-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcdstool.py
169 lines (146 loc) · 5.82 KB
/
cdstool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# CDS API data download tool (C) 2021 HWITW project
#
# Downloads data we are interested in from Copernicus webapi in the form of netcdf files.
# Semi intelligent.. It can't resume a partial individual file, but it knows what files
# it has sucessfully downloaded and will resume at the next file where it left off.
# It will save files to the directory that it is run from.
#
# NOTE:
# The cdsapi library looks for a file called ~/.cdsapirc that holds the auth token.
# I think the first time you run/load it, it will prompt for the token. I forget.. the cds
# website explains it.
#
import math
import datetime
import os.path
import cdsapi
import netCDF4
import parsl
from parsl import python_app
from parsl.config import Config
from parsl.executors.threads import ThreadPoolExecutor
# download era5 or era5 back extention data to netcdf files
def download_dataset( ds_name, dir_name, start_year, end_year, area_lat_long, variables, force_download=False ):
'''
Download a multi-year dataset.
:param ds_name: The dataset name to be downloaded from CDS
:param dir_name: name of the directory to save downloaded files for the dataset
:param start_year: the first year of the range for downloads
:param end_year: the last year of the range for downloads
:param area_lat_long: The area to be downloaded, or None for global
:param variables: List of variables to be downloaded
:param force_download: Download file even if it already exists locally
'''
years = list( range( start_year, end_year + 1 ) )
# download year, variable for entire globe
for year in reversed( years ):
for var_name in variables:
download_var_for_year( ds_name, dir_name, year, area_lat_long, var_name, force_download)
#print_var_for_year( ds_name, dir_name, year, area_lat_long, var_name, force_download)
print(f'Submitted {var_name} for {year}: {ds_name}')
@python_app
def print_var_for_year(ds_name, dir_name, year, area_lat_long, var_name, force_download=False):
'''Test method for debugging parsl operation.'''
import time
time.sleep(5)
print(f'Processing {var_name} for {year}: {ds_name}')
@python_app
def download_var_for_year(ds_name, dir_name, year, area_lat_long, var_name, force_download=False):
'''
Download a single year dataset for a single variable.
:param ds_name: The dataset name to be downloaded from CDS
:param dir_name: name of the directory to save downloaded files for the dataset
:param year: the year to be downloaded
:param area_lat_long: The area to be downloaded, or None for global
:param var_name: The name of the variable to be downloaded
:param force_download: Download file even if it already exists locally
'''
import math
import datetime
import os.path
import cdsapi
import netCDF4
cds = cdsapi.Client()
# file naming scheme
pathname = f'./{dir_name}/{year}/'
#filename = f'gn{grid_num}-{year}-{var_name}.nc'
filename = f'global-{year}-{var_name}.nc'
fullname = pathname + filename
# see if file already downloaded.. if it exists and is larger then some nonsense amount
already_exists = os.path.isfile(
fullname) and os.path.getsize(fullname) > 500
if already_exists:
print(f'{filename} exists already')
# todo: validate the existing netcdf file
if not already_exists or force_download:
print(f'{filename} requested...')
# remove any existing file
try:
os.remove(fullname)
except FileNotFoundError:
pass
# create the path if necessary
os.makedirs(pathname, exist_ok=True)
# download to temp file
tempfullname = fullname + '.tempdl'
r = cds.retrieve(
ds_name,
{
'product_type': 'reanalysis',
'format': 'netcdf',
'year': year,
'time': 'all',
'variable': [var_name]
#'area': area_lat_long,
}, tempfullname)
# rename completed download
os.rename(tempfullname, fullname)
def main():
'''Main program to download data from Copernicus.'''
# Configure parsl to use a local thread pool
local_threads = Config(
executors=[
ThreadPoolExecutor( max_threads=5, label='local_threads')
]
)
parsl.clear()
parsl.load(local_threads)
app_version = "0.94"
force_download = False;
current_time = datetime.datetime.now()
# hello
print( f'** HWITW Copernicus data download tool v{app_version} **\n')
# 0.25 degree resolution
inp_lat = 59.64 # homer ak
inp_long = -151.54
# get the containing cell
lat0 = math.ceil( inp_lat * 4 ) / 4
lat1 = (math.floor( inp_lat * 4 ) / 4) + 0.01 # edge is not inclusive
long0 = math.floor( inp_long * 4 ) / 4
long1 = (math.ceil( inp_long * 4 ) / 4) - 0.01
area0 = [ lat0, long0, lat1, long1 ]
area0 = None # we are doing global downloads!
# the variables we are interested in
variables = [
'10m_u_component_of_wind',
'10m_v_component_of_wind',
'2m_dewpoint_temperature',
'2m_temperature',
'cloud_base_height',
'precipitation_type',
'surface_pressure',
'total_cloud_cover',
'total_precipitation',
]
# era5 back extension goes from 1950 to 1978
download_dataset( 'reanalysis-era5-single-levels-preliminary-back-extension',
'cds_era5_backext',
1950, 1978,
area0, variables, force_download )
# era5 goes from 1979 to present
download_dataset( 'reanalysis-era5-single-levels',
'cds_era5',
1979, current_time.year,
area0, variables, force_download )
if __name__ == "__main__":
main()