = self.text_literals_embed.to(self.device)
return self.emb_txt_lit(ent_emb, self.text_literals_embed)
return ent_emb
# def gate_embeddings_v2(self, e):
# ent_emb = self.entity_embed.weight
# ent_emb = ent_emb[e]
# if self.args.use_num_lit and self.args.use_txt_lit:
# num_emb = self.numerical_literals_embed[e]
# txt_emb = self.text_literals_embed[e]
# return self.emb_mul_lit(ent_emb, num_emb, txt_emb)
# elif self.args.use_num_lit:
# num_emb = self.numerical_literals_embed[e]
# return self.emb_num_lit(ent_emb, num_emb)
# elif self.args.use_txt_lit:
# txt_emb = self.text_literals_embed[e]
# return self.emb_txt_lit(ent_emb, txt_emb)
# return ent_emb
def gat_embeddings(self):
ent_lit_mul_r = self.gate_embeddings()
all_embed = [ent_lit_mul_r]
for idx, layer in enumerate(self.aggregator_layers):
ent_lit_mul_r = layer(ent_lit_mul_r, self.A_in, all_embed, self.lamda, self.alpha, idx + 1)
norm_embed = F.normalize(ent_lit_mul_r, p=2, dim=1)
all_embed.append(norm_embed)
if self.scale_gat_dim is not None:
gat_embed = self.linear_gat(torch.cat(all_embed, dim=1))
gat_embed = self.gat_activation(gat_embed)
return gat_embed
else:
# (n_heads + n_tails, concat_dim)
return torch.cat(all_embed, dim=1)
def calculate_prediction_loss(self, head_ids, tail_pos_ids, tail_neg_ids):
"""
head_ids: (prediction_batch_size)
tail_pos_ids: (prediction_batch_size)
tail_neg_ids: (prediction_batch_size)
"""
self.gat_embed = self.gat_embeddings() # (n_heads + n_tails, concat_dim)
head_embed = self.gat_embed[head_ids] # (batch_size, concat_dim)
tail_pos_embed = self.gat_embed[tail_pos_ids] # (batch_size, concat_dim)
tail_neg_embed = self.gat_embed[tail_neg_ids] # (batch_size, concat_dim)
# head_embed = self.gat_embeddings(head_ids) # (batch_size, concat_dim)
# tail_pos_embed = self.gat_embeddings(tail_pos_ids) # (batch_size, concat_dim)
# tail_neg_embed =self.gat_embeddings(tail_neg_ids) # (batch_size, concat_dim)
pos_score = torch.sum(head_embed * tail_pos_embed,
dim=1) # (batch_size)
# print("Compare the positive score and negative score")
# print(pos_score)
neg_score = torch.sum(head_embed * tail_neg_embed,
dim=1) # (batch_size)
# print(neg_score)
# prediction_loss = F.softplus(neg_score - pos_score)
prediction_loss = (-1.0) * F.logsigmoid(pos_score - neg_score)
prediction_loss = torch.mean(prediction_loss)
l2_loss = _L2_loss_mean(
head_embed) + _L2_loss_mean(tail_pos_embed) + _L2_loss_mean(tail_neg_embed)
loss = prediction_loss + self.prediction_l2loss_lambda * l2_loss
return loss
# def embed_num_literal(self):
# embedding_table = torch.zeros((self.n_entities, self.n_num_lit), device='cuda:0', dtype=torch.long)
# for item in self.numerical_literals:
# embedding_table[item] = torch.tensor(self.numerical_literals[item])
# return embedding_table
# def embed_txt_literal(self):
# embedding_table = torch.zeros((self.n_entities, self.n_txt_lit), device='cuda:0', dtype=torch.long)
# for item in self.text_literals:
# embedding_table[item] = torch.tensor(self.text_literals[item])
# return embedding_table
def calc_triplet_loss(self, h, r, pos_t, neg_t):
"""
h: (kg_batch_size)
r: (kg_batch_size)
pos_t: (kg_batch_size)
neg_t: (kg_batch_size)
"""
r_embed = self.relation_embed(r) # (kg_batch_size, relation_dim)
W_r = self.gat_trans_M[r] # (kg_batch_size, embed_dim, relation_dim)
# h_embed = self.entity_embed(h) # (kg_batch_size, embed_dim)
# pos_t_embed = self.entity_embed(
# pos_t) # (kg_batch_size, embed_dim)
# neg_t_embed = self.entity_embed(
# neg_t) # (kg_batch_size, embed_dim)
# GAT embeddings
self.gat_embed = self.gat_embeddings() # (n_heads + n_tails, concat_dim)
head_embed = self.gat_embed[h] # (batch_size, concat_dim)
tail_pos_embed = self.gat_embed[pos_t] # (batch_size, concat_dim)
tail_neg_embed = self.gat_embed[neg_t] # (batch_size, concat_dim)
# head_embed = self.gat_embeddings(h) # (batch_size, concat_dim)
# tail_pos_embed = self.gat_embeddings(pos_t) # (batch_size, concat_dim)
# tail_neg_embed = self.gat_embeddings(neg_t) # (batch_size, concat_dim)
r_mul_h = torch.bmm(head_embed.unsqueeze(1), W_r).squeeze(
1) # (kg_batch_size, relation_dim)
r_mul_pos_t = torch.bmm(tail_pos_embed.unsqueeze(1), W_r).squeeze(
1) # (kg_batch_size, relation_dim)
r_mul_neg_t = torch.bmm(tail_neg_embed.unsqueeze(1), W_r).squeeze(
1) # (kg_batch_size, relation_dim)
# h_lit_embed = self.entity_literal_embed(h, h_embed) # Gate(heads, head_embeddings)
# pos_t_lit_embed = self.entity_literal_embed(
# pos_t, pos_t_embed) # Gate(pos_tails, pos_tail_embeddings)
# neg_t_lit_embed = self.entity_literal_embed(
# neg_t, neg_t_embed) # Gate(neg_tails, neg_tail_embeddings)
# r_mul_h = torch.bmm(h_lit_embed.unsqueeze(1), W_r).squeeze(
# 1) # (kg_batch_size, relation_dim)
# r_mul_pos_t = torch.bmm(pos_t_lit_embed.unsqueeze(1), W_r).squeeze(
# 1) # (kg_batch_size, relation_dim)
# r_mul_neg_t = torch.bmm(neg_t_lit_embed.unsqueeze(1), W_r).squeeze(
# 1) # (kg_batch_size, relation_dim)
# Trans R
# Equation (1)
pos_score = torch.sum(
torch.pow(r_mul_h + r_embed - r_mul_pos_t, 2), dim=1) # (kg_batch_size)
neg_score = torch.sum(
torch.pow(r_mul_h + r_embed - r_mul_neg_t, 2), dim=1) # (kg_batch_size)
# Equation (2)
# triplet_loss = F.softplus(pos_score - neg_score)
triplet_loss = (-1.0) * F.logsigmoid(neg_score - pos_score)
triplet_loss = torch.mean(triplet_loss)
l2_loss = _L2_loss_mean(r_mul_h) + _L2_loss_mean(r_embed) + _L2_loss_mean(r_mul_pos_t) + _L2_loss_mean(
r_mul_neg_t)
loss = triplet_loss + self.kg_l2loss_lambda * l2_loss
return loss
def update_attention_batch(self, h_list, t_list, r_idx):
r_embed = self.relation_embed.weight[r_idx]
h_embed = self.entity_embed.weight[h_list]
t_embed = self.entity_embed.weight[t_list]
# Equation
# r_mul_h = torch.matmul(h_embed, W_r)
# r_mul_t = torch.matmul(t_embed, W_r)
# v_list = torch.sum(r_mul_t * torch.tanh(r_mul_h + r_embed), dim=1)
v_list = torch.sum(t_embed * torch.tanh(h_embed + r_embed), dim=1)
return v_list
def update_attention(self, h_list, t_list, r_list, relations):
device = self.A_in.device
rows = []
cols = []
values = []
for r_idx in relations:
index_list = torch.where(r_list == r_idx)
batch_h_list = h_list[index_list]
batch_t_list = t_list[index_list]
batch_v_list = self.update_attention_batch(
batch_h_list, batch_t_list, r_idx)
rows.append(batch_h_list)
cols.append(batch_t_list)
values.append(batch_v_list)
rows = torch.cat(rows)
cols = torch.cat(cols)
values = torch.cat(values)
indices = torch.stack([rows, cols])
shape = self.A_in.shape
A_in = torch.sparse.FloatTensor(indices, values, torch.Size(shape))
A_in = torch.sparse.softmax(A_in.cpu(), dim=1)
self.A_in.data = A_in.to(device)
def calc_score(self, head_ids, tail_ids):
all_embed = self.gat_embeddings() # (n_heads + n_tails, concat_dim)
head_embed = all_embed[head_ids] # (n_heads, concat_dim)
tail_embed = all_embed[tail_ids] # (n_items, concat_dim)
# head_embed = self.gat_embeddings(head_ids) # (n_heads, concat_dim)
# tail_embed = self.gat_embeddings(tail_ids) # (n_items, concat_dim)
prediction_score = torch.matmul(
head_embed, tail_embed.transpose(0, 1)) # (n_heads, n_items)
# print(prediction_score)
return prediction_score
def predict_links(self, head_ids, tail_ids):
scores = self.calc_score(head_ids, tail_ids)
scores = (scores - torch.min(scores)) / (torch.max(scores) - torch.min(scores))
return (scores > self.milestone_score).int()
def get_final_embeddings(self, entity_ids):
all_embed = self.gat_embeddings() # (n_heads + n_tails, concat_dim)
entity_embed = all_embed[entity_ids] # (n_heads, concat_dim)
return entity_embed
def initialize_MLP(self):
self.fc1 = nn.Linear(self.scale_gat_dim*2, 128)
self.norm1 = nn.BatchNorm1d(128)
self.fc2 = nn.Linear(128, 64)
self.norm2 = nn.BatchNorm1d(64)
self.fc3 = nn.Linear(64,1)
def train_MLP(self, head_ids, tail_ids):
self.gat_embed = self.gat_embeddings() # (n_heads + n_tails, concat_dim)
head_embed = self.gat_embed[head_ids] # (batch_size, concat_dim)
tail_embed = self.gat_embed[tail_ids] # (batch_size, concat_dim)
x = torch.cat([head_embed, tail_embed],
dim=1) # (batch_size)
x = self.norm1(torch.relu(self.fc1(x)))
x = self.norm2(torch.relu(self.fc2(x)))
x = torch.sigmoid(self.fc3(x))
return x
def forward(self, *input, device, mode):
self.device = device
if mode == 'fine_tuning':
return self.calculate_prediction_loss(*input)
if mode == 'pre_training':
return self.calc_triplet_loss(*input)
if mode == 'update_att':
return self.update_attention(*input)
if mode == 'predict':
return self.predict_links(*input)
if mode == 'mlp':
return self.train_MLP(*input)