-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIFOLNormalization.agda
179 lines (149 loc) · 5.53 KB
/
IFOLNormalization.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
{-# OPTIONS --prop --rewriting #-}
open import PropUtil hiding (zero)
module IFOLNormalization (Term : Set) (R : Nat → Set) where
open import ListUtil hiding (zero)
open import IFOL Term R using (Form; Args; Rel; _⇒_; _∧∧_; ⊤⊤; ∀∀; Con)
open import IFOLKripke Term R using (Kripke)
record Preorder (T : Set₀) : Set₁ where
constructor order
field
_≤_ : T → T → Prop
refl≤ : {a : T} → a ≤ a
tran≤ : {a b c : T} → a ≤ b → b ≤ c → a ≤ c
[_]ᵒᵖ : {T : Set₀} → Preorder T → Preorder T
[_]ᵒᵖ o = order (λ a b → (Preorder._≤_ o) b a) (Preorder.refl≤ o) (λ h₁ h₂ → (Preorder.tran≤ o) h₂ h₁)
record NormalAndNeutral : Set₁ where
field
_⊢⁰_ : Con → Form → Prop
_⊢*_ : Con → Form → Prop
zero : {Γ : Con} → {F : Form} → (F ∷ Γ) ⊢⁰ F
app : {Γ : Con} → {F G : Form} → Γ ⊢⁰ (F ⇒ G) → Γ ⊢* F → Γ ⊢⁰ G
ande₁ : {Γ : Con} → {F G : Form} → Γ ⊢⁰ (F ∧∧ G) → Γ ⊢⁰ F
ande₂ : {Γ : Con} → {F G : Form} → Γ ⊢⁰ (F ∧∧ G) → Γ ⊢⁰ G
∀e : {Γ : Con} → {F : Term → Form} → Γ ⊢⁰ (∀∀ F) → ( {t : Term} → Γ ⊢⁰ (F t) )
neu⁰ : {Γ : Con} → {n : Nat} → {r : R n} → {A : Args n} → Γ ⊢⁰ Rel r A → Γ ⊢* Rel r A
lam : {Γ : Con} → {F G : Form} → (F ∷ Γ) ⊢* G → Γ ⊢* (F ⇒ G)
andi : {Γ : Con} → {F G : Form} → Γ ⊢* F → Γ ⊢* G → Γ ⊢* (F ∧∧ G)
∀i : {Γ : Con} → {F : Term → Form} → ({t : Term} → Γ ⊢* F t) → Γ ⊢* ∀∀ F
true : {Γ : Con} → Γ ⊢* ⊤⊤
record NormalizationFrame : Set₁ where
field
o : Preorder Con
nn : NormalAndNeutral
retro : {Γ Δ : Con} → {F : Form} → (Preorder._≤_ o) Γ Δ → (Preorder._≤_ o) Γ (F ∷ Δ)
⊢tran : {Γ Δ : Con} → {F : Form} → (Preorder._≤_ o) Γ Δ → (NormalAndNeutral._⊢⁰_ nn) Γ F → (NormalAndNeutral._⊢⁰_ nn) Δ F
open Preorder o
open NormalAndNeutral nn
UK : Kripke
UK = record {
Worlds = Con;
_≤_ = _≤_;
refl≤ = refl≤;
tran≤ = tran≤;
_⊩_[_] = λ Γ r A → Γ ⊢⁰ Rel r A;
mon⊩ = λ Γ h → ⊢tran Γ h
}
open Kripke UK
-- q is quote, u is unquote
q : {F : Form} → {Γ : Con} → Γ ⊩ᶠ F → Γ ⊢* F
u : {F : Form} → {Γ : Con} → Γ ⊢⁰ F → Γ ⊩ᶠ F
u {Rel r A} h = h
u {F ⇒ F₁} h {Γ'} iq hF = u {F₁} (app {Γ'} {F} {F₁} (⊢tran iq h) (q hF))
u {F ∧∧ G} h = ⟨ (u {F} (ande₁ h)) , (u {G} (ande₂ h)) ⟩
u {⊤⊤} h = tt
u {∀∀ F} h {t} = u {F t} (∀e h {t})
q {Rel r A} h = neu⁰ h
q {F ⇒ F₁} {Γ} h = lam (q (h (retro (Preorder.refl≤ o)) (u {F} {F ∷ Γ} zero)))
q {F ∧∧ G} ⟨ hF , hG ⟩ = andi (q {F} hF) (q {G} hG)
q {⊤⊤} h = true
q {∀∀ F} h = ∀i λ {t} → q {F t} h
module NormalizationTests where
{- Now using our records -}
open import IFOL Term R hiding (Form; _⇒_; Con)
ClassicNN : NormalAndNeutral
ClassicNN = record
{
_⊢⁰_ = _⊢⁰_ ;
_⊢*_ = _⊢*_ ;
zero = zero zero∈ ;
app = app ;
ande₁ = ande₁;
ande₂ = ande₂ ;
neu⁰ = neu⁰ ;
lam = lam ;
andi = andi ;
true = true ;
∀i = ∀i ;
∀e = ∀e
}
BiggestNN : NormalAndNeutral
BiggestNN = record
{
_⊢⁰_ = _⊢_ ;
_⊢*_ = _⊢_ ;
zero = zero zero∈ ;
app = app ;
ande₁ = ande₁ ;
ande₂ = ande₂ ;
neu⁰ = λ x → x ;
lam = lam ;
andi = andi ;
true = true ;
∀i = ∀i ;
∀e = ∀e
}
PO⊢⁺ = [ order {Con} _⊢⁺_ refl⊢⁺ tran⊢⁺ ]ᵒᵖ
PO⊢⁰⁺ = [ order {Con} _⊢⁰⁺_ refl⊢⁰⁺ tran⊢⁰⁺ ]ᵒᵖ
PO∈* = order {Con} _∈*_ refl∈* tran∈*
PO⊂⁺ = order {Con} _⊂⁺_ refl⊂⁺ tran⊂⁺
PO⊂ = order {Con} _⊂_ refl⊂ tran⊂
PO⊆ = order {Con} _⊆_ refl⊆ tran⊆
-- Completeness Proofs
Frame⊢ : NormalizationFrame
Frame⊢ = record
{
o = PO⊢⁺ ;
nn = BiggestNN ;
retro = λ s → addhyp⊢⁺ (right∈* refl∈*) s ;
⊢tran = halftran⊢⁺
}
Frame⊢⁰ : NormalizationFrame
Frame⊢⁰ = record
{
o = PO⊢⁰⁺ ;
nn = ClassicNN ;
retro = λ s → addhyp⊢⁰⁺ (right∈* refl∈*) s ;
⊢tran = halftran⊢⁰⁺⁰
}
Frame∈* : NormalizationFrame
Frame∈* = record
{
o = PO∈* ;
nn = ClassicNN ;
retro = right∈* ;
⊢tran = λ s h → halftran⊢⁰⁺⁰ (mon∈*⊢⁰⁺ s) h
}
Frame⊂⁺ : NormalizationFrame
Frame⊂⁺ = record
{
o = PO⊂⁺ ;
nn = ClassicNN ;
retro = next⊂⁺ ;
⊢tran = λ s h → halftran⊢⁰⁺⁰ (mon∈*⊢⁰⁺ $ ⊂⁺→∈* s) h
}
Frame⊂ : NormalizationFrame
Frame⊂ = record
{
o = PO⊂ ;
nn = ClassicNN ;
retro = next⊂ ;
⊢tran = λ s h → halftran⊢⁰⁺⁰ (mon∈*⊢⁰⁺ $ ⊂⁺→∈* $ ⊂→⊂⁺ s) h
}
Frame⊆ : NormalizationFrame
Frame⊆ = record
{
o = PO⊆ ;
nn = ClassicNN ;
retro = next⊆ ;
⊢tran = λ s h → halftran⊢⁰⁺⁰ (mon∈*⊢⁰⁺ $ ⊂⁺→∈* $ ⊂→⊂⁺ $ ⊆→⊂ s) h
}