-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler_035.py
32 lines (29 loc) · 1.06 KB
/
euler_035.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719,
# are themselves prime.
#
# There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
#
# How many circular primes are there below one million?
from euler import isPrime
# if there are even digits, skip it! one of the rotations will be even, therefore non prime.
def contains_even_digits(number):
even_digits = set('24680')
return any((d in even_digits) for d in str(number))
def find_rotations(number):
as_str = str(number)
result = [number]
for i in range(0,len(as_str)-1):
rotation = as_str[1:] + as_str[:1]
result.append(int(rotation))
as_str = rotation
return result
if __name__ == '__main__':
UPPER_LIMIT = 1000000
# skip 2, the only EVEN prime...
number_found = 1 # conting 2
for i in range(3,UPPER_LIMIT):
if contains_even_digits(i):
continue
if all(isPrime(x) for x in find_rotations(i)):
number_found += 1
print(number_found)