-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlora-finetune.py
199 lines (181 loc) · 10.1 KB
/
lora-finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import sys
import fire
import torch
import transformers
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict
from transformers.models.llama import LlamaTokenizer, LlamaForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM, BloomForCausalLM
from typing import List
from prompter_setting.Prompter import Prompter
# os.environ['CURL_CA_BUNDLE'] = ''
def start_ift(base_model: str,
data_path: str,
output_dir: str,
batch_size: int = 128,
micro_batch_size: int = 4,
num_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 512,
val_set_size: int = 2000,
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = ['q_proj', 'v_proj'],
train_on_inputs: bool = False,
group_by_length: bool = False,
wandb_project: str = '',
load_in_8bit: bool=False,
wandb_run_name: str = '',
wandb_watch: str = '',
wandb_log_model: str = '',
resume_from_checkpoint: str = None, # 需要读取参数的目录,而不是精确到文件
prompt_template_name: str = 'gzh_prompter',
cache_dir: str = '.' ,
deepspeed_stage: int= 0):
print('开始进行显卡设置')
# 一些读取
prompter = Prompter(prompt_template_name)
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1)) # 获得总进程数
ddp = world_size != 1 # 如果进程数不为1
if ddp: # 需要多卡并行
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} # 获得本卡的地址
gradient_accumulation_steps = gradient_accumulation_steps // world_size # 梯度累计再除以总进程数
# ——————————————————————————————模型训练过程记录——————————————————————————————
use_wandb = len(wandb_project) > 0 or ("WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0) #
if len(wandb_project) > 0: os.environ['WANDB_PROJECT'] = wandb_project
if len(wandb_watch) > 0: os.environ['WANDB_WATCH'] = wandb_watch
if len(wandb_log_model) > 0: os.environ['WANDB_LOG_MODEL'] = wandb_log_model
# ——————————————————————————————模型训练过程记录——————————————————————————————
print('显卡设置完毕')
# 设置tokenizer
if 'llama' in base_model.lower():
tokenizer = LlamaTokenizer.from_pretrained(base_model, cache_dir=cache_dir)
else:
tokenizer = AutoTokenizer.from_pretrained(base_model, cache_dir=cache_dir)
tokenizer.pad_token_id = 0
tokenizer.padding_side = 'left'
def tokenize(prompt, add_eos_token=True):
result = tokenizer(prompt, truncation=True, max_length=cutoff_len, padding=False, return_tensors=None)
if (result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point['instruction'],
data_point['input'],
data_point['output']
)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs: # input内容不产生loss
user_prompt = prompter.generate_prompt(data_point['instruction'], data_point['input'])
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt['input_ids'])
tokenized_full_prompt['labels'] = [-100] * user_prompt_len + tokenized_full_prompt['labels'][
user_prompt_len:]
return tokenized_full_prompt
print('完成Tokenizer设置')
# 数据处理
data = load_dataset("json", data_files=data_path)
train_val = data['train'].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
if val_set_size > 0:
train_data = train_val['train'].shuffle().map(generate_tokenize_prompt)
val_data = train_val['test'].shuffle().map(generate_tokenize_prompt)
else:
train_data = train_val['train'].shuffle().map(generate_tokenize_prompt)
val_data = None
print('数据处理完成,数据大小:', sys.getsizeof(train_val))
# 准备模型
if 'llama' in base_model.lower():
model = LlamaForCausalLM.from_pretrained(base_model, cache_dir=cache_dir, load_in_8bit=load_in_8bit,
device_map=device_map, )
print('Using Llama')
elif 'bloom' in base_model.lower():
model = BloomForCausalLM.from_pretrained(base_model, cache_dir=cache_dir, load_in_8bit=load_in_8bit,
device_map=device_map, )
print('Using Bloom')
else:
model = AutoModelForCausalLM.from_pretrained(base_model, cache_dir=cache_dir, load_in_8bit=load_in_8bit,
device_map=device_map, )
print(model)
# model = PeftModel.from_pretrained(model, PEFT_MODEL)
# model = prepare_model_for_int8_training(model) # 和 from_pretrained 8bt的参数保持一致
config = LoraConfig(r=lora_r, lora_alpha=lora_alpha, target_modules=lora_target_modules, lora_dropout=lora_dropout,
bias="none", task_type="CAUSAL_LM")
model = get_peft_model(model, config)
# 模型并行
if not ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
print('模型准备完毕')
if deepspeed_stage == 0:
ds_config_file = './ds_configs/ds_config_stage_0.json'
elif deepspeed_stage == 1:
ds_config_file = './ds_configs/ds_config_stage_1.json'
elif deepspeed_stage == 2:
ds_config_file = './ds_configs/ds_config_stage_2.json'
elif deepspeed_stage == 3:
ds_config_file = './ds_configs/ds_config_stage_3.json'
# 读取之前的模型
if resume_from_checkpoint:
checkpoint_name = os.path.join(resume_from_checkpoint, "pytorch_model.bin")
if not os.path.exists(checkpoint_name): # 只读取旁路的参数
checkpoint_name = os.path.join(resume_from_checkpoint, "adapter_model.bin")
resume_from_checkpoint = False
if os.path.exists(checkpoint_name):
print(f"从{checkpoint_name}继续开始ift")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} 地址不存在")
print(f'已读取{checkpoint_name}的模型')
model.print_trainable_parameters()
# 设置Trainer
transformer_args = transformers.TrainingArguments(per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=10,
optim='adamw_torch',
evaluation_strategy='steps' if val_set_size > 0 else 'no',
save_strategy='steps',
eval_steps=200 if val_set_size > 0 else None,
save_steps=200,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to='wandb' if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
deepspeed=ds_config_file)
transformer_collator = transformers.DataCollatorForSeq2Seq(tokenizer, pad_to_multiple_of=8, return_tensors='pt',
padding=True)
trainer = transformers.Trainer(model=model, train_dataset=train_data, eval_dataset=val_data, args=transformer_args,
data_collator=transformer_collator)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())).__get__(model,
type(model))
print('完成Trainer设置')
# Start Training
print('开始训练模型:')
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
print('模型训练完成')
# 保存模型参数
trainer.save_state()
trainer.save_model()
# 保存模型参数
model.save_pretrained(output_dir)
print(f'已保存模型参数至:{output_dir}')
if __name__ == '__main__':
fire.Fire(start_ift)