forked from openai/openai-agents-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
171 lines (138 loc) · 6.52 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from __future__ import annotations
import dataclasses
import inspect
from collections.abc import Awaitable
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Callable, Generic, cast
from . import _utils
from ._utils import MaybeAwaitable
from .guardrail import InputGuardrail, OutputGuardrail
from .handoffs import Handoff
from .items import ItemHelpers
from .logger import logger
from .model_settings import ModelSettings
from .models.interface import Model
from .run_context import RunContextWrapper, TContext
from .tool import Tool, function_tool
if TYPE_CHECKING:
from .lifecycle import AgentHooks
from .result import RunResult
@dataclass
class Agent(Generic[TContext]):
"""An agent is an AI model configured with instructions, tools, guardrails, handoffs and more.
We strongly recommend passing `instructions`, which is the "system prompt" for the agent. In
addition, you can pass `description`, which is a human-readable description of the agent, used
when the agent is used inside tools/handoffs.
Agents are generic on the context type. The context is a (mutable) object you create. It is
passed to tool functions, handoffs, guardrails, etc.
"""
name: str
"""The name of the agent."""
instructions: (
str
| Callable[
[RunContextWrapper[TContext], Agent[TContext]],
MaybeAwaitable[str],
]
| None
) = None
"""The instructions for the agent. Will be used as the "system prompt" when this agent is
invoked. Describes what the agent should do, and how it responds.
Can either be a string, or a function that dynamically generates instructions for the agent. If
you provide a function, it will be called with the context and the agent instance. It must
return a string.
"""
handoff_description: str | None = None
"""A description of the agent. This is used when the agent is used as a handoff, so that an
LLM knows what it does and when to invoke it.
"""
handoffs: list[Agent[Any] | Handoff[TContext]] = field(default_factory=list)
"""Handoffs are sub-agents that the agent can delegate to. You can provide a list of handoffs,
and the agent can choose to delegate to them if relevant. Allows for separation of concerns and
modularity.
"""
model: str | Model | None = None
"""The model implementation to use when invoking the LLM.
By default, if not set, the agent will use the default model configured in
`model_settings.DEFAULT_MODEL`.
"""
model_settings: ModelSettings = field(default_factory=ModelSettings)
"""Configures model-specific tuning parameters (e.g. temperature, top_p).
"""
tools: list[Tool] = field(default_factory=list)
"""A list of tools that the agent can use."""
input_guardrails: list[InputGuardrail[TContext]] = field(default_factory=list)
"""A list of checks that run in parallel to the agent's execution, before generating a
response. Runs only if the agent is the first agent in the chain.
"""
output_guardrails: list[OutputGuardrail[TContext]] = field(default_factory=list)
"""A list of checks that run on the final output of the agent, after generating a response.
Runs only if the agent produces a final output.
"""
output_type: type[Any] | None = None
"""The type of the output object. If not provided, the output will be `str`."""
hooks: AgentHooks[TContext] | None = None
"""A class that receives callbacks on various lifecycle events for this agent.
"""
def clone(self, **kwargs: Any) -> Agent[TContext]:
"""Make a copy of the agent, with the given arguments changed. For example, you could do:
```
new_agent = agent.clone(instructions="New instructions")
```
"""
return dataclasses.replace(self, **kwargs)
def as_tool(
self,
tool_name: str | None,
tool_description: str | None,
custom_output_extractor: Callable[[RunResult], Awaitable[str]] | None = None,
) -> Tool:
"""Transform this agent into a tool, callable by other agents.
This is different from handoffs in two ways:
1. In handoffs, the new agent receives the conversation history. In this tool, the new agent
receives generated input.
2. In handoffs, the new agent takes over the conversation. In this tool, the new agent is
called as a tool, and the conversation is continued by the original agent.
Args:
tool_name: The name of the tool. If not provided, the agent's name will be used.
tool_description: The description of the tool, which should indicate what it does and
when to use it.
custom_output_extractor: A function that extracts the output from the agent. If not
provided, the last message from the agent will be used.
"""
@function_tool(
name_override=tool_name or _utils.transform_string_function_style(self.name),
description_override=tool_description or "",
)
async def run_agent(context: RunContextWrapper, input: str) -> str:
from .run import Runner
output = await Runner.run(
starting_agent=self,
input=input,
context=context.context,
)
if custom_output_extractor:
return await custom_output_extractor(output)
return ItemHelpers.text_message_outputs(output.new_items)
return run_agent
async def get_system_prompt(self, run_context: RunContextWrapper[TContext]) -> str | None:
"""Get the system prompt for the agent."""
if isinstance(self.instructions, str):
return self.instructions
elif callable(self.instructions):
if inspect.iscoroutinefunction(self.instructions):
return await cast(Awaitable[str], self.instructions(run_context, self))
else:
return cast(str, self.instructions(run_context, self))
elif self.instructions is not None:
logger.error(f"Instructions must be a string or a function, got {self.instructions}")
return None
def list_tools(self) -> list[str]:
"""Get a list of all tools the agent has access to.
Returns:
A list of tool names. Logs a warning if no tools are available.
"""
if not self.tools:
logger.warning(f"Agent '{self.name}' has no tools available.")
return []
return [tool.name for tool in self.tools]