-
-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathindex.js
379 lines (342 loc) · 11.2 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { v4: uuidv4 } = require("uuid");
const {
writeResponseChunk,
clientAbortedHandler,
formatChatHistory,
} = require("../../helpers/chat/responses");
const fs = require("fs");
const path = require("path");
const { safeJsonParse } = require("../../http");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const cacheFolder = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, "models", "apipie")
: path.resolve(__dirname, `../../../storage/models/apipie`)
);
class ApiPieLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.APIPIE_LLM_API_KEY)
throw new Error("No ApiPie LLM API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.basePath = "https://apipie.ai/v1";
this.openai = new OpenAIApi({
baseURL: this.basePath,
apiKey: process.env.APIPIE_LLM_API_KEY ?? null,
});
this.model =
modelPreference ||
process.env.APIPIE_LLM_MODEL_PREF ||
"openrouter/mistral-7b-instruct";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
// This checks if the .cached_at file has a timestamp that is more than 1Week (in millis)
// from the current date. If it is, then we will refetch the API so that all the models are up
// to date.
#cacheIsStale() {
const MAX_STALE = 6.048e8; // 1 Week in MS
if (!fs.existsSync(this.cacheAtPath)) return true;
const now = Number(new Date());
const timestampMs = Number(fs.readFileSync(this.cacheAtPath));
return now - timestampMs > MAX_STALE;
}
// This function fetches the models from the ApiPie API and caches them locally.
// We do this because the ApiPie API has a lot of models, and we need to get the proper token context window
// for each model and this is a constructor property - so we can really only get it if this cache exists.
// We used to have this as a chore, but given there is an API to get the info - this makes little sense.
// This might slow down the first request, but we need the proper token context window
// for each model and this is a constructor property - so we can really only get it if this cache exists.
async #syncModels() {
if (fs.existsSync(this.cacheModelPath) && !this.#cacheIsStale())
return false;
this.log("Model cache is not present or stale. Fetching from ApiPie API.");
await fetchApiPieModels();
return;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
models() {
if (!fs.existsSync(this.cacheModelPath)) return {};
return safeJsonParse(
fs.readFileSync(this.cacheModelPath, { encoding: "utf-8" }),
{}
);
}
chatModels() {
const allModels = this.models();
return Object.entries(allModels).reduce(
(chatModels, [modelId, modelInfo]) => {
// Filter for chat models
if (
modelInfo.subtype &&
(modelInfo.subtype.includes("chat") ||
modelInfo.subtype.includes("chatx"))
) {
chatModels[modelId] = modelInfo;
}
return chatModels;
},
{}
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
const cacheModelPath = path.resolve(cacheFolder, "models.json");
const availableModels = fs.existsSync(cacheModelPath)
? safeJsonParse(
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
{}
)
: {};
return availableModels[modelName]?.maxLength || 4096;
}
promptWindowLimit() {
const availableModels = this.chatModels();
return availableModels[this.model]?.maxLength || 4096;
}
async isValidChatCompletionModel(model = "") {
await this.#syncModels();
const availableModels = this.chatModels();
return availableModels.hasOwnProperty(model);
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
detail: "auto",
},
});
}
return content.flat();
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [],
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...formatChatHistory(chatHistory, this.#generateContent),
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`ApiPie chat: ${this.model} is not valid for chat completion!`
);
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!result.output.hasOwnProperty("choices") ||
result.output.choices.length === 0
)
return null;
return {
textResponse: result.output.choices[0].message.content,
metrics: {
prompt_tokens: result.output.usage?.prompt_tokens || 0,
completion_tokens: result.output.usage?.completion_tokens || 0,
total_tokens: result.output.usage?.total_tokens || 0,
outputTps:
(result.output.usage?.completion_tokens || 0) / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`ApiPie chat: ${this.model} is not valid for chat completion!`
);
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
}),
messages
);
return measuredStreamRequest;
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => {
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
clientAbortedHandler(resolve, fullText);
};
response.on("close", handleAbort);
try {
for await (const chunk of stream) {
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
if (token) {
fullText += token;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
if (message === undefined || message.finish_reason !== null) {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
resolve(fullText);
}
}
} catch (e) {
writeResponseChunk(response, {
uuid,
sources,
type: "abort",
textResponse: null,
close: true,
error: e.message,
});
response.removeListener("close", handleAbort);
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
resolve(fullText);
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
async function fetchApiPieModels(providedApiKey = null) {
const apiKey = providedApiKey || process.env.APIPIE_LLM_API_KEY || null;
return await fetch(`https://apipie.ai/v1/models`, {
method: "GET",
headers: {
"Content-Type": "application/json",
...(apiKey ? { Authorization: `Bearer ${apiKey}` } : {}),
},
})
.then((res) => res.json())
.then(({ data = [] }) => {
const models = {};
data.forEach((model) => {
models[`${model.provider}/${model.model}`] = {
id: `${model.provider}/${model.model}`,
name: `${model.provider}/${model.model}`,
organization: model.provider,
subtype: model.subtype,
maxLength: model.max_tokens,
};
});
// Cache all response information
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
fs.writeFileSync(
path.resolve(cacheFolder, "models.json"),
JSON.stringify(models),
{
encoding: "utf-8",
}
);
fs.writeFileSync(
path.resolve(cacheFolder, ".cached_at"),
String(Number(new Date())),
{
encoding: "utf-8",
}
);
return models;
})
.catch((e) => {
console.error(e);
return {};
});
}
module.exports = {
ApiPieLLM,
fetchApiPieModels,
};