-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport.py
156 lines (126 loc) · 4.04 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Converter for SOLOv2 model into ONNX format.
This script is based on the mmdetection repository
https://github.com/open-mmlab/mmdetection
"""
import argparse
import cv2
import onnx
import onnxsim
import torch
from mmdet.apis import init_detector
from utils.data_processing import solov2_preprocess
from utils.patches import mock_get_results_single
from mmcv.runner import wrap_fp16_model
torch.no_grad()
def validate_data(infer_size, device, half):
assert len(infer_size) == 2, "Image size must be in format of (H, W)"
assert (
infer_size[0] % 32 == 0 and infer_size[1] % 32 == 0
), "Image size must be divisible by 32"
if half:
assert device != "cpu", "Half precision cannot be used with CPU"
def half_handler(model, img):
img = img.half()
wrap_fp16_model(model)
model = model.half()
return model, img
def generate_inputs(image_path, target_size=(800, 800), device="cpu"):
"""Generate input data
target_size is in H x W"""
img = cv2.imread(image_path)
img = solov2_preprocess(img, target_size)
img = torch.from_numpy(img)
img = img.to(device)
img_meta = {"ori_shape": (*target_size, 3), "img_shape": (*target_size, 3)}
return img, [img_meta]
def create_model(config_path, checkpoint_path, img_metas, device="cpu"):
model = init_detector(
config_path,
checkpoint_path,
device=device,
)
def mock_get_results_single_wrapper(*args, **kwargs):
return mock_get_results_single(model.mask_head, *args, **kwargs)
model.mask_head._get_results_single = mock_get_results_single_wrapper
def _forward(img):
ret_backbone = model.backbone(img)
ret_neck = model.neck(ret_backbone)
ret_mask_head = model.mask_head.simple_test(
ret_neck, img_metas, rescale=False, instances_list=None
)
return ret_mask_head[0]
model.forward = _forward
return model
def simplify_model(onnx_file):
print("Simplifying model...")
model_onnx = onnx.load(onnx_file)
onnx.checker.check_model(model_onnx) # type: ignore
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "onnx-simplifier check failed"
onnx.save(model_onnx, onnx_file)
def main(
image_path,
config_path,
checkpoint_path,
output_path,
input_size,
device="cpu",
half=False,
simplify=False,
):
validate_data(input_size, device, half)
if device != "cpu":
device = "cuda:" + device
img, img_metas = generate_inputs(image_path, input_size, device)
model = create_model(config_path, checkpoint_path, img_metas, device)
if half:
model, img = half_handler(model, img)
torch.onnx.export(
model,
img,
output_path,
opset_version=14,
input_names=["images"],
output_names=["masks", "labels", "scores"],
dynamic_axes=None,
)
if simplify:
simplify_model(output_path)
print()
print(f"Image metas: {img_metas}")
print("DONE")
def parse_args():
parser = argparse.ArgumentParser(description="Export model to ONNX.")
parser.add_argument("--cfg", help="model config path")
parser.add_argument("--ckpt", help="model config path")
parser.add_argument("--img", help="path to one test image")
parser.add_argument("--out", help="path to the onnx output")
parser.add_argument(
"--imgsz",
nargs="+",
type=int,
default=[800, 800],
help="image size (h, w), divisible by 32",
)
parser.add_argument(
"--half", action="store_true", help="whether to use half precision"
)
parser.add_argument(
"--simplify", action="store_true", help="whether to simplify the model"
)
parser.add_argument("--device", default="cpu", help="device to use: `cpu`/`0`/...")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(
args.img,
args.cfg,
args.ckpt,
args.out,
tuple(args.imgsz),
args.device,
args.half,
args.simplify,
)