-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_symnet.py
executable file
·324 lines (222 loc) · 10.7 KB
/
run_symnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
import numpy as np
import tqdm
import os
import os.path as osp
import logging
import importlib
import argparse
from collections import defaultdict
from torch.utils.tensorboard import SummaryWriter
from utils import config as cfg
from utils import dataset, utils
from utils.evaluator import CZSL_Evaluator
def make_parser():
parser = argparse.ArgumentParser()
# basic training settings
parser.add_argument("--name", type=str, required=True,
help="Experiment name")
parser.add_argument("--data", type=str, required=True,
choices=['MIT','UT','MITg','UTg'],
help="Dataset name")
parser.add_argument("--network", type=str, default='symnet',
help="Network name (the file name in `network` folder, but without suffix `.py`)")
parser.add_argument("--epoch", type=int, default=500,
help="Maximum epoch during training phase, or epoch to be tested during testing")
parser.add_argument("--bz", type=int, default=512,
help="Train batch size")
parser.add_argument("--test_bz", type=int, default=1024,
help="Test batch size")
parser.add_argument("--trained_weight", type=str, default=None,
help="Restore from a certain trained weight (relative path to './weights')")
parser.add_argument("--weight_type", type=str, default="continue",
help="Type of the trained weight: 'continue'-previous checkpoint(default), ?-pretrained classifier, ?-pretrained transformer")
parser.add_argument("--test_freq", type=int, default=1,
help="Frequency of testing (#epoch). Set to 0 to skip test phase")
parser.add_argument("--snapshot_freq", type=int, default=10,
help="Frequency of saving snapshots (#epoch)")
parser.add_argument("--force", default=False, action='store_true',
help="WARINING: clear experiment with duplicated name")
# model settings
parser.add_argument("--rmd_metric", type=str, default='softmax',
help="Similarity metric in RMD classification")
parser.add_argument("--distance_metric", type=str, default='L2',
help="Distance form")
parser.add_argument("--obj_pred", type=str, default=None,
help="Object prediction from pretrained model")
parser.add_argument("--wordvec", type=str, default='glove',
help="Pre-extracted word vector type")
# important hyper-parameters
parser.add_argument("--rep_dim", type=int, default=300,
help="Dimentionality of attribute/object representation")
parser.add_argument("--lr", type=float, default=1e-3,
help="Learning rate")
parser.add_argument("--dropout", type=float,
help="Keep probability of dropout")
parser.add_argument("--batchnorm", default=False, action='store_true',
help="Use batch normalization")
parser.add_argument("--loss_class_weight", default=True, action='store_true',
help="Add weight between classes (default=true)")
parser.add_argument("--fc_att", type=int, default=[512], nargs='*',
help="#fc layers after word vector")
parser.add_argument("--fc_compress", type=int, default=[768], nargs='*',
help="#fc layers after hidden layer")
parser.add_argument("--fc_cls", type=int, default=[512], nargs='*',
help="#fc layers in classifiers")
parser.add_argument("--lambda_cls_attr", type=float, default=0)
parser.add_argument("--lambda_cls_obj", type=float, default=0)
parser.add_argument("--lambda_trip", type=float, default=0)
parser.add_argument("--triplet_margin", type=float, default=0.5,
help="Triplet loss margin")
parser.add_argument("--lambda_sym", type=float, default=0)
parser.add_argument("--lambda_axiom", type=float, default=0)
parser.add_argument("--remove_inv", default=False, action="store_true")
parser.add_argument("--remove_com", default=False, action="store_true")
parser.add_argument("--remove_clo", default=False, action="store_true")
parser.add_argument("--no_attention", default=False, action="store_true")
# not so important
parser.add_argument("--activation", type=str, default='relu',
help="Activation function (relu, elu, leaky_relu, relu6)")
parser.add_argument("--initializer", type=float, default=None,
help="Weight initializer for fc (default=xavier init, set a float number to use Gaussian init)")
parser.add_argument("--optimizer", type=str, default='sgd',
choices=['sgd', 'adam', 'adamw', 'momentum', 'rmsprop'],
help="Type of optimizer (sgd, adam, momentum)")
parser.add_argument("--lr_decay_type", type=str, default='no',
help="Type of Learning rate decay: no/exp/cos")
parser.add_argument("--lr_decay_step", type=int, default=100,
help="The first learning rate decay step (only for cos/exp)")
parser.add_argument("--lr_decay_rate", type=float, default=0.9,
help="Decay rate of cos/exp")
parser.add_argument("--focal_loss", type=float,
help="`gamma` in focal loss. default=0 (=CE)")
parser.add_argument("--clip_grad", default=False, action='store_true',
help="Use gradient clipping")
return parser
################################################################################
def main():
logger = logging.getLogger('MAIN')
# read cmd args
parser = make_parser()
args = parser.parse_args()
utils.display_args(args, logger)
# logging and pretrained weight dirs
log_dir = osp.join(cfg.LOG_ROOT_DIR, args.name)
utils.duplication_check(args, log_dir)
logger.info("Training ckpt and log => "+log_dir)
os.makedirs(log_dir, exist_ok=True)
logger.info("Loading dataset")
train_dataloader = dataset.get_dataloader(args.data, 'train',
batchsize=args.bz)
test_dataloader = dataset.get_dataloader(args.data, 'test',
batchsize=args.test_bz, obj_pred=args.obj_pred)
logger.info("Loading network end optimizer")
network_module = importlib.import_module('models.'+args.network)
model = network_module.Model(train_dataloader.dataset, args).cuda()
print(model)
# todo: different lr on different params (refer to AttrOp code)
params = model.parameters()
optimizer = utils.get_optimizer(args.optimizer, args.lr, params)
# TODO: gradient clipping
print(optimizer)
# initialization (model weight, optimizer, lr_scheduler, clear logs)
if args.trained_weight is None:
# from scratch
init_epoch = 0
utils.clear_folder(log_dir)
# lr scheduler
# TODO!
else:
# load weight
checkpoint = torch.load(args.trained_weight)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("Checkpoint <= "+args.trained_weight)
if args.weight_type == "continue":
init_epoch = checkpoint["epoch"]
else:
utils.clear_folder(log_dir)
# evaluator
evaluator = CZSL_Evaluator(test_dataloader.dataset, model)
if args.network == 'fc_obj':
main_score_key = 'real_obj_acc'
else:
main_score_key = 'top1_acc'
best_report = None
# logger
writer = SummaryWriter(log_dir)
# trainval
logger.info('Start training')
for epoch in range(init_epoch+1, args.epoch+1):
train_epoch(model, optimizer, train_dataloader, writer, epoch, args.epoch)
if args.test_freq>0 and epoch%args.test_freq == 0:
with torch.no_grad():
current_report = test_epoch(model, evaluator, test_dataloader, writer, epoch)
if best_report is None or current_report[main_score_key]>best_report[main_score_key]:
best_report = current_report
# print test results
print("Current: " + utils.formated_czsl_result(current_report))
print("Best: " + utils.formated_czsl_result(best_report))
if args.snapshot_freq>0 and epoch%args.snapshot_freq == 0:
utils.snapshot(model, log_dir, optimizer, epoch)
writer.close()
logger.info('Finished.')
##########################################################################
def train_epoch(model, optimizer, dataloader, writer, epoch, max_epoch):
model.train()
total_loss = defaultdict(list)
for batch_ind, batch in tqdm.tqdm(enumerate(dataloader), total=len(dataloader), postfix='Train %d/%d'%(epoch, max_epoch)):
batch = {k:v.cuda() for k,v in batch.items()}
_, _, losses = model(batch)
optimizer.zero_grad()
losses["loss_total"].backward()
optimizer.step()
for key, value in losses.items():
total_loss[key].append(value.item())
for key, value in total_loss.items():
writer.add_scalar(key, np.mean(value), epoch)
# print(key, np.mean(value))
def test_epoch(model, evaluator, dataloader, writer, epoch):
accuracies_pair = []
accuracies_attr = []
accuracies_obj = []
for _, batch in tqdm.tqdm(enumerate(dataloader), total=len(dataloader), postfix='Test %d'%epoch):
batch = {k:v.cuda() for k,v in batch.items()}
pred_attr, pred_obj = model(batch, require_loss=False)
attr_truth, obj_truth = batch["pos_attr_id"], batch["pos_obj_id"]
pred_pair = utils.generate_pair_result(pred_attr, pred_obj, dataloader.dataset)
pair_results = evaluator.score_model(pred_pair, obj_truth)
match_stats = evaluator.evaluate_predictions(
pair_results, attr_truth, obj_truth)
accuracies_pair.append(match_stats)
# 0/1 sequence of t/f
a_match, o_match = evaluator.evaluate_only_attr_obj(
pred_attr, attr_truth, pred_obj, obj_truth)
accuracies_attr.append(a_match)
accuracies_obj.append(o_match)
accuracies = accuracies_pair
accuracies = zip(*accuracies)
accuracies = map(torch.mean, map(torch.cat, accuracies))
attr_acc, obj_acc, closed_1_acc, closed_2_acc, closed_3_acc, _, _ = map(lambda x:x.item(), accuracies)
real_attr_acc = torch.mean(torch.cat(accuracies_attr)).item()
real_obj_acc = torch.mean(torch.cat(accuracies_obj)).item()
report_dict = {
'real_attr_acc':real_attr_acc,
'real_obj_acc': real_obj_acc,
'top1_acc': closed_1_acc,
'top2_acc': closed_2_acc,
'top3_acc': closed_3_acc,
'epoch': epoch,
}
# save to tensorboard
if writer:
for key, value in report_dict.items():
if key not in ['name', 'epoch']:
writer.add_scalar("score/"+key, value, epoch)
return report_dict
if __name__=="__main__":
main()