forked from koraykv/unsup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseAutoEncoder.lua
101 lines (82 loc) · 3.18 KB
/
SparseAutoEncoder.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
local SparseAutoEncoder = torch.class('unsup.SparseAutoEncoder','unsup.UnsupModule')
function SparseAutoEncoder:__init(encoder, decoder, beta, lambda, loss)
self.encoder = encoder
self.decoder = decoder
self.sparseCost = nn.L1Cost()
self.beta = beta
self.lambda = lambda
if loss then
self.loss = loss
else
self.loss = nn.MSECriterion()
self.loss.sizeAverage = false
end
end
function SparseAutoEncoder:parameters()
local seq = nn.Sequential()
seq:add(self.encoder)
seq:add(self.decoder)
return seq:parameters()
end
function SparseAutoEncoder:initDiagHessianParameters()
self.encoder:initDiagHessianParameters()
self.decoder:initDiagHessianParameters()
end
function SparseAutoEncoder:reset(stdv)
self.decoder:reset(stdv)
self.encoder:reset(stdv)
end
function SparseAutoEncoder:updateOutput(input,target)
self.encoder:updateOutput(input)
self.decoder:updateOutput(self.encoder.output)
self.output = self.beta * self.loss:updateOutput(self.decoder.output, target)
self.output = self.output + self.lambda * self.sparseCost(self.encoder.output)
return self.output
end
function SparseAutoEncoder:updateGradInput(input,target)
self.loss:updateGradInput(self.decoder.output, target)
self.loss.gradInput:mul(self.beta)
self.sparseCost:updateGradInput(self.encoder.output)
self.sparseCost.gradInput:mul(self.lambda)
self.decoder:updateGradInput(self.encoder.output, self.loss.gradInput)
-- accumulate the sparsity
self.decoder.gradInput:add(self.sparseCost.gradInput)
self.encoder:updateGradInput(input, self.decoder.gradInput)
self.gradInput = self.encoder.gradInput
return self.gradInput
end
function SparseAutoEncoder:accGradParameters(input,target)
self.decoder:accGradParameters(self.encoder.output, self.loss.gradInput)
self.encoder:accGradParameters(input, self.decoder.gradInput)
end
function SparseAutoEncoder:zeroGradParameters()
self.encoder:zeroGradParameters()
self.decoder:zeroGradParameters()
end
function SparseAutoEncoder:updateDiagHessianInput(input, diagHessianOutput)
self.loss:updateDiagHessianInput(self.decoder.output, target)
self.loss.diagHessianInput:mul(self.beta)
self.sparseCost:updateDiagHessianInput(self.encoder.output)
self.sparseCost.diagHessianInput:mul(self.lambda)
self.decoder:updateDiagHessianInput(self.encoder.output, self.loss.diagHessianInput)
-- accumulate the sparsity
self.decoder.diagHessianInput:add(self.sparseCost.diagHessianInput)
self.encoder:updateDiagHessianInput(input, self.decoder.diagHessianInput)
self.diagHessianInput = self.encoder.diagHessianInput
return self.diagHessianInput
end
function SparseAutoEncoder:accDiagHessianParameters(input, diagHessianOutput)
self.decoder:accDiagHessianParameters(self.encoder.output, self.loss.diagHessianInput)
self.encoder:accDiagHessianParameters(input, self.decoder.diagHessianInput)
end
function SparseAutoEncoder:updateParameters(learningRate)
local eta = {}
if type(learningRate) ~= 'number' then
eta = learningRate
else
eta[1] = learningRate
eta[2] = learningRate
end
self.encoder:updateParameters(eta[1])
self.decoder:updateParameters(eta[2])
end