-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimaging_models.py
142 lines (105 loc) · 5.21 KB
/
imaging_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models import resnet101, resnet50, resnet152, wide_resnet101_2, resnext101_32x8d, resnext50_32x4d
import wandb
class MockTokenizer():
@staticmethod
def from_pretrained(*args, **kwargs):
return None
class ResNetConfig:
def __init__(self, name, hidden_dropout_prob, hidden_size, num_labels):
self.name = name
self.hidden_dropout_prob = hidden_dropout_prob
self.hidden_size = hidden_size
self.num_labels = num_labels
self.memory_outputs_logits = True
self.start_mem = 3
self.start_adding = 2
self.stop_adding = 5
self.memory = None
self.wandb = False
@staticmethod
def from_pretrained(name="", hidden_dropout_prob=0.1, hidden_size=1000, num_labels=10, **kwargs):
return ResNetConfig(name, hidden_dropout_prob, hidden_size, num_labels)
class ResNet101Classifier(nn.Module):
@staticmethod
def from_pretrained(model_name, config=ResNetConfig.from_pretrained(), **kwargs):
config.model_name = model_name
return ResNet101Classifier(config=config)
def __init__(self, config):
super(ResNet101Classifier, self).__init__()
self.num_labels = config.num_labels
if config.model_name.lower() == "resnet101":
self.resnet = resnext101_32x8d(num_classes=config.hidden_size, pretrained=True)
elif config.model_name.lower() == "resnet50":
self.resnet = resnext50_32x4d(num_classes=config.hidden_size, pretrained=True)
elif config.model_name.lower() == "resnet152":
self.resnet = resnet152(num_classes=config.hidden_size, pretrained=True)
elif config.model_name.lower() == "wideresnet101":
self.resnet = wide_resnet101_2(num_classes=config.hidden_size, pretrained=True)
else:
raise ValueError()
self.classifier = nn.Sequential(
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(config.hidden_size, config.num_labels)
)
self.wandb = config.wandb
self.last_losses = None
self.last_seq_out = None
self.last_logits = None
self.last_labels = None
self.last_bert_out = None
self.epoch = None
def set_epoch(self, epoch):
self.epoch = epoch
def verify_noise_detection(self, noise_mask, step=-1):
if noise_mask is not None and noise_mask.sum().item() != 0:
noise_mask = noise_mask.view(-1)
sorter = self.last_losses
k = noise_mask.sum()
top_k_sorter = torch.topk(sorter, k)[1]
sorter[top_k_sorter] = 1
sorter[sorter != 1] = 0
TP = ((noise_mask == 1) & (sorter == 1)).int().sum()
FP = ((noise_mask == 0) & (sorter == 1)).int().sum()
FN = ((noise_mask == 1) & (sorter == 0)).int().sum()
TN = ((noise_mask == 0) & (sorter == 0)).int().sum()
tot = noise_mask.view(-1).shape[0]
print(f"noise detection: TP: {TP}\tFP: {FP}\tFN: {FN}\tTN: {TN}\ttot: {tot}")
noise_mask = noise_mask.bool()
predicted_labels_noise = self.last_logits[noise_mask].argmax(-1)
accuracy_noise = (predicted_labels_noise == self.last_labels[noise_mask]).float().sum().item() / k.item()
if self.wandb:
wandb.log({
"noise/classification-accuracy": accuracy_noise,
"noise/detection-accuracy": (TP + TN).float()/(TP + TN + FP + FN),
"noise/detection-f1score": (2 * TP).float() / (2 * TP + FN + FP)
}, step=step)
def forward(self, batch, labels=None, **kwargs):
sequence_output = self.resnet(batch)
if torch.isnan(sequence_output).any():
raise ValueError("NaNs in sequence output")
batch_size, feat_dim = sequence_output.shape
logits_network = F.softmax(self.classifier(sequence_output.view(batch_size, 1, -1)), dim=-1)
logits = logits_network.squeeze()
if labels is not None:
loss_fct = nn.NLLLoss(reduction="none")
values = torch.zeros(labels.shape[0], self.num_labels, dtype=torch.long).cuda()
values.scatter_(1, labels.view(-1, 1),
torch.ones(labels.shape[0], dtype=torch.long).cuda().view(-1, 1))
last_sequence_outputs = sequence_output.detach().view(-1, feat_dim).clone()
loss_expanded = loss_fct(torch.log(logits), labels)
del self.last_labels, self.last_bert_out, self.last_logits, self.last_seq_out
self.last_seq_out = last_sequence_outputs.view(batch_size, 1, -1)
self.last_labels = labels.detach().clone()
self.last_logits = logits.detach().clone()
self.last_bert_out = logits_network.detach().clone()
loss = loss_expanded.mean()
with torch.no_grad():
self.last_losses = loss_expanded.detach().view(-1).clone()
del values, loss_expanded, sequence_output
del last_sequence_outputs, labels
return loss, logits.view(batch_size, 1, -1)
else:
return logits.view(batch_size, 1, -1), sequence_output