-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_loop.py
231 lines (194 loc) · 9.65 KB
/
training_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import sys
import datetime
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from fastai.vision.data import *
from fastai.vision import *
from fastai.callbacks import *
from fastai.callbacks.tracker import *
from fastai.basic_train import *
# @t_sanf @DrSHarmon
class VisionMulticlass:
'''class to save hyperparameters while training models using fastai library functionality'''
def __init__(self):
self.imagedir=''
self.outdir=''
self.testPath=os.path.join(self.imagedir,'test')
self.model_name='model'
self.tr_name='train'
self.val_name='val'
self.arch='resnet34'
self.img_sz=80
self.lr=0.008
self.lr_range=slice(1e-11, 1e-5)
self.bs=256
self.device=0
self.dc_e=20
self.all_e=1000 #all epochs
self.lighting=0.05
self.rotate=15
self.weightedloss=False
self.early_stopping=True
self.unfreeze=True
self.weights = [10,5,2.5,1]
self.model_dict={'resnet18':[models.resnet18],'resnet34':[models.resnet34],'resnet50':[models.resnet50],
'resnet101':[models.resnet101],'resnet152':[models.resnet152],'vgg16_bn':[models.vgg16_bn],'densenet161':[models.densenet161]}
#retraining
self.retrain=False
self.retraindir = '/data/Stephanie_Harmon/bladder_path/all_pts/classification_042519/All_Others/10x/training_log'
self.save_model_name='10x_fullset_fortytwo_final_layers_tuned_04302019-0824'
def load_jpg_from_folder(self):
'''
expects a path to a base folder with multiple subfolders including 'training', 'testing', etc
:param path:
:return: databunch
'''
tfms = get_transforms(flip_vert=True,max_rotate=self.rotate,max_warp=0.05,max_lighting = self.lighting,p_lighting=0.05,p_affine=0.5)
data = (ImageList.from_folder(self.imagedir)
.split_by_folder(train=self.tr_name, valid=self.val_name)
.label_from_folder()
.transform(tfms, size=self.img_sz)
.databunch(bs=self.bs)
.normalize())
return data
def train(self):
'''
trains a resnet with the parameters listed above
:return:
'''
torch.cuda.set_device(self.device)
self.make_filestructure()
data = self.load_jpg_from_folder()
print('data loaded')
print('classes in this dataset are {}'.format(data.classes))
w = torch.cuda.FloatTensor(self.weights)
learn = cnn_learner(data, self.model_dict[self.arch][0],
metrics=[error_rate],
callback_fns=[ShowGraph,
partial(SaveModelCallback, monitor='valid_loss', mode='auto',name=self.model_name),
partial(EarlyStoppingCallback, monitor='valid_loss', min_delta=0.001,patience=100)],
wd=0.1,
loss_func=LabelSmoothingCrossEntropy()).mixup()
self.trainblock(learner=learn)
save_name = self.model_name + "_" + str(datetime.datetime.now().strftime("%m%d%Y-%H%M")) + '.pkl'
#save figures
self.save_figures(learner=learn)
# save hyperparameters
self.save_hyperparameters(filename='hyperparameters')
return save_name
####################
# helper functions #
####################
def trainblock(self,learner):
'''basic block to train network
a fastai learner will need tobe defined ebfore the model is trained
'''
learn=learner
learn.fit_one_cycle(self.dc_e, max_lr=self.lr)
learn.save(os.path.join(self.outdir, 'saved_models', self.model_name + "_" + 'final_layers_tuned_' + str(
datetime.datetime.now().strftime("%m%d%Y-%H%M"))))
learn.export(os.path.join(self.outdir, 'exported_models', self.model_name + "_" + str(
datetime.datetime.now().strftime("%m%d%Y-%H%M") + '.pkl')))
# loop to train if unfreezing is desired
if self.unfreeze == True:
print("unfreezing and retraining")
learn.unfreeze()
learn.fit_one_cycle(self.all_e, max_lr=self.lr_range)
learn.save(
os.path.join(self.outdir, 'saved_models', self.model_name + "_" + 'all_layers_trained_' + str(
datetime.datetime.now().strftime("%m%d%Y-%H%M"))))
learn.export(os.path.join(self.outdir, 'exported_models', self.model_name + "_" + str(
datetime.datetime.now().strftime("%m%d%Y-%H%M"))))
def save_figures(self,learner):
interp = ClassificationInterpretation.from_learner(learner)
losses, idxs = interp.top_losses()
interp.plot_confusion_matrix(figsize=(12, 12),dpi=60)
plt.savefig(os.path.join(self.outdir, 'confusion_matrix',
self.model_name + '_' + str(datetime.datetime.now().strftime("%m%d%Y-%H%M"))))
interp.plot_top_losses(9, figsize=(15, 11))
plt.savefig(os.path.join(self.outdir, 'top_loss',
self.model_name + '_' + str(datetime.datetime.now().strftime("%m%d%Y-%H%M"))))
def save_hyperparameters(self,filename='hyperparameters'):
file = open(
os.path.join(self.outdir, 'hyperparameters',
filename + '_' + self.model_name + '_' + str(
datetime.datetime.now().strftime("%m%d%Y-%H%M")) + '.txt'), 'w')
file.write(
'hyper-parameters for model at {} \n'.format(
str(datetime.datetime.now().strftime("%m%d%Y-%H%M"))))
file.write('Resnet type is: {} \n'.format(self.model_dict[self.arch][0]))
file.write('model name is: {} \n'.format(self.model_name))
print('model name is: {} \n'.format(self.model_name))
file.write('training name is: {} \n'.format(self.tr_name))
file.write('validation name is: {} \n'.format(self.val_name))
file.write('image size is: {} \n'.format(self.img_sz))
file.write('learning rate for dense connected is: {} \n'.format(self.lr))
print('learning rate for dense connected is: {} \n'.format(self.lr))
file.write('learning rate range for whole network is: {} \n'.format(self.lr_range))
print('learning rate for dense connected is: {} \n'.format(self.lr))
file.write('batch size is: {} \n'.format(self.bs))
file.write('this model was trained on device: {} \n'.format(self.device))
print('this model was trained on device: {} \n'.format(self.device))
file.write('number epochs densely connnected: {} \n'.format(self.dc_e))
file.write('number epochs all layers: {} \n'.format(self.all_e))
file.write('unfreeze?: {} \n'.format(str(self.unfreeze)))
file.write('weighting: {} \n'.format(str(self.weightedloss)))
file.write('weighting: {} \n'.format(str(self.weights)))
file.close()
def make_filestructure(self):
'''
make the file structure to write out all saved files
:return:
'''
# make the filestructure for saving
if not os.path.isdir(self.outdir):
os.mkdir(self.outdir)
if not os.path.isdir(os.path.join(self.outdir, 'confusion_matrix')):
os.mkdir(os.path.join(self.outdir, 'confusion_matrix'))
if not os.path.isdir(os.path.join(self.outdir, 'top_loss')):
os.mkdir(os.path.join(self.outdir, 'top_loss'))
if not os.path.isdir(os.path.join(self.outdir, 'saved_models')):
os.mkdir(os.path.join(self.outdir, 'saved_models'))
if not os.path.isdir(os.path.join(self.outdir, 'hyperparameters')):
os.mkdir(os.path.join(self.outdir, 'hyperparameters'))
if not os.path.isdir(os.path.join(self.outdir, 'exported_models')):
os.mkdir(os.path.join(self.outdir, 'exported_models'))
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, logits=False, reduction='elementwise_mean'):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.logits = logits
self.reduction = reduction
def forward(self, inputs, targets):
if self.logits:
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
else:
BCE_loss = F.binary_cross_entropy(inputs, targets, reduction='none')
pt = torch.exp(-BCE_loss)
F_loss = self.alpha * (1 - pt) ** self.gamma * BCE_loss
if self.reduction is None:
return F_loss
else:
return torch.mean(F_loss)
class LabelSmoothingCrossEntropy(nn.Module):
def __init__(self, ε: float = 0.1, reduction='mean'):
super().__init__()
self.ε, self.reduction = ε, reduction
def lin_comb(self,v1, v2, beta): return beta*v1 + (1-beta)*v2
def reduce_loss(self,loss, reduction='mean'):
return loss.mean() if reduction == 'mean' else loss.sum() if reduction == 'sum' else loss
def forward(self, output, target):
c = output.size()[-1]
log_preds = F.log_softmax(output, dim=-1)
loss = self.reduce_loss(-log_preds.sum(dim=-1), self.reduction)
nll = F.nll_loss(log_preds, target, reduction=self.reduction)
return self.lin_comb(loss / c, nll, self.ε)
if __name__ == '__main__':
c = VisionMulticlass()
name = c.train()