-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsteel_defect_detection.py
186 lines (151 loc) · 5.99 KB
/
steel_defect_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import glob
import random
from matplotlib.patches import Rectangle
from lxml import etree
import os
# Enable Matplotlib backend for displaying static images
%matplotlib inline
# Load image and annotation directories
image_path = glob.glob("images/*/*.jpg")
xmls_path = glob.glob("label/label/*.xml")
# Sorting images and annotations
xmls_path.sort(key=lambda x: x.split("/")[-1].split(".xml")[0])
image_path.sort(key=lambda x: x.split("/")[-1].split(".jpg")[0])
# Train image list and annotations
xmls_train = [path.split("/")[-1].split(".")[0] for path in xmls_path]
imgs_train = [img for img in image_path if img.split("/")[-1].split(".jpg")[0] in xmls_train]
# Extract label names as DataFrame column
labels = [label.split("/")[-2] for label in imgs_train]
labels = pd.DataFrame(labels, columns=["Defect Type"])
# One-hot encoding for multiple classes
from sklearn.preprocessing import LabelBinarizer
Class = labels["Defect Type"].unique()
Class_dict = dict(zip(Class, range(1, len(Class) + 1)))
labels["Class"] = labels["Defect Type"].apply(lambda x: Class_dict[x])
lb = LabelBinarizer()
lb.fit(list(Class_dict.values()))
transformed_labels = lb.transform(labels["Class"])
for i in range(transformed_labels.shape[1]):
labels["Class" + str(i + 1)] = transformed_labels[:, i]
# Drop redundant columns
labels.drop(["Class", "Defect Type"], axis=1, inplace=True)
# Function to parse and extract information from annotation files
def to_labels(path):
xml = open("{}".format(path)).read()
sel = etree.HTML(xml)
width = int(sel.xpath("//size/width/text()")[0])
height = int(sel.xpath("//size/height/text()")[0])
xmin = int(sel.xpath("//bndbox/xmin/text()")[0])
xmax = int(sel.xpath("//bndbox/xmax/text()")[0])
ymin = int(sel.xpath("//bndbox/ymin/text()")[0])
ymax = int(sel.xpath("//bndbox/ymax/text()")[0])
return [xmin/width, ymin/height, xmax/width, ymax/height]
# Extract bounding box coordinates
coors = [to_labels(path) for path in xmls_path]
xmin, ymin, xmax, ymax = list(zip(*coors))
xmin, ymin, xmax, ymax = map(np.array, [xmin, ymin, xmax, ymax])
# Labels dataset
label = np.array(labels.values)
labels_dataset = tf.data.Dataset.from_tensor_slices((xmin, ymin, xmax, ymax, label))
# Load image from image path
def load_image(path):
image = tf.io.read_file(path)
image = tf.image.decode_jpeg(image, 3)
image = tf.image.resize(image, [224, 224])
image = tf.cast(image, tf.float32) / 255
return image
# Build the dataset
dataset = tf.data.Dataset.from_tensor_slices(imgs_train)
dataset = dataset.map(load_image)
dataset_label = tf.data.Dataset.zip((dataset, labels_dataset))
# Shuffle and batch the dataset
batch_size = 16 # Smaller batch size
dataset_label = dataset_label.repeat().shuffle(500).batch(batch_size)
dataset_label = dataset_label.prefetch(tf.data.experimental.AUTOTUNE)
# Train/test split
train_count = int(len(imgs_train) * 0.8)
test_count = int(len(imgs_train) * 0.2)
train_dataset = dataset_label.skip(test_count)
test_dataset = dataset_label.take(test_count)
class_dict = {v: k for k, v in Class_dict.items()}
# Load base model with pre-trained weights
base_resnet152v2 = tf.keras.applications.ResNet152V2(
weights="imagenet", include_top=False, input_shape=(224, 224, 3), pooling='avg')
# Set layers as trainable
base_resnet152v2.trainable = False # Start with frozen base
# Define the model
inputs = keras.Input(shape=(224, 224, 3))
x = base_resnet152v2(inputs)
x1 = keras.layers.Dense(1024, activation="relu")(x)
x1 = keras.layers.Dense(512, activation="relu")(x1)
out1 = keras.layers.Dense(1, name="xmin")(x1)
out2 = keras.layers.Dense(1, name="ymin")(x1)
out3 = keras.layers.Dense(1, name="xmax")(x1)
out4 = keras.layers.Dense(1, name="ymax")(x1)
x2 = keras.layers.Dense(1024, activation="relu")(x)
x2 = keras.layers.Dropout(0.4)(x2) # Reduced dropout rate
x2 = keras.layers.Dense(512, activation="relu")(x2)
out_class = keras.layers.Dense(10, activation="softmax", name="class")(x2)
out = [out1, out2, out3, out4, out_class]
# Create the model
resnet152v2 = keras.models.Model(inputs=inputs, outputs=out)
resnet152v2.summary()
# Optimizer with learning rate schedule
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=0.0005, decay_steps=10000, decay_rate=0.9)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
# Compile the model with metrics for each output
resnet152v2.compile(
optimizer=optimizer,
loss={
"xmin": "mse",
"ymin": "mse",
"xmax": "mse",
"ymax": "mse",
"class": "categorical_crossentropy"
},
metrics={
"xmin": ["mae"],
"ymin": ["mae"],
"xmax": ["mae"],
"ymax": ["mae"],
"class": ["accuracy"] # Ensure accuracy is included here
}
)
# Train the model
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
history = resnet152v2.fit(
train_dataset,
steps_per_epoch=train_count // batch_size,
epochs=20, # Fewer epochs with early stopping
validation_data=test_dataset,
validation_steps=test_count // batch_size,
callbacks=[early_stopping]
)
# After training the model
print(history.history.keys())
def plot_history(history):
plt.figure(figsize=(12, 6))
# Plot accuracy
plt.subplot(1, 2, 1)
if 'class_accuracy' in history.history: # Check if 'accuracy' exists
plt.plot(history.history['class_accuracy'], label='Accuracy')
if 'val_class_accuracy' in history.history: # Check if 'val_accuracy' exists
plt.plot(history.history['val_class_accuracy'], label='Val Accuracy')
plt.legend()
plt.title('Accuracy over epochs')
# Plot loss
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.legend()
plt.title('Loss over epochs')
plt.show()
plot_history(history)
# Save the model
resnet152v2.save("resnet152v2.h5")